organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-[1-(4-meth­oxy­phen­yl)-4-oxo-3-phenylazetidin-2-yl]-2-nitro-1-phenyl-2,3,10,10a-tetra­hydro-1H,5H-pyrrolo[1,2-b]iso­quinoline-10a-carboxyl­ate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 21 December 2009; accepted 11 February 2010; online 17 February 2010)

In the title mol­ecule, C37H35N3O6, the pyrrolidine ring adopts a twist conformation and the piperidine ring is in a distorted boat conformation. One of the phenyl rings is disordered over two positions with occupancies of 0.54 (2) and 0.46 (2) and the ethyl carboxyl­ate group is also disordered over two orientations with occupancies of 0.75 (1) and 0.25 (1).

Related literature

For the pharmacological properties of β-lactam derivatives, see: Jones et al. (1989[Jones, R. N., Barry, A. L. & Thornsberry, C. (1989). J. Antimicrob. Chemother. 24 (Suppl. A), 9-29.]); Page (1992[Page, M. I. (1992). The Chemistry of β-Lactams. London: Blackie Academic & Professional.]); Hashimoto et al. (1976[Hashimoto, M., Komori, T. & Kamiya, T. (1976). J. Am. Chem. Soc. 98, 3023-3025.]); Bose et al. (1974[Bose, A. K., Manhas, M. S., Kapur, J. C., Sharma, S. D. & Amin, S. G. (1974). J. Med. Chem. 17, 541-544.]); Fujisawa et al. (1995[Fujisawa, T., Shibuya, A., Sato, D. & Shimitzu, M. (1995). Synlett. pp. 1067-1068.]); Han et al. (1995[Han, W. T., Trehan, A. K., Wright, J. J. K., Federici, M. E., Seiler, S. M. & Meanwell, N. A. (1995). Bioorg. Med. Chem. Lett. 3, 1123-1143.]); Adlington et al. (1997[Adlington, R. M., Baldwin, J. E., Chen, B., Cooper, S. L., McCoull, W., Pritchard, G. J. & Howe, T. J. (1997). Bioorg. Med. Chem. Lett. 7, 1689-1694.]); Borthwick et al. (1998[Borthwick, A. D., Weingarten, G., Haley, T. M., Tomaszewski, W., Wang, W., Hu, Z., Bedard, J., Jim, H., Yuen, L. & Mansour, T. S. (1998). Bioorg. Med. Chem. Lett. 8, 365-370.]); Palomo et al. (1999[Palomo, C., Aizpurua, J. M., Gamboa, I. & Oiarbide, M. (1999). Amino Acids, 16, 321-343.]); Kamel & Naser (1979[Kamel, M. M. & Naser, M. E. (1979). Pharmazie, 34, 440.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli et al. (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]).

[Scheme 1]

Experimental

Crystal data
  • C37H35N3O6

  • Mr = 617.68

  • Triclinic, [P \overline 1]

  • a = 9.3039 (3) Å

  • b = 13.0725 (3) Å

  • c = 13.8814 (3) Å

  • α = 87.504 (1)°

  • β = 74.123 (1)°

  • γ = 74.926 (1)°

  • V = 1567.35 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.17 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.985

  • 30422 measured reflections

  • 5887 independent reflections

  • 4326 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.121

  • S = 1.05

  • 5887 reflections

  • 490 parameters

  • 97 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

β-lactam antibiotics have been successfully used in the treatment of infectious diseases for many years (Jones et al., 1989). Despite the large number of compounds containing a β-lactam moiety that have already been synthesized and tested, there is still a need for new compounds of this kind due to the increasing resistance of bacterial strains to certain types of antibiotics (Page, 1992). A class of β-lactam known as the monocyclic β-lactam, which includes compounds such as the nocardicins, aztreonam and carumonam, has been described for their chemotherapeutic importance as antibiotics (Hashimoto et al., 1976; Bose et al., 1974; Fujisawa et al., 1995). The recent discovery of new biologically active monocyclic β-lactam compounds displaying activities other than the usual antibiotic one, such as thrombin (Han et al., 1995), prostate-specific antigen (Adlington et al., 1997), human cytomegalovirus protease (Borthwick et al., 1998) and the cholesterol absorption inhibitors (Palomo et al., 1999), are also interesting. The presence of a carbohydrate side chain in a drug may also overcome the frequently observed water insolubility problem (Kamel & Naser, 1979).

The pyrrolidine ring in the title molecule (Fig. 1) adopts a twist conformation, with puckering (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) of q2 = 0.275 (2) Å, ϕ = 92.8 (3)° and Δ2(N1) = 2.8 (2)°. The sum of angles around N1 (339.53°) is in accordance with sp3 hybridization (Beddoes et al., 1986). The piperidine ring adopts a distorted boat conformation with the puckering and asymmetry parameters q2 = 0.641 (2) Å, q3 = -0.005 (2) Å, ϕ2 = 64.3 (2)° and Δs(C2,C9) = 4.7 (2)°. The β-lactam ring is planar and the keto atom O5 deviates from this plane by -0.054 (2) Å. The methoxy group is slightly twisted out of the attached C34–C39 phenyl ring [C40—O6—C37—C36 = 5.4 (3)°].

A weak intermolecular C—H···π interaction involving the C9–H9B group and the C3–C8 benzene ring (centroid Cg1) of the molecule at (1-x, 1-y, 1-z) is observed [H9B···Cg1 = 2.95 Å, C9···Cg1 = 3.889 (2) Å and C9···H9B···Cg1 = 163°].

Related literature top

For the pharmacological properties of β-lactam derivatives, see: Jones et al. (1989); Page (1992); Hashimoto et al. (1976); Bose et al. (1974); Fujisawa et al. (1995); Han et al. (1995); Adlington et al. (1997); Borthwick et al. (1998); Palomo et al. (1999); Kamel & Naser (1979). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli et al. (1983). For hybridization, see: Beddoes et al. (1986).

Experimental top

To a stirred solution of 5-(1'-N-(p-methoxyphenyl-azetidine-2'-one)-4-nitro-3-phenyl-2-ethoxycarbonyl-2-benzyl-pyrrlolidine (1 mmol) in dry chloroform (20 ml) was added p-formaldehyde (1 mmol) followed by trifluroacetic acid (0.1 mmol) at room temperature. After completion of the reaction, the mixture was washed with water and dried over Na2SO4. The solvent was removed under the reduced pressure and the crude product was subjected to column chromatography with hexane-ethyl acetate (9:1)to obtain pure cyclized product. The compound was recrystallized from ethyl acetate.

Refinement top

One of the phenyl rings is disordered over two positions with occupancies of 0.54 (2) and 0.46 (2) and the ethyl carboxylate group is also disordered over two orientations with occupancies of 0.753 (10) and 0.247 (10). The C—C distances in the disordered components were restrained to be equal and Uij parameters of atoms C15A, C16A, C32, C32A and C33A were restrained to an approximate isotropic behaviour. All H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. The reflection '0 1 0' affected by beamstop was removed during refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. All disorder components are shown. H atoms have been omitted for clarity.
(I) top
Crystal data top
C37H35N3O6Z = 2
Mr = 617.68F(000) = 652
Triclinic, P1Dx = 1.309 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3039 (3) ÅCell parameters from 3651 reflections
b = 13.0725 (3) Åθ = 1.5–25.6°
c = 13.8814 (3) ŵ = 0.09 mm1
α = 87.504 (1)°T = 293 K
β = 74.123 (1)°Block, colourless
γ = 74.926 (1)°0.20 × 0.20 × 0.17 mm
V = 1567.35 (7) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5887 independent reflections
Radiation source: fine-focus sealed tube4326 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scansθmax = 25.6°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1111
Tmin = 0.982, Tmax = 0.985k = 1515
30422 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.3689P]
where P = (Fo2 + 2Fc2)/3
5887 reflections(Δ/σ)max = 0.001
490 parametersΔρmax = 0.19 e Å3
97 restraintsΔρmin = 0.20 e Å3
Crystal data top
C37H35N3O6γ = 74.926 (1)°
Mr = 617.68V = 1567.35 (7) Å3
Triclinic, P1Z = 2
a = 9.3039 (3) ÅMo Kα radiation
b = 13.0725 (3) ŵ = 0.09 mm1
c = 13.8814 (3) ÅT = 293 K
α = 87.504 (1)°0.20 × 0.20 × 0.17 mm
β = 74.123 (1)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5887 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4326 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.985Rint = 0.029
30422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04497 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
5887 reflectionsΔρmin = 0.20 e Å3
490 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.00074 (16)0.59615 (13)0.42249 (12)0.0806 (4)
O20.2057 (6)0.4922 (4)0.3151 (4)0.0612 (9)0.753 (10)
O2A0.180 (2)0.5220 (14)0.2887 (16)0.089 (5)0.247 (10)
O30.0627 (2)0.86406 (15)0.16584 (14)0.1081 (6)
O40.0583 (2)0.71036 (16)0.22020 (13)0.0956 (5)
O50.74560 (17)0.70097 (11)0.04187 (12)0.0897 (5)
O60.79171 (19)0.19925 (11)0.10468 (13)0.0877 (5)
N10.37346 (14)0.63265 (10)0.29712 (9)0.0413 (3)
N230.10037 (17)0.79028 (15)0.21643 (11)0.0595 (4)
N270.57227 (15)0.63357 (10)0.08244 (10)0.0476 (3)
C20.52195 (18)0.58959 (13)0.32089 (13)0.0474 (4)
H2A0.60530.59800.26390.057*
H2B0.53580.51440.33240.057*
C30.5315 (2)0.64295 (14)0.41105 (14)0.0530 (4)
C40.6528 (2)0.68215 (17)0.41500 (18)0.0738 (6)
H40.73540.67850.35840.089*
C50.6517 (3)0.7269 (2)0.5032 (2)0.1005 (9)
H50.73390.75360.50620.121*
C60.5304 (4)0.7323 (2)0.5864 (2)0.1026 (10)
H60.53160.76160.64590.123*
C70.4075 (3)0.69511 (18)0.58325 (16)0.0797 (7)
H70.32500.69960.64020.096*
C80.4063 (2)0.65081 (14)0.49505 (13)0.0580 (5)
C90.2777 (2)0.61098 (15)0.48137 (13)0.0582 (5)
H9A0.18740.63560.53760.070*
H9B0.30690.53410.48080.070*
C100.23601 (18)0.64853 (13)0.38286 (12)0.0462 (4)
C110.14835 (19)0.76820 (13)0.38416 (12)0.0478 (4)
H110.03810.77240.39630.057*
C120.20748 (18)0.80076 (13)0.27678 (12)0.0457 (4)
H120.21400.87440.27680.055*
C130.37003 (17)0.72713 (12)0.23744 (11)0.0410 (4)
H130.44350.76210.25170.049*
C140.1301 (2)0.57983 (17)0.37252 (15)0.0599 (5)
C150.1191 (4)0.4158 (4)0.3140 (3)0.0778 (14)0.753 (10)
H15A0.05840.40870.38180.093*0.753 (10)
H15B0.19080.34740.29160.093*0.753 (10)
C160.0156 (6)0.4446 (4)0.2489 (3)0.1046 (17)0.753 (10)
H16A0.03970.39150.25160.157*0.753 (10)
H16B0.07530.44950.18130.157*0.753 (10)
H16C0.05660.51180.27120.157*0.753 (10)
C16A0.1254 (17)0.3554 (13)0.2817 (13)0.115 (5)0.247 (10)
H16D0.05780.31840.26570.173*0.247 (10)
H16E0.12640.34420.35030.173*0.247 (10)
H16F0.22820.32900.23880.173*0.247 (10)
C15A0.071 (2)0.4669 (10)0.2668 (19)0.133 (7)0.247 (10)
H15C0.03160.49460.31110.159*0.247 (10)
H15D0.06600.47870.19820.159*0.247 (10)
C170.1640 (2)0.84124 (14)0.45989 (13)0.0549 (5)
C180.0576 (3)0.85584 (18)0.55318 (14)0.0744 (6)
H180.02010.82040.56760.089*
C190.0653 (4)0.9221 (2)0.62489 (19)0.1005 (10)
H190.00660.93050.68740.121*
C200.1766 (4)0.9753 (2)0.6051 (2)0.1116 (12)
H200.18171.01960.65400.134*
C210.2820 (3)0.9638 (2)0.5125 (2)0.0973 (9)
H210.35741.00120.49820.117*
C220.2758 (2)0.89655 (16)0.44051 (17)0.0692 (6)
H220.34810.88850.37820.083*
C240.41689 (18)0.70400 (12)0.12498 (12)0.0441 (4)
H240.33730.68160.10380.053*
C250.4743 (2)0.79226 (13)0.05688 (12)0.0503 (4)
H250.42030.81040.00450.060*
C260.6241 (2)0.70663 (14)0.01974 (14)0.0586 (5)
C280.4838 (2)0.88931 (14)0.10429 (13)0.0579 (5)
C290.6204 (18)0.8829 (16)0.1303 (17)0.074 (3)0.46 (2)
H290.69750.81980.11390.088*0.46 (2)
C300.6522 (16)0.9628 (11)0.1789 (9)0.083 (3)0.46 (2)
H300.74280.95270.19850.099*0.46 (2)
C310.5410 (19)1.0561 (10)0.1953 (10)0.086 (4)0.46 (2)
H310.55451.11230.22770.103*0.46 (2)
C320.4107 (19)1.0685 (7)0.1653 (8)0.070 (3)0.46 (2)
H320.33851.13410.17500.083*0.46 (2)
C330.383 (2)0.9867 (10)0.1209 (19)0.069 (4)0.46 (2)
H330.29190.99830.10160.083*0.46 (2)
C29A0.5938 (18)0.8965 (15)0.1495 (16)0.093 (5)0.54 (2)
H29A0.67600.83880.15160.111*0.54 (2)
C30A0.577 (2)0.9938 (11)0.1922 (12)0.116 (5)0.54 (2)
H30A0.65341.00150.22030.139*0.54 (2)
C31A0.456 (3)1.0783 (10)0.1957 (10)0.097 (4)0.54 (2)
H31A0.45151.14140.22650.117*0.54 (2)
C32A0.3408 (18)1.0722 (7)0.1540 (7)0.078 (2)0.54 (2)
H32A0.25601.12960.15680.093*0.54 (2)
C33A0.3560 (17)0.9759 (9)0.1073 (16)0.061 (2)0.54 (2)
H33A0.28040.96900.07770.074*0.54 (2)
C340.62980 (19)0.52261 (13)0.08421 (12)0.0457 (4)
C350.7856 (2)0.47680 (14)0.04880 (15)0.0582 (5)
H350.85240.51890.02140.070*
C360.8439 (2)0.36877 (15)0.05343 (16)0.0638 (5)
H360.94950.33840.02870.077*
C370.7467 (2)0.30656 (14)0.09426 (14)0.0581 (5)
C380.5902 (2)0.35246 (14)0.12876 (14)0.0580 (5)
H380.52360.31020.15600.070*
C390.5313 (2)0.45959 (13)0.12349 (13)0.0511 (4)
H390.42540.48950.14640.061*
C400.9516 (3)0.14970 (18)0.0789 (2)0.0958 (8)
H40A0.96740.07560.09280.144*
H40B1.00050.18170.11750.144*
H40C0.99570.15800.00880.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0501 (8)0.1036 (12)0.0806 (10)0.0273 (8)0.0017 (7)0.0018 (8)
O20.0529 (17)0.059 (2)0.0692 (18)0.0213 (15)0.0051 (12)0.0002 (13)
O2A0.078 (7)0.068 (9)0.129 (13)0.037 (7)0.020 (7)0.018 (7)
O30.1268 (15)0.1068 (13)0.1019 (13)0.0018 (11)0.0799 (12)0.0268 (11)
O40.0999 (13)0.1229 (15)0.0954 (13)0.0543 (11)0.0568 (10)0.0229 (10)
O50.0710 (10)0.0672 (9)0.0956 (11)0.0114 (7)0.0269 (9)0.0157 (8)
O60.0941 (12)0.0454 (8)0.1134 (13)0.0072 (8)0.0223 (10)0.0046 (8)
N10.0351 (7)0.0442 (7)0.0410 (7)0.0052 (6)0.0103 (6)0.0063 (5)
N230.0430 (8)0.0810 (12)0.0454 (9)0.0024 (8)0.0147 (7)0.0022 (8)
N270.0432 (8)0.0445 (8)0.0473 (8)0.0099 (6)0.0011 (6)0.0022 (6)
C20.0402 (9)0.0472 (9)0.0494 (9)0.0011 (7)0.0150 (7)0.0013 (7)
C30.0487 (10)0.0494 (10)0.0584 (11)0.0050 (8)0.0270 (9)0.0000 (8)
C40.0549 (12)0.0770 (14)0.0889 (16)0.0021 (10)0.0341 (11)0.0148 (11)
C50.0770 (17)0.105 (2)0.128 (2)0.0033 (14)0.0611 (18)0.0376 (17)
C60.102 (2)0.104 (2)0.101 (2)0.0252 (16)0.0688 (18)0.0399 (16)
C70.0826 (16)0.0844 (15)0.0590 (13)0.0206 (12)0.0364 (12)0.0081 (11)
C80.0625 (12)0.0552 (11)0.0489 (10)0.0092 (9)0.0261 (9)0.0020 (8)
C90.0584 (11)0.0621 (11)0.0437 (10)0.0033 (9)0.0101 (8)0.0124 (8)
C100.0385 (9)0.0536 (10)0.0412 (9)0.0069 (7)0.0075 (7)0.0060 (7)
C110.0372 (9)0.0574 (10)0.0411 (9)0.0002 (7)0.0096 (7)0.0020 (7)
C120.0415 (9)0.0488 (9)0.0428 (9)0.0023 (7)0.0139 (7)0.0028 (7)
C130.0371 (8)0.0427 (8)0.0415 (9)0.0071 (7)0.0114 (7)0.0039 (6)
C140.0475 (11)0.0734 (13)0.0558 (11)0.0188 (9)0.0076 (9)0.0117 (10)
C150.075 (2)0.081 (3)0.085 (2)0.041 (2)0.0143 (18)0.001 (2)
C160.107 (3)0.130 (4)0.089 (3)0.048 (3)0.026 (2)0.026 (2)
C16A0.121 (8)0.101 (9)0.139 (9)0.031 (7)0.057 (7)0.007 (7)
C15A0.132 (10)0.116 (9)0.174 (11)0.065 (8)0.047 (8)0.016 (8)
C170.0513 (10)0.0540 (10)0.0495 (10)0.0121 (8)0.0212 (8)0.0028 (8)
C180.0751 (14)0.0781 (14)0.0476 (11)0.0200 (11)0.0164 (10)0.0062 (10)
C190.104 (2)0.107 (2)0.0609 (14)0.0401 (17)0.0328 (14)0.0246 (14)
C200.119 (2)0.101 (2)0.103 (2)0.0429 (19)0.071 (2)0.0508 (17)
C210.0903 (18)0.0791 (16)0.127 (2)0.0109 (13)0.0622 (18)0.0333 (15)
C220.0651 (13)0.0628 (12)0.0764 (14)0.0058 (10)0.0327 (11)0.0142 (10)
C240.0401 (9)0.0455 (9)0.0427 (9)0.0074 (7)0.0084 (7)0.0030 (7)
C250.0552 (10)0.0486 (10)0.0417 (9)0.0101 (8)0.0085 (8)0.0070 (7)
C260.0574 (11)0.0522 (11)0.0551 (11)0.0132 (8)0.0016 (9)0.0041 (8)
C280.0770 (13)0.0501 (11)0.0453 (10)0.0217 (10)0.0108 (9)0.0124 (8)
C290.104 (6)0.068 (5)0.052 (5)0.040 (4)0.009 (4)0.005 (3)
C300.097 (6)0.083 (6)0.075 (4)0.034 (5)0.025 (5)0.005 (4)
C310.116 (9)0.075 (7)0.072 (5)0.048 (7)0.010 (6)0.001 (5)
C320.084 (7)0.050 (4)0.067 (5)0.019 (5)0.006 (5)0.000 (3)
C330.103 (8)0.040 (5)0.056 (6)0.019 (4)0.008 (5)0.000 (3)
C29A0.130 (9)0.091 (9)0.091 (11)0.063 (7)0.056 (9)0.030 (6)
C30A0.157 (12)0.097 (9)0.150 (10)0.077 (10)0.097 (10)0.045 (7)
C31A0.163 (13)0.068 (5)0.096 (6)0.058 (7)0.066 (8)0.012 (4)
C32A0.097 (5)0.055 (3)0.083 (4)0.031 (4)0.018 (4)0.011 (2)
C33A0.085 (4)0.044 (4)0.052 (5)0.022 (3)0.008 (3)0.002 (3)
C340.0476 (9)0.0436 (9)0.0423 (9)0.0094 (7)0.0078 (7)0.0015 (7)
C350.0462 (10)0.0525 (11)0.0701 (12)0.0128 (8)0.0066 (9)0.0026 (9)
C360.0499 (11)0.0547 (11)0.0784 (14)0.0038 (9)0.0123 (10)0.0014 (9)
C370.0679 (12)0.0454 (10)0.0589 (11)0.0084 (9)0.0191 (9)0.0033 (8)
C380.0672 (12)0.0496 (10)0.0563 (11)0.0233 (9)0.0068 (9)0.0030 (8)
C390.0472 (10)0.0510 (10)0.0510 (10)0.0136 (8)0.0047 (8)0.0061 (8)
C400.1015 (19)0.0581 (14)0.116 (2)0.0125 (13)0.0417 (16)0.0010 (13)
Geometric parameters (Å, º) top
O1—C141.193 (2)C15A—H15C0.97
O2—C141.340 (6)C15A—H15D0.97
O2—C151.440 (7)C17—C221.378 (3)
O2A—C141.32 (2)C17—C181.384 (3)
O2A—C15A1.49 (3)C18—C191.376 (4)
O3—N231.202 (2)C18—H180.93
O4—N231.202 (2)C19—C201.355 (4)
O5—C261.203 (2)C19—H190.93
O6—C371.369 (2)C20—C211.373 (4)
O6—C401.410 (3)C20—H200.93
N1—C131.4552 (19)C21—C221.381 (3)
N1—C101.4648 (19)C21—H210.93
N1—C21.471 (2)C22—H220.93
N23—C121.501 (2)C24—C251.568 (2)
N27—C261.356 (2)C24—H240.98
N27—C341.411 (2)C25—C281.488 (3)
N27—C241.475 (2)C25—C261.519 (2)
C2—C31.493 (2)C25—H250.98
C2—H2A0.97C28—C331.357 (10)
C2—H2B0.97C28—C29A1.362 (9)
C3—C41.370 (3)C28—C291.395 (11)
C3—C81.390 (3)C28—C33A1.405 (10)
C4—C51.376 (3)C29—C301.401 (11)
C4—H40.93C29—H290.93
C5—C61.365 (4)C30—C311.360 (12)
C5—H50.93C30—H300.93
C6—C71.366 (4)C31—C321.356 (11)
C6—H60.93C31—H310.93
C7—C81.381 (3)C32—C331.370 (11)
C7—H70.93C32—H320.93
C8—C91.482 (3)C33—H330.93
C9—C101.547 (2)C29A—C30A1.380 (11)
C9—H9A0.97C29A—H29A0.93
C9—H9B0.97C30A—C31A1.344 (11)
C10—C141.532 (3)C30A—H30A0.93
C10—C111.563 (2)C31A—C32A1.375 (9)
C11—C171.511 (2)C31A—H31A0.93
C11—C121.524 (2)C32A—C33A1.398 (10)
C11—H110.98C32A—H32A0.93
C12—C131.532 (2)C33A—H33A0.93
C12—H120.98C34—C351.373 (2)
C13—C241.523 (2)C34—C391.377 (2)
C13—H130.98C35—C361.380 (3)
C15—C161.464 (5)C35—H350.93
C15—H15A0.97C36—C371.365 (3)
C15—H15B0.97C36—H360.93
C16—H16A0.96C37—C381.378 (3)
C16—H16B0.96C38—C391.372 (2)
C16—H16C0.96C38—H380.93
C16A—C15A1.439 (10)C39—H390.93
C16A—H16D0.96C40—H40A0.96
C16A—H16E0.96C40—H40B0.96
C16A—H16F0.96C40—H40C0.96
C14—O2—C15116.3 (4)C22—C17—C18117.98 (19)
C14—O2A—C15A116.2 (16)C22—C17—C11123.72 (17)
C37—O6—C40117.86 (18)C18—C17—C11118.28 (19)
C13—N1—C10111.04 (12)C19—C18—C17120.9 (3)
C13—N1—C2113.18 (12)C19—C18—H18119.6
C10—N1—C2115.31 (12)C17—C18—H18119.6
O4—N23—O3123.91 (19)C20—C19—C18120.5 (3)
O4—N23—C12119.47 (16)C20—C19—H19119.8
O3—N23—C12116.62 (19)C18—C19—H19119.8
C26—N27—C34131.40 (14)C19—C20—C21119.8 (3)
C26—N27—C2494.69 (13)C19—C20—H20120.1
C34—N27—C24131.58 (13)C21—C20—H20120.1
N1—C2—C3112.50 (13)C20—C21—C22119.9 (3)
N1—C2—H2A109.1C20—C21—H21120.0
C3—C2—H2A109.1C22—C21—H21120.0
N1—C2—H2B109.1C17—C22—C21120.9 (2)
C3—C2—H2B109.1C17—C22—H22119.6
H2A—C2—H2B107.8C21—C22—H22119.6
C4—C3—C8120.07 (18)N27—C24—C13116.31 (13)
C4—C3—C2124.54 (18)N27—C24—C2586.97 (11)
C8—C3—C2115.39 (16)C13—C24—C25115.86 (14)
C3—C4—C5119.6 (2)N27—C24—H24111.8
C3—C4—H4120.2C13—C24—H24111.8
C5—C4—H4120.2C25—C24—H24111.8
C6—C5—C4120.2 (3)C28—C25—C26116.96 (16)
C6—C5—H5119.9C28—C25—C24119.41 (14)
C4—C5—H5119.9C26—C25—C2484.88 (12)
C7—C6—C5120.8 (2)C28—C25—H25111.1
C7—C6—H6119.6C26—C25—H25111.1
C5—C6—H6119.6C24—C25—H25111.1
C6—C7—C8119.6 (2)O5—C26—N27131.23 (17)
C6—C7—H7120.2O5—C26—C25135.39 (17)
C8—C7—H7120.2N27—C26—C2593.38 (13)
C7—C8—C3119.6 (2)C33—C28—C29A103.8 (8)
C7—C8—C9124.6 (2)C33—C28—C29114.0 (11)
C3—C8—C9115.77 (16)C29A—C28—C33A120.6 (8)
C8—C9—C10112.11 (15)C29—C28—C33A130.7 (9)
C8—C9—H9A109.2C33—C28—C25129.7 (8)
C10—C9—H9A109.2C29A—C28—C25126.3 (8)
C8—C9—H9B109.2C29—C28—C25116.2 (7)
C10—C9—H9B109.2C33A—C28—C25112.9 (6)
H9A—C9—H9B107.9C28—C29—C30126.0 (14)
N1—C10—C14111.71 (14)C28—C29—H29117.0
N1—C10—C9111.98 (13)C30—C29—H29117.0
C14—C10—C9103.09 (14)C31—C30—C29115.1 (11)
N1—C10—C11106.09 (12)C31—C30—H30122.5
C14—C10—C11109.45 (14)C29—C30—H30122.5
C9—C10—C11114.63 (14)C32—C31—C30121.1 (10)
C17—C11—C12112.23 (15)C32—C31—H31119.5
C17—C11—C10117.47 (13)C30—C31—H31119.5
C12—C11—C10103.54 (12)C31—C32—C33121.5 (9)
C17—C11—H11107.7C31—C32—H32119.2
C12—C11—H11107.7C33—C32—H32119.2
C10—C11—H11107.7C28—C33—C32122.1 (10)
N23—C12—C11110.10 (14)C28—C33—H33118.9
N23—C12—C13112.54 (13)C32—C33—H33118.9
C11—C12—C13105.38 (12)C28—C29A—C30A116.5 (11)
N23—C12—H12109.6C28—C29A—H29A121.7
C11—C12—H12109.6C30A—C29A—H29A121.7
C13—C12—H12109.6C31A—C30A—C29A124.3 (10)
N1—C13—C24113.69 (13)C31A—C30A—H30A117.9
N1—C13—C12106.24 (12)C29A—C30A—H30A117.9
C24—C13—C12113.66 (13)C30A—C31A—C32A120.5 (9)
N1—C13—H13107.7C30A—C31A—H31A119.8
C24—C13—H13107.7C32A—C31A—H31A119.8
C12—C13—H13107.7C31A—C32A—C33A117.1 (9)
O1—C14—O2A121.8 (8)C31A—C32A—H32A121.4
O1—C14—O2124.0 (3)C33A—C32A—H32A121.4
O1—C14—C10122.06 (19)C32A—C33A—C28120.9 (10)
O2A—C14—C10113.8 (8)C32A—C33A—H33A119.5
O2—C14—C10113.1 (3)C28—C33A—H33A119.5
O2—C15—C16113.0 (5)C35—C34—C39119.39 (16)
O2—C15—H15A109.0C35—C34—N27120.06 (15)
C16—C15—H15A109.0C39—C34—N27120.54 (15)
O2—C15—H15B109.0C34—C35—C36120.61 (17)
C16—C15—H15B109.0C34—C35—H35119.7
H15A—C15—H15B107.8C36—C35—H35119.7
C15—C16—H16A109.5C37—C36—C35120.02 (18)
C15—C16—H16B109.5C37—C36—H36120.0
H16A—C16—H16B109.5C35—C36—H36120.0
C15—C16—H16C109.5C36—C37—O6125.13 (18)
H16A—C16—H16C109.5C36—C37—C38119.31 (17)
H16B—C16—H16C109.5O6—C37—C38115.55 (17)
C15A—C16A—H16D109.5C39—C38—C37120.95 (17)
C15A—C16A—H16E109.5C39—C38—H38119.5
H16D—C16A—H16E109.5C37—C38—H38119.5
C15A—C16A—H16F109.5C38—C39—C34119.69 (16)
H16D—C16A—H16F109.5C38—C39—H39120.2
H16E—C16A—H16F109.5C34—C39—H39120.2
C16A—C15A—O2A108 (2)O6—C40—H40A109.5
C16A—C15A—H15C110.0O6—C40—H40B109.5
O2A—C15A—H15C110.0H40A—C40—H40B109.5
C16A—C15A—H15D110.0O6—C40—H40C109.5
O2A—C15A—H15D110.0H40A—C40—H40C109.5
H15C—C15A—H15D108.4H40B—C40—H40C109.5
C13—N1—C2—C384.31 (17)C19—C20—C21—C221.2 (4)
C10—N1—C2—C345.06 (19)C18—C17—C22—C210.5 (3)
N1—C2—C3—C4130.67 (18)C11—C17—C22—C21178.70 (18)
N1—C2—C3—C849.8 (2)C20—C21—C22—C170.6 (3)
C8—C3—C4—C51.6 (3)C26—N27—C24—C13119.64 (16)
C2—C3—C4—C5177.9 (2)C34—N27—C24—C1376.7 (2)
C3—C4—C5—C60.0 (4)C26—N27—C24—C252.18 (14)
C4—C5—C6—C71.0 (4)C34—N27—C24—C25165.88 (17)
C5—C6—C7—C80.5 (4)N1—C13—C24—N2758.31 (18)
C6—C7—C8—C31.1 (3)C12—C13—C24—N27179.98 (13)
C6—C7—C8—C9177.93 (19)N1—C13—C24—C25158.34 (13)
C4—C3—C8—C72.1 (3)C12—C13—C24—C2579.95 (18)
C2—C3—C8—C7177.42 (16)N27—C24—C25—C28116.22 (17)
C4—C3—C8—C9176.97 (17)C13—C24—C25—C281.7 (2)
C2—C3—C8—C93.5 (2)N27—C24—C25—C261.95 (13)
C7—C8—C9—C10134.24 (19)C13—C24—C25—C26119.82 (15)
C3—C8—C9—C1044.8 (2)C34—N27—C26—O513.6 (4)
C13—N1—C10—C14111.95 (15)C24—N27—C26—O5177.4 (2)
C2—N1—C10—C14117.64 (15)C34—N27—C26—C25165.99 (17)
C13—N1—C10—C9132.99 (15)C24—N27—C26—C252.25 (15)
C2—N1—C10—C92.58 (19)C28—C25—C26—O562.0 (3)
C13—N1—C10—C117.25 (17)C24—C25—C26—O5177.5 (3)
C2—N1—C10—C11123.17 (14)C28—C25—C26—N27118.39 (16)
C8—C9—C10—N147.6 (2)C24—C25—C26—N272.12 (14)
C8—C9—C10—C14167.77 (15)C26—C25—C28—C33161.5 (15)
C8—C9—C10—C1173.36 (19)C24—C25—C28—C3398.6 (15)
N1—C10—C11—C17102.52 (16)C26—C25—C28—C29A24.7 (12)
C14—C10—C11—C17136.81 (16)C24—C25—C28—C29A75.1 (12)
C9—C10—C11—C1721.6 (2)C26—C25—C28—C2913.9 (12)
N1—C10—C11—C1221.79 (16)C24—C25—C28—C2986.0 (12)
C14—C10—C11—C1298.87 (15)C26—C25—C28—C33A161.0 (10)
C9—C10—C11—C12145.91 (14)C24—C25—C28—C33A99.1 (10)
O4—N23—C12—C1147.9 (2)C33—C28—C29—C306 (3)
O3—N23—C12—C11132.67 (18)C29A—C28—C29—C3037 (6)
O4—N23—C12—C1369.3 (2)C33A—C28—C29—C309 (3)
O3—N23—C12—C13110.10 (19)C25—C28—C29—C30177.5 (17)
C17—C11—C12—N23138.51 (14)C28—C29—C30—C314 (3)
C10—C11—C12—N2393.83 (15)C29—C30—C31—C320.4 (19)
C17—C11—C12—C1399.89 (15)C30—C31—C32—C333 (2)
C10—C11—C12—C1327.77 (16)C29A—C28—C33—C326 (3)
C10—N1—C13—C24136.12 (14)C29—C28—C33—C324 (3)
C2—N1—C13—C2492.35 (16)C33A—C28—C33—C32178 (9)
C10—N1—C13—C1210.37 (17)C25—C28—C33—C32179.4 (12)
C2—N1—C13—C12141.90 (13)C31—C32—C33—C280 (3)
N23—C12—C13—N195.83 (16)C33—C28—C29A—C30A3 (2)
C11—C12—C13—N124.16 (17)C29—C28—C29A—C30A137 (10)
N23—C12—C13—C2429.9 (2)C33A—C28—C29A—C30A4 (2)
C11—C12—C13—C24149.93 (14)C25—C28—C29A—C30A177.5 (11)
C15A—O2A—C14—O18 (2)C28—C29A—C30A—C31A3 (3)
C15A—O2A—C14—O296 (3)C29A—C30A—C31A—C32A1 (2)
C15A—O2A—C14—C10170.6 (15)C30A—C31A—C32A—C33A1 (2)
C15—O2—C14—O11.2 (5)C31A—C32A—C33A—C281 (2)
C15—O2—C14—O2A92 (2)C33—C28—C33A—C32A2 (5)
C15—O2—C14—C10170.9 (3)C29A—C28—C33A—C32A2 (3)
N1—C10—C14—O1164.28 (18)C29—C28—C33A—C32A10 (3)
C9—C10—C14—O175.3 (2)C25—C28—C33A—C32A176.5 (14)
C11—C10—C14—O147.1 (2)C26—N27—C34—C3529.8 (3)
N1—C10—C14—O2A1.3 (10)C24—N27—C34—C35172.06 (17)
C9—C10—C14—O2A121.7 (10)C26—N27—C34—C39151.74 (19)
C11—C10—C14—O2A115.9 (10)C24—N27—C34—C396.4 (3)
N1—C10—C14—O225.8 (3)C39—C34—C35—C360.8 (3)
C9—C10—C14—O294.6 (3)N27—C34—C35—C36177.66 (17)
C11—C10—C14—O2143.0 (2)C34—C35—C36—C370.6 (3)
C14—O2—C15—C1679.2 (4)C35—C36—C37—O6178.58 (19)
C14—O2A—C15A—C16A107.7 (16)C35—C36—C37—C381.3 (3)
C12—C11—C17—C2228.3 (2)C40—O6—C37—C365.4 (3)
C10—C11—C17—C2291.6 (2)C40—O6—C37—C38174.5 (2)
C12—C11—C17—C18149.89 (16)C36—C37—C38—C390.6 (3)
C10—C11—C17—C1890.27 (19)O6—C37—C38—C39179.23 (17)
C22—C17—C18—C191.2 (3)C37—C38—C39—C340.7 (3)
C11—C17—C18—C19179.44 (18)C35—C34—C39—C381.4 (3)
C17—C18—C19—C200.6 (4)N27—C34—C39—C38177.02 (16)
C18—C19—C20—C210.5 (4)

Experimental details

Crystal data
Chemical formulaC37H35N3O6
Mr617.68
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.3039 (3), 13.0725 (3), 13.8814 (3)
α, β, γ (°)87.504 (1), 74.123 (1), 74.926 (1)
V3)1567.35 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.17
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.982, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
30422, 5887, 4326
Rint0.029
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.121, 1.05
No. of reflections5887
No. of parameters490
No. of restraints97
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

SSS thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection.

References

First citationAdlington, R. M., Baldwin, J. E., Chen, B., Cooper, S. L., McCoull, W., Pritchard, G. J. & Howe, T. J. (1997). Bioorg. Med. Chem. Lett. 7, 1689–1694.  CrossRef CAS Web of Science Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBorthwick, A. D., Weingarten, G., Haley, T. M., Tomaszewski, W., Wang, W., Hu, Z., Bedard, J., Jim, H., Yuen, L. & Mansour, T. S. (1998). Bioorg. Med. Chem. Lett. 8, 365–370.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBose, A. K., Manhas, M. S., Kapur, J. C., Sharma, S. D. & Amin, S. G. (1974). J. Med. Chem. 17, 541–544.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFujisawa, T., Shibuya, A., Sato, D. & Shimitzu, M. (1995). Synlett. pp. 1067–1068.  CrossRef Google Scholar
First citationHan, W. T., Trehan, A. K., Wright, J. J. K., Federici, M. E., Seiler, S. M. & Meanwell, N. A. (1995). Bioorg. Med. Chem. Lett. 3, 1123–1143.  CrossRef CAS Google Scholar
First citationHashimoto, M., Komori, T. & Kamiya, T. (1976). J. Am. Chem. Soc. 98, 3023–3025.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJones, R. N., Barry, A. L. & Thornsberry, C. (1989). J. Antimicrob. Chemother. 24 (Suppl. A), 9–29.  Google Scholar
First citationKamel, M. M. & Naser, M. E. (1979). Pharmazie, 34, 440.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPage, M. I. (1992). The Chemistry of β-Lactams. London: Blackie Academic & Professional.  Google Scholar
First citationPalomo, C., Aizpurua, J. M., Gamboa, I. & Oiarbide, M. (1999). Amino Acids, 16, 321–343.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds