organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Meth­­oxy-1-naphthyl­­idene)nicotino­hydrazide

aFaculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, People's Republic of China
*Correspondence e-mail: yongqing_su@163.com

(Received 29 January 2010; accepted 31 January 2010; online 6 February 2010)

The title compound, C18H15N3O2, was prepared by the reaction of 2-methoxy­naphthaldehyde with nicotinic acid hydrazide in methanol. The dihedral angle between the naphthalene ring system and the pyridine ring is 9.2 (3)°. An intra­molecular C—H⋯N hydrogen bond is observed. In the crystal structure, mol­ecules are linked into chains running along the c axis by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For general background to Schiff base compounds, see: Archibald et al. (1994[Archibald, S. J., Blake, A. J., Schroder, M. & Winpenny, R. E. P. (1994). Chem. Commun. pp. 1669-1670.]); Harada et al. (1999[Harada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809-5810.]); Ogawa et al. (1998[Ogawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107-7108.]). For related structures, see: Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.]); Sun et al. (2009[Sun, Y., Li, H.-G., Wang, X., Fu, S. & Wang, D. (2009). Acta Cryst. E65, o262.]); Wen et al. (2009[Wen, L., Yin, H., Li, W. & Li, K. (2009). Acta Cryst. E65, o2623.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15N3O2

  • Mr = 305.33

  • Tetragonal, P 43

  • a = 9.6163 (13) Å

  • c = 17.442 (3) Å

  • V = 1612.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.23 × 0.21 × 0.21 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.983

  • 8478 measured reflections

  • 1498 independent reflections

  • 1109 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.099

  • S = 1.03

  • 1498 reflections

  • 212 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.90 (1) 2.00 (2) 2.833 (3) 154 (3)
C9—H9⋯N1 0.93 2.30 2.930 (5) 125
Symmetry code: (i) [y+1, -x+1, z+{\script{1\over 4}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have been received much attention in recent years (Ogawa et al., 1998; Archibald et al., 1994; Harada et al., 1999). As a further investigation of the structures of Schiff base compounds, the title new compound is reported here.

In the title compound, the dihedral angle between the naphthalene ring system and the pyridine ring is 9.2 (3)°. The bond lengths are comparable to those observed in related Schiff base compounds (Wen et al., 2009; Mohd Lair et al., 2009; Sun et al., 2009).

In the crystal structure, molecules form chains running along the c axis through intermolecular N—H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For general background to Schiff base compounds, see: Archibald et al. (1994); Harada et al. (1999); Ogawa et al. (1998). For related structures, see: Mohd Lair et al. (2009); Sun et al. (2009); Wen et al. (2009).

Experimental top

2-Methoxynaphthaldehyde (1.0 mmol, 186 mg) and nicotinic acid hydrazide (1.0 mmol, 137 mg) were dissolved in methanol (30 ml). The mixture was stirred at room temperature for 1 h to give a colourless solution. After keeping the solution in air for 5 d, colourless block shaped crystals were formed.

Refinement top

Atom H2 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.93-0.96 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). In the absence of significant anomalous dispersion effects, Friedel pairs were merged before the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
N'-(2-Methoxy-1-naphthylidene)nicotinohydrazide top
Crystal data top
C18H15N3O2Dx = 1.257 Mg m3
Mr = 305.33Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43Cell parameters from 1467 reflections
Hall symbol: P 4cwθ = 2.4–24.5°
a = 9.6163 (13) ŵ = 0.08 mm1
c = 17.442 (3) ÅT = 298 K
V = 1612.9 (4) Å3Block, colourless
Z = 40.23 × 0.21 × 0.21 mm
F(000) = 640
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1498 independent reflections
Radiation source: fine-focus sealed tube1109 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 25.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.981, Tmax = 0.983k = 118
8478 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.054P)2 + 0.0224P]
where P = (Fo2 + 2Fc2)/3
1498 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.10 e Å3
2 restraintsΔρmin = 0.11 e Å3
Crystal data top
C18H15N3O2Z = 4
Mr = 305.33Mo Kα radiation
Tetragonal, P43µ = 0.08 mm1
a = 9.6163 (13) ÅT = 298 K
c = 17.442 (3) Å0.23 × 0.21 × 0.21 mm
V = 1612.9 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1498 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1109 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.983Rint = 0.040
8478 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.10 e Å3
1498 reflectionsΔρmin = 0.11 e Å3
212 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9936 (3)0.0960 (3)0.18164 (15)0.0629 (7)
N21.0362 (3)0.0311 (3)0.20995 (14)0.0624 (7)
N31.2654 (4)0.3482 (3)0.31458 (18)0.1112 (13)
O10.9212 (3)0.3474 (3)0.35200 (18)0.1066 (9)
O21.1195 (2)0.1023 (2)0.09477 (13)0.0791 (7)
C10.8973 (3)0.3191 (3)0.2190 (2)0.0670 (9)
C20.8904 (4)0.4054 (4)0.2829 (3)0.0843 (11)
C30.8547 (5)0.5467 (5)0.2750 (4)0.1166 (17)
H30.85160.60390.31790.140*
C40.8256 (5)0.5980 (5)0.2064 (5)0.1223 (19)
H40.80600.69240.20220.147*
C50.8231 (4)0.5148 (4)0.1387 (3)0.0943 (12)
C60.7859 (5)0.5685 (5)0.0671 (4)0.1232 (19)
H60.76060.66160.06320.148*
C70.7857 (5)0.4884 (6)0.0029 (4)0.1166 (16)
H70.76180.52700.04410.140*
C80.8218 (4)0.3472 (5)0.0079 (3)0.0914 (12)
H80.82110.29150.03570.110*
C90.8579 (3)0.2925 (4)0.0773 (2)0.0750 (9)
H90.88160.19880.07990.090*
C100.8609 (3)0.3720 (3)0.1454 (2)0.0691 (9)
C110.9425 (3)0.1769 (3)0.2331 (2)0.0653 (8)
H110.93370.14220.28260.078*
C121.1047 (3)0.1204 (3)0.16398 (18)0.0585 (8)
C131.1660 (3)0.2433 (3)0.20306 (16)0.0588 (8)
C141.1928 (4)0.3620 (4)0.1619 (2)0.0806 (10)
H141.16880.36730.11040.097*
C151.2545 (5)0.4718 (4)0.1972 (2)0.1045 (14)
H151.27420.55280.17030.125*
C161.2870 (6)0.4605 (4)0.2729 (3)0.1184 (17)
H161.32700.53710.29680.142*
C171.2047 (4)0.2419 (4)0.2787 (2)0.0835 (11)
H171.18750.16160.30690.100*
C180.8999 (7)0.4279 (7)0.4200 (3)0.161 (2)
H18A0.96670.50210.42180.241*
H18B0.91120.36950.46420.241*
H18C0.80770.46610.41970.241*
H21.019 (4)0.056 (3)0.2588 (9)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0601 (15)0.0596 (15)0.0689 (16)0.0083 (12)0.0102 (12)0.0094 (13)
N20.0667 (17)0.0605 (15)0.0601 (16)0.0105 (12)0.0121 (13)0.0075 (13)
N30.178 (3)0.082 (2)0.074 (2)0.049 (2)0.040 (2)0.0153 (17)
O10.104 (2)0.120 (2)0.096 (2)0.0024 (16)0.0023 (16)0.038 (2)
O20.0954 (16)0.0891 (16)0.0528 (14)0.0243 (12)0.0153 (12)0.0115 (11)
C10.0482 (17)0.0588 (19)0.094 (3)0.0012 (13)0.0115 (16)0.0046 (19)
C20.064 (2)0.073 (2)0.117 (4)0.0071 (18)0.009 (2)0.025 (3)
C30.113 (4)0.073 (3)0.163 (5)0.006 (2)0.015 (4)0.035 (3)
C40.113 (4)0.054 (2)0.200 (6)0.001 (2)0.022 (4)0.020 (4)
C50.078 (2)0.058 (2)0.147 (4)0.0043 (18)0.015 (3)0.014 (3)
C60.106 (3)0.071 (3)0.193 (6)0.017 (2)0.009 (4)0.039 (4)
C70.096 (3)0.110 (4)0.143 (5)0.011 (3)0.002 (3)0.049 (4)
C80.074 (2)0.096 (3)0.105 (3)0.011 (2)0.001 (2)0.021 (2)
C90.0583 (19)0.073 (2)0.094 (3)0.0055 (16)0.0041 (18)0.014 (2)
C100.0476 (16)0.0550 (18)0.105 (3)0.0014 (14)0.0118 (17)0.0053 (19)
C110.0597 (18)0.0667 (19)0.070 (2)0.0011 (15)0.0076 (16)0.0000 (17)
C120.0563 (18)0.0623 (19)0.057 (2)0.0047 (13)0.0063 (15)0.0040 (15)
C130.0664 (19)0.0583 (18)0.0516 (18)0.0058 (13)0.0016 (14)0.0006 (14)
C140.110 (3)0.073 (2)0.059 (2)0.0182 (19)0.0007 (19)0.0036 (18)
C150.164 (4)0.075 (3)0.075 (3)0.039 (2)0.014 (3)0.018 (2)
C160.189 (5)0.075 (3)0.091 (3)0.048 (3)0.035 (3)0.002 (2)
C170.110 (3)0.069 (2)0.071 (3)0.0228 (19)0.022 (2)0.0121 (18)
C180.171 (5)0.181 (5)0.130 (5)0.031 (4)0.007 (4)0.088 (4)
Geometric parameters (Å, º) top
N1—C111.285 (4)C6—H60.93
N1—N21.381 (3)C7—C81.404 (7)
N2—C121.347 (4)C7—H70.93
N2—H20.899 (10)C8—C91.365 (5)
N3—C161.318 (5)C8—H80.93
N3—C171.333 (4)C9—C101.413 (5)
O1—C21.361 (5)C9—H90.93
O1—C181.431 (6)C11—H110.93
O2—C121.228 (4)C12—C131.486 (4)
C1—C21.391 (5)C13—C171.371 (4)
C1—C101.425 (5)C13—C141.373 (4)
C1—C111.455 (4)C14—C151.358 (5)
C2—C31.408 (6)C14—H140.93
C3—C41.324 (7)C15—C161.361 (6)
C3—H30.93C15—H150.93
C4—C51.427 (7)C16—H160.93
C4—H40.93C17—H170.93
C5—C61.398 (8)C18—H18A0.96
C5—C101.425 (5)C18—H18B0.96
C6—C71.358 (7)C18—H18C0.96
C11—N1—N2113.5 (3)C10—C9—H9118.6
C12—N2—N1119.8 (2)C9—C10—C1124.7 (3)
C12—N2—H2119 (2)C9—C10—C5116.5 (4)
N1—N2—H2121 (2)C1—C10—C5118.8 (4)
C16—N3—C17116.0 (3)N1—C11—C1124.4 (3)
C2—O1—C18118.8 (4)N1—C11—H11117.8
C2—C1—C10119.8 (3)C1—C11—H11117.8
C2—C1—C11116.1 (3)O2—C12—N2123.5 (3)
C10—C1—C11124.1 (3)O2—C12—C13121.2 (3)
O1—C2—C1117.0 (3)N2—C12—C13115.3 (3)
O1—C2—C3122.3 (5)C17—C13—C14117.4 (3)
C1—C2—C3120.6 (5)C17—C13—C12122.8 (3)
C4—C3—C2120.0 (5)C14—C13—C12119.7 (3)
C4—C3—H3120.0C15—C14—C13119.4 (3)
C2—C3—H3120.0C15—C14—H14120.3
C3—C4—C5122.9 (4)C13—C14—H14120.3
C3—C4—H4118.6C14—C15—C16118.5 (3)
C5—C4—H4118.6C14—C15—H15120.7
C6—C5—C10119.7 (5)C16—C15—H15120.7
C6—C5—C4122.5 (5)N3—C16—C15124.3 (4)
C10—C5—C4117.9 (5)N3—C16—H16117.8
C7—C6—C5121.8 (4)C15—C16—H16117.8
C7—C6—H6119.1N3—C17—C13124.3 (3)
C5—C6—H6119.1N3—C17—H17117.9
C6—C7—C8119.8 (5)C13—C17—H17117.9
C6—C7—H7120.1O1—C18—H18A109.5
C8—C7—H7120.1O1—C18—H18B109.5
C9—C8—C7119.3 (5)H18A—C18—H18B109.5
C9—C8—H8120.3O1—C18—H18C109.5
C7—C8—H8120.3H18A—C18—H18C109.5
C8—C9—C10122.8 (4)H18B—C18—H18C109.5
C8—C9—H9118.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (1)2.00 (2)2.833 (3)154 (3)
C9—H9···N10.932.302.930 (5)125
Symmetry code: (i) y+1, x+1, z+1/4.

Experimental details

Crystal data
Chemical formulaC18H15N3O2
Mr305.33
Crystal system, space groupTetragonal, P43
Temperature (K)298
a, c (Å)9.6163 (13), 17.442 (3)
V3)1612.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.23 × 0.21 × 0.21
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.981, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
8478, 1498, 1109
Rint0.040
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 1.03
No. of reflections1498
No. of parameters212
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.10, 0.11

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (1)2.00 (2)2.833 (3)154 (3)
C9—H9···N10.932.302.930 (5)125
Symmetry code: (i) y+1, x+1, z+1/4.
 

Acknowledgements

The authors acknowledge support by the Science and Technology Department of Yunnan Province, the Program of Yunnan Province's Young-Middle Aged Reserve Scientific and Technological Principal Culture Plan (grant No. 2006PY01–50) and the fund of Yunnan Province's Applied Research Plan (grant No. 2006E0032M).

References

First citationArchibald, S. J., Blake, A. J., Schroder, M. & Winpenny, R. E. P. (1994). Chem. Commun. pp. 1669–1670.  CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809–5810.  Web of Science CSD CrossRef CAS Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOgawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107–7108.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Li, H.-G., Wang, X., Fu, S. & Wang, D. (2009). Acta Cryst. E65, o262.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWen, L., Yin, H., Li, W. & Li, K. (2009). Acta Cryst. E65, o2623.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds