organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o587-o588

Di­methyl 1,4-di­hydro-4-(4-meth­oxy­phen­yl)-2,6-di­methyl­pyridine-3,5-di­carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 29 January 2010; accepted 8 February 2010; online 13 February 2010)

In the title compound, C18H21NO5, the dihydro­pyridine ring adopts a flattened-boat conformation and its planar part forms a dihedral angle of 84.60 (2)° with the benzene ring. In the crystal, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds result in the formation of zigzag layers parallel to (001). These layers are inter­connected via C—H⋯π inter­actions.

Related literature

For the synthesis, see: Rathore et al. (2009[Rathore, R. S., Reddy, B. P., Vijayakumar, V., Ragavan, R. V. & Narasimhamurthy, T. (2009). Acta Cryst. B65, 375-381.]). For general background and applications of 1,4-dihydro­pyridine derivatives, see: Bocker & Guengerich (1986[Bocker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 28, 1596-1603.]); Cooper et al. (1992[Cooper, K., Fray, M. J., Parry, M. J., Richardson, K. & Steele, J. (1992). J. Med. Chem. 35, 3115-3129.]); Gaudio et al. (1994[Gaudio, A. C., Korolkovas, A. & Takahata, Y. (1994). J. Pharm. Sci. 83, 1110-1115.]); Gordeev et al. (1996[Gordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924-928.]); Sunkel et al. (1992[Sunkel, C. E., de Casa-Juana, M. F., Santos, L., Garcia, A. G., Artalejo, C. R., Villarroya, M., González-Morales, M. A., López, M. G., Cillero, J., Alonso, S. & Priego, J. G. (1992). J. Med. Chem. 35, 2407-2414.]); Vo et al. (1995[Vo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851-2859.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Fun et al. (2009a[Fun, H.-K., Goh, J. H., Reddy, B. P., Sarveswari, S. & Vijayakumar, V. (2009a). Acta Cryst. E65, o2247-o2248.],b[Fun, H.-K., Quah, C. K., Reddy, B. P., Sarveswari, S. & Vijayakumar, V. (2009b). Acta Cryst. E65, o2255-o2256.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21NO5

  • Mr = 331.36

  • Triclinic, [P \overline 1]

  • a = 7.4106 (3) Å

  • b = 9.5715 (5) Å

  • c = 11.7771 (6) Å

  • α = 83.029 (1)°

  • β = 83.834 (1)°

  • γ = 77.424 (1)°

  • V = 806.46 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.35 × 0.34 × 0.24 mm

Data collection
  • Bruker SMART APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX DUO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.976

  • 19600 measured reflections

  • 4664 independent reflections

  • 4319 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.110

  • S = 1.05

  • 4664 reflections

  • 226 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O4i 0.87 (2) 2.23 (2) 3.0906 (10) 169 (1)
C14—H14A⋯O1ii 0.96 2.54 3.4631 (13) 162
C18—H18B⋯O4i 0.96 2.56 3.4558 (12) 156
C12—H12BCg1iii 0.96 2.79 3.6549 (11) 151
Symmetry codes: (i) x+1, y, z; (ii) x+1, y-1, z; (iii) -x+1, -y+1, -z.

Data collection: APEX DUO (Bruker, 2009[Bruker (2009). APEX DUO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX DUO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hantzsch 1,4-dihydropyridines (1,4-DHPS) are biologically active compounds which include various vasodilator, antihypertensive, bronchodilator, heptaprotective, antitumor, antimutagenic, geroprotective and antidiabetic agents (Gaudio et al., 1994). Nifedipine, nitrendipine and nimodipine have been used commercially as calcium channel blockers (Bocker & Guengerich, 1986; Gordeev et al., 1996). For the treatment of congestive heart failure a number of DHP calcium antagonists have been introduced (Sunkel et al., 1992; Vo et al., 1995). Some DHPs have also been introduced as neuroprotectant and cognition enhancers. In addition, a number of DHPs with platelet anti-aggregatory activity have also been discovered (Cooper et al., 1992).

In the title compound (Fig. 1), the 1,4-dihydropyridine ring (C7–C11/N1) adopts a flattened-boat conformation with puckering parameter Q = 0.2368 (9) Å; Θ = 72.8 (2)° and ϕ = 186.1 (2)° (Cremer & Pople, 1975). The C8–C11 plane forms a dihedral angle of 84.60 (2)° with the C1–C6 benzene ring. Bond lengths (Allen et al., 1987) and angles are within the normal range and are comparable to those in closely related structures (Fun et al., 2009a,b).

In the crystal packing (Fig. 2), intermolecular N1—H1N1···O4 and C18—H18B···O4 hydrogen bonds (Table 1) link pairs of neighbouring molecules to form chains along the [100] direction; the chains contain R21(6) ring motifs (Bernstein et al., 1995). Intermolecular C14—H14A···O1 hydrogen bonds further interconnect these chains together to form zigzag layers parallel to the (001). The crystal structure is further stabilized by C—H···π interactions involving the C1–C6 benzene ring (centroid Cg1).

Related literature top

For the synthesis, see: Rathore et al. (2009). For general background and applications of 1,4-dihydropyridine derivatives, see: Bocker & Guengerich (1986); Cooper et al. (1992); Gaudio et al. (1994); Gordeev et al. (1996); Sunkel et al. (1992); Vo et al. (1995). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2009a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Dimethyl 1,4-dihydro-2,6-dimethyl-4-(4-methoxyphenyl)-3,5-pyridine dicarboxylate was prepared according to the Hantzsch pyridine synthesis (Rathore et al., 2009). A mixture of 4-methoxybenzaldehyde (10.0 mmol), methylacetoacetate (20.0 mmol) and ammonium acetate (10.0 mmol) was heated at 353 K for 2 h (monitored by TLC). After the completion of the reaction, the mixture was cooled to room temperature and it was kept for 24 h to get a solid product. The solid formed was washed using diethyl ether. The washed solid was collected separately and the liquid kept for solidification. The purity of the crude product was checked through TLC and recrystallized using acetone and ether.

Refinement top

Atom H1N1 was located in a difference Fourier map and was refined freely [N–H = 0.854 (18) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93–0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2-1.5 Ueq(C). A rotating-group model was applied for the methyl groups. Reflection 010 was partially obscured by the beam stop and hence was omitted. In addition, the most disagreeable reflections 114, 414 amd 248 were also omitted during the refinement.

Computing details top

Data collection: APEX DUO (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the c axis, showing R12(6) ring motifs. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
Dimethyl 1,4-dihydro-4-(4-methoxyphenyl)-2,6-dimethylpyridine-3,5-dicarboxylate top
Crystal data top
C18H21NO5Z = 2
Mr = 331.36F(000) = 352
Triclinic, P1Dx = 1.365 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4106 (3) ÅCell parameters from 9874 reflections
b = 9.5715 (5) Åθ = 2.8–37.5°
c = 11.7771 (6) ŵ = 0.10 mm1
α = 83.029 (1)°T = 100 K
β = 83.834 (1)°Block, colourless
γ = 77.424 (1)°0.35 × 0.34 × 0.24 mm
V = 806.46 (7) Å3
Data collection top
Bruker SMART APEX DUO CCD area-detector
diffractometer
4664 independent reflections
Radiation source: fine-focus sealed tube4319 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 30.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.966, Tmax = 0.976k = 1313
19600 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.2437P]
where P = (Fo2 + 2Fc2)/3
4664 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H21NO5γ = 77.424 (1)°
Mr = 331.36V = 806.46 (7) Å3
Triclinic, P1Z = 2
a = 7.4106 (3) ÅMo Kα radiation
b = 9.5715 (5) ŵ = 0.10 mm1
c = 11.7771 (6) ÅT = 100 K
α = 83.029 (1)°0.35 × 0.34 × 0.24 mm
β = 83.834 (1)°
Data collection top
Bruker SMART APEX DUO CCD area-detector
diffractometer
4664 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4319 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.976Rint = 0.019
19600 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.48 e Å3
4664 reflectionsΔρmin = 0.22 e Å3
226 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19666 (9)0.64176 (7)0.02070 (6)0.01872 (14)
O20.45751 (9)0.03547 (8)0.19907 (6)0.02053 (15)
O30.76827 (9)0.08374 (7)0.16829 (6)0.01754 (14)
O40.13686 (9)0.26414 (7)0.49736 (6)0.01760 (14)
O50.29405 (9)0.35204 (8)0.61485 (6)0.01934 (14)
N10.78947 (10)0.17746 (8)0.42720 (6)0.01437 (14)
C10.22940 (12)0.30263 (9)0.19929 (7)0.01528 (16)
H1A0.16360.22910.21320.018*
C20.17064 (12)0.41859 (9)0.11955 (7)0.01588 (16)
H2A0.06670.42210.08060.019*
C30.26760 (11)0.52967 (9)0.09799 (7)0.01404 (16)
C40.42555 (12)0.52171 (9)0.15453 (8)0.01685 (17)
H4A0.49300.59420.13930.020*
C50.48191 (12)0.40434 (9)0.23414 (8)0.01621 (17)
H5A0.58750.39970.27180.019*
C60.38473 (11)0.29392 (9)0.25892 (7)0.01226 (15)
C70.44663 (11)0.16962 (9)0.34963 (7)0.01211 (15)
H7A0.35130.11140.36310.015*
C80.62773 (11)0.07428 (8)0.30836 (7)0.01266 (15)
C90.79129 (11)0.08547 (9)0.34450 (7)0.01310 (15)
C100.63106 (11)0.23953 (9)0.49133 (7)0.01351 (15)
C110.46306 (11)0.22785 (9)0.46145 (7)0.01275 (15)
C120.28140 (14)0.76387 (10)0.00644 (9)0.02215 (19)
H12A0.21510.83760.04550.033*
H12B0.40790.73630.02430.033*
H12C0.27820.79980.07940.033*
C130.60706 (12)0.01947 (9)0.22266 (7)0.01414 (16)
C140.74903 (14)0.16612 (11)0.07708 (9)0.02279 (19)
H14A0.86980.20910.04440.034*
H14B0.68140.10380.01880.034*
H14C0.68310.24030.10730.034*
C150.28484 (11)0.28084 (9)0.52454 (7)0.01380 (16)
C160.11938 (13)0.41561 (11)0.67270 (8)0.02036 (18)
H16A0.14160.46590.73380.031*
H16B0.05400.34140.70370.031*
H16C0.04620.48190.61910.031*
C170.98251 (11)0.00466 (9)0.30817 (8)0.01614 (16)
H17A0.98620.09690.32060.024*
H17B1.07120.02810.35260.024*
H17C1.01220.03120.22820.024*
C180.67039 (12)0.31346 (10)0.58865 (8)0.01716 (17)
H18A0.59850.41010.58480.026*
H18B0.80000.31560.58300.026*
H18C0.63790.26190.66040.026*
H1N10.895 (2)0.1892 (17)0.4467 (13)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0186 (3)0.0164 (3)0.0206 (3)0.0040 (2)0.0063 (2)0.0048 (2)
O20.0147 (3)0.0233 (3)0.0262 (3)0.0051 (2)0.0037 (2)0.0088 (3)
O30.0143 (3)0.0177 (3)0.0218 (3)0.0029 (2)0.0008 (2)0.0080 (2)
O40.0111 (3)0.0237 (3)0.0187 (3)0.0042 (2)0.0016 (2)0.0036 (2)
O50.0127 (3)0.0272 (3)0.0193 (3)0.0035 (2)0.0003 (2)0.0099 (3)
N10.0095 (3)0.0180 (3)0.0168 (3)0.0037 (2)0.0026 (2)0.0036 (3)
C10.0140 (4)0.0160 (4)0.0171 (4)0.0055 (3)0.0041 (3)0.0002 (3)
C20.0139 (4)0.0177 (4)0.0168 (4)0.0039 (3)0.0055 (3)0.0001 (3)
C30.0140 (3)0.0141 (3)0.0131 (3)0.0013 (3)0.0014 (3)0.0005 (3)
C40.0166 (4)0.0161 (4)0.0192 (4)0.0068 (3)0.0043 (3)0.0015 (3)
C50.0140 (4)0.0178 (4)0.0182 (4)0.0056 (3)0.0057 (3)0.0009 (3)
C60.0111 (3)0.0132 (3)0.0125 (3)0.0021 (3)0.0014 (3)0.0017 (3)
C70.0098 (3)0.0135 (3)0.0133 (3)0.0027 (3)0.0021 (3)0.0010 (3)
C80.0117 (3)0.0119 (3)0.0144 (3)0.0025 (3)0.0016 (3)0.0010 (3)
C90.0120 (3)0.0126 (3)0.0146 (3)0.0029 (3)0.0010 (3)0.0003 (3)
C100.0124 (4)0.0148 (3)0.0134 (3)0.0028 (3)0.0021 (3)0.0006 (3)
C110.0109 (3)0.0146 (3)0.0128 (3)0.0028 (3)0.0012 (3)0.0010 (3)
C120.0258 (5)0.0168 (4)0.0238 (4)0.0066 (3)0.0043 (3)0.0043 (3)
C130.0141 (4)0.0123 (3)0.0161 (4)0.0030 (3)0.0017 (3)0.0006 (3)
C140.0205 (4)0.0232 (4)0.0270 (5)0.0042 (3)0.0016 (3)0.0131 (4)
C150.0131 (3)0.0148 (3)0.0132 (3)0.0028 (3)0.0013 (3)0.0000 (3)
C160.0149 (4)0.0243 (4)0.0218 (4)0.0022 (3)0.0021 (3)0.0087 (3)
C170.0101 (3)0.0161 (4)0.0223 (4)0.0023 (3)0.0014 (3)0.0030 (3)
C180.0132 (4)0.0221 (4)0.0178 (4)0.0038 (3)0.0037 (3)0.0059 (3)
Geometric parameters (Å, º) top
O1—C31.3697 (10)C7—C81.5180 (11)
O1—C121.4276 (11)C7—H7A0.98
O2—C131.2163 (10)C8—C91.3565 (11)
O3—C131.3516 (10)C8—C131.4698 (11)
O3—C141.4433 (11)C9—C171.5040 (11)
O4—C151.2226 (10)C10—C111.3603 (11)
O5—C151.3461 (10)C10—C181.5026 (11)
O5—C161.4416 (11)C11—C151.4637 (11)
N1—C101.3843 (10)C12—H12A0.96
N1—C91.3872 (11)C12—H12B0.96
N1—H1N10.871 (16)C12—H12C0.96
C1—C21.3885 (11)C14—H14A0.96
C1—C61.3938 (11)C14—H14B0.96
C1—H1A0.93C14—H14C0.96
C2—C31.3925 (12)C16—H16A0.96
C2—H2A0.93C16—H16B0.96
C3—C41.3912 (12)C16—H16C0.96
C4—C51.3928 (11)C17—H17A0.96
C4—H4A0.93C17—H17B0.96
C5—C61.3901 (11)C17—H17C0.96
C5—H5A0.93C18—H18A0.96
C6—C71.5252 (11)C18—H18B0.96
C7—C111.5172 (11)C18—H18C0.96
C3—O1—C12116.97 (7)C10—C11—C15124.91 (8)
C13—O3—C14115.18 (7)C10—C11—C7120.70 (7)
C15—O5—C16116.31 (7)C15—C11—C7114.13 (7)
C10—N1—C9124.03 (7)O1—C12—H12A109.5
C10—N1—H1N1116.8 (10)O1—C12—H12B109.5
C9—N1—H1N1118.7 (10)H12A—C12—H12B109.5
C2—C1—C6121.53 (8)O1—C12—H12C109.5
C2—C1—H1A119.2H12A—C12—H12C109.5
C6—C1—H1A119.2H12B—C12—H12C109.5
C1—C2—C3119.85 (8)O2—C13—O3121.96 (8)
C1—C2—H2A120.1O2—C13—C8123.36 (8)
C3—C2—H2A120.1O3—C13—C8114.65 (7)
O1—C3—C4124.45 (8)O3—C14—H14A109.5
O1—C3—C2115.92 (7)O3—C14—H14B109.5
C4—C3—C2119.63 (8)H14A—C14—H14B109.5
C3—C4—C5119.49 (8)O3—C14—H14C109.5
C3—C4—H4A120.3H14A—C14—H14C109.5
C5—C4—H4A120.3H14B—C14—H14C109.5
C6—C5—C4121.82 (8)O4—C15—O5121.67 (8)
C6—C5—H5A119.1O4—C15—C11123.13 (8)
C4—C5—H5A119.1O5—C15—C11115.20 (7)
C5—C6—C1117.64 (7)O5—C16—H16A109.5
C5—C6—C7120.39 (7)O5—C16—H16B109.5
C1—C6—C7121.96 (7)H16A—C16—H16B109.5
C11—C7—C8111.44 (6)O5—C16—H16C109.5
C11—C7—C6109.82 (6)H16A—C16—H16C109.5
C8—C7—C6110.88 (6)H16B—C16—H16C109.5
C11—C7—H7A108.2C9—C17—H17A109.5
C8—C7—H7A108.2C9—C17—H17B109.5
C6—C7—H7A108.2H17A—C17—H17B109.5
C9—C8—C13125.21 (7)C9—C17—H17C109.5
C9—C8—C7120.89 (7)H17A—C17—H17C109.5
C13—C8—C7113.77 (7)H17B—C17—H17C109.5
C8—C9—N1118.88 (7)C10—C18—H18A109.5
C8—C9—C17127.61 (8)C10—C18—H18B109.5
N1—C9—C17113.47 (7)H18A—C18—H18B109.5
C11—C10—N1118.71 (7)C10—C18—H18C109.5
C11—C10—C18127.85 (8)H18A—C18—H18C109.5
N1—C10—C18113.43 (7)H18B—C18—H18C109.5
C6—C1—C2—C30.14 (13)C10—N1—C9—C812.37 (12)
C12—O1—C3—C46.29 (13)C10—N1—C9—C17165.74 (7)
C12—O1—C3—C2173.39 (8)C9—N1—C10—C1110.00 (12)
C1—C2—C3—O1178.08 (8)C9—N1—C10—C18169.89 (7)
C1—C2—C3—C41.62 (13)N1—C10—C11—C15176.50 (7)
O1—C3—C4—C5178.06 (8)C18—C10—C11—C153.38 (14)
C2—C3—C4—C51.60 (13)N1—C10—C11—C79.74 (12)
C3—C4—C5—C60.12 (14)C18—C10—C11—C7170.39 (8)
C4—C5—C6—C11.32 (13)C8—C7—C11—C1024.10 (10)
C4—C5—C6—C7177.87 (8)C6—C7—C11—C1099.17 (9)
C2—C1—C6—C51.31 (13)C8—C7—C11—C15161.50 (7)
C2—C1—C6—C7177.87 (8)C6—C7—C11—C1575.23 (8)
C5—C6—C7—C1153.55 (10)C14—O3—C13—O22.95 (12)
C1—C6—C7—C11125.60 (8)C14—O3—C13—C8174.88 (7)
C5—C6—C7—C870.05 (10)C9—C8—C13—O2173.87 (8)
C1—C6—C7—C8110.80 (9)C7—C8—C13—O210.26 (12)
C11—C7—C8—C921.76 (10)C9—C8—C13—O38.34 (12)
C6—C7—C8—C9100.90 (9)C7—C8—C13—O3167.53 (7)
C11—C7—C8—C13162.17 (7)C16—O5—C15—O44.05 (12)
C6—C7—C8—C1375.16 (8)C16—O5—C15—C11175.05 (7)
C13—C8—C9—N1179.23 (7)C10—C11—C15—O4177.44 (8)
C7—C8—C9—N15.17 (12)C7—C11—C15—O48.43 (11)
C13—C8—C9—C171.42 (14)C10—C11—C15—O53.48 (12)
C7—C8—C9—C17177.01 (8)C7—C11—C15—O5170.65 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O4i0.87 (2)2.23 (2)3.0906 (10)169 (1)
C14—H14A···O1ii0.962.543.4631 (13)162
C18—H18B···O4i0.962.563.4558 (12)156
C12—H12B···Cg1iii0.962.793.6549 (11)151
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H21NO5
Mr331.36
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.4106 (3), 9.5715 (5), 11.7771 (6)
α, β, γ (°)83.029 (1), 83.834 (1), 77.424 (1)
V3)806.46 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.34 × 0.24
Data collection
DiffractometerBruker SMART APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.966, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
19600, 4664, 4319
Rint0.019
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.110, 1.05
No. of reflections4664
No. of parameters226
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.22

Computer programs: APEX DUO (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O4i0.87 (2)2.23 (2)3.0906 (10)169 (1)
C14—H14A···O1ii0.962.543.4631 (13)162
C18—H18B···O4i0.962.563.4558 (12)156
C12—H12B···Cg1iii0.962.793.6549 (11)151
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x+1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of a Research Fellowship. VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBocker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 28, 1596–1603.  Google Scholar
First citationBruker (2009). APEX DUO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCooper, K., Fray, M. J., Parry, M. J., Richardson, K. & Steele, J. (1992). J. Med. Chem. 35, 3115–3129.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Goh, J. H., Reddy, B. P., Sarveswari, S. & Vijayakumar, V. (2009a). Acta Cryst. E65, o2247–o2248.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Reddy, B. P., Sarveswari, S. & Vijayakumar, V. (2009b). Acta Cryst. E65, o2255–o2256.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGaudio, A. C., Korolkovas, A. & Takahata, Y. (1994). J. Pharm. Sci. 83, 1110–1115.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924–928.  CrossRef CAS Web of Science Google Scholar
First citationRathore, R. S., Reddy, B. P., Vijayakumar, V., Ragavan, R. V. & Narasimhamurthy, T. (2009). Acta Cryst. B65, 375–381.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSunkel, C. E., de Casa-Juana, M. F., Santos, L., Garcia, A. G., Artalejo, C. R., Villarroya, M., González-Morales, M. A., López, M. G., Cillero, J., Alonso, S. & Priego, J. G. (1992). J. Med. Chem. 35, 2407–2414.  CrossRef PubMed CAS Web of Science Google Scholar
First citationVo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851–2859.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o587-o588
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds