organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-p-Tolyl-10,11-di­hydro­benzo[h]furo[3,4-b]quinolin-8(7H)-one

aSchool of Chemistry and Chemical Engineering, Xuzhou Institute of Technology, Xuzhou 221008, People's Republic of China
*Correspondence e-mail: scl_78@163.com

(Received 1 February 2010; accepted 13 February 2010; online 20 February 2010)

In the title compound, C22H17NO2, the fused ring system is essentially planar (r.m.s. deviation = 0.021 Å) and the dihedral angle between the dihydro­pyridine and tolyl rings is 80.98 (11)°. In the crystal, the mol­ecules are linked into chains along the b axis by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds. Adjacent chains are linked by ππ inter­actions [centroid–centroid separation = 3.5748 (15) Å].

Related literature

For the biological activity of podophyllotoxin and its derivatives, see: Bosmans et al. (1989[Bosmans, J. P., Eycken, J. V. & Vandewalle, M. (1989). Tetrahedron Lett. 30, 3877-3880.]); Eycken et al. (1989[Eycken, J. V., Bosmans, J. P., Haver, D. V. & Vandewalle, M. (1989). Tetrahedron Lett. 30, 3873-3876.]); Hitosuyanagi et al. (1997[Hitosuyanagi, Y., Kobayashi, M., Fukuyo, M., Takeya, K. & Itokawa, H. (1997). Tetrahedron Lett. 38, 8295-8296.], 1999[Hitosuyanagi, Y., Kobayashi, M., Morita, H., Itokawa, H. & Takeya, K. (1999). Tetrahedron Lett. 40, 9107-9110.]); Lienard et al. (1991[Lienard, P., Royer, J., Quirion, J. C. & Husson, H. P. (1991). Tetrahedron Lett. 32, 2489-2492.]); Magedov et al. (2007[Magedov, I. V., Manapadi, M., Rozhkova, E., Przheval'skii, N. M., Rogelj, S., Shors, S. T., Steelant, W. A., Slambrouck, S. V. & Korinienko, A. (2007). Bioorg. Med. Chem. Lett. 17, 1381-1385.]); Poli & Giambastiani (2002[Poli, G. & Giambastiani, G. (2002). J. Org. Chem. 67, 9456-9459.]); Tomioka et al. (1989[Tomioka, K., Kubota, Y. & Koga, K. (1989). Tetrahedron Lett. 30, 2953-2954.], 1993[Tomioka, K., Kubota, Y. & Koga, K. (1993). Tetrahedron, 49, 1891-1900.]); Tratrat et al. (2002[Tratrat, C., Renault, S. G. & Husson, H. P. (2002). Org. Lett. 4, 3187-3189.]). For a related structure, see: Shi & Ji (2009[Shi, C. & Ji, M. (2009). Acta Cryst. E65, o100.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17NO2

  • Mr = 327.37

  • Monoclinic, P 21 /c

  • a = 10.6954 (16) Å

  • b = 13.0566 (18) Å

  • c = 12.183 (2) Å

  • β = 107.322 (3)°

  • V = 1624.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 223 K

  • 0.60 × 0.34 × 0.30 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.770, Tmax = 0.975

  • 15611 measured reflections

  • 2978 independent reflections

  • 2476 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.138

  • S = 1.18

  • 2978 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.87 2.00 2.802 (2) 153
C12—H12⋯O1i 0.94 2.49 3.248 (3) 137
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2003[Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Podophyllotoxin is an antitumor lignan that inhibits microtubule assembly (Eycken et al., 1989; Tomioka et al., 1989; Bosmans et al., 1989). Extensive structural modifications have been performed in order to obtain more potent and less toxic anticancer agents (Tomioka et al., 1993; Lienard et al., 1991; Poli et al., 2002). Among them, 4-aza-podophllotoxin (9-aryl-4,9-dihydrofuro[3,4-b]quinolin-1(3H)-one) derivatives reported as powerful DNA topoisomerase II inhibitors, have recently attached considerable interest (Hitosuyanagi et al., 1997; Hitosuyanagi et al., 1999; Tratrat et al., 2002; Magedov et al., 2007). We report here the crystal structure of the title compound, which was synthesized by the three-component reaction of naphthalen-1-amine with 4-methylbenzaldehyde and tetronic acid catalyzed by L-proline using ethanol as solvent at 353 K.

In the title compound, the 1,4-dihydropyridine (C1–C5/N1) and furanone rings are planar (Fig. 1) and both are coplanar with the naphthalene ring system i.e the fused ring system is essentially planar (r.m.s. deviation 0.021 Å). The dihedral angle between C1–C5/N1 and C16–C21 planes is 80.98 (11)°. The conformation of the title molecule differs from that of a related molecule, 7-methyl-9-p-tolyl-4,9-dihydrofuro[3,4-b]quinolin-1(3H)-one (Shi et al., 2009).

In the crystal structure, the molecules are linked by N1—H1···O2 and C12—H12···O1 intermolecular hydrogen bonds (Table 1) to form chains (Fig. 2) along the b axis. The adjacent chains are linked through π-π interactions between O1/C14/C4/C5/C15 and C1/C2/C6-C8/C13 rings with a centroid-centroid separation of 3.5748 (15) Å.

Related literature top

For the biological activity of podophyllotoxin and its derivatives, see: Bosmans et al. (1989); Eycken et al. (1989); Hitosuyanagi et al. (1997, 1999); Lienard et al. (1991); Magedov et al. (2007); Poli & Giambastiani (2002); Tomioka et al. (1989, 1993); Tratrat et al. (2002). For a related structure, see: Shi & Ji (2009).

Experimental top

The title compound was prepared by the reaction of naphthalen-1-amine (1 mmol) and 4-methylbenzalhyde (1 mmol) with tetronic acid (1 mmol) in the presence of L-proline (0.1 mmol) in ethanol (2 ml) at 353 K. Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a N,N-dimethylformamide and ethanol solution. 1H NMR (DMSO-d6, δ): 2.21 (3H, s, CH3), 4.98 (1H, d, J = 16.0 Hz, CH2), 5.07 (1H, d, J = 16.0 Hz, CH2), 5.13 (1H, s, CH), 7.05 (2H, d, J = 8.0 Hz, ArH), 7.12 (3H, dd, J1 = 6.4 Hz, J2 = 8.0 Hz, ArH), 7.46 (1H, d, J = 8.8 Hz, ArH), 7.51-7.55 (1H, m, ArH), 7.60-7.64 (1H, m, ArH), 7.84 (1H, d, J = 8.0 Hz, ArH), 8.21 (1H, d, J = 8.0 Hz, ArH), 10.22 (1H, s, NH).

Refinement top

H atoms were placed in calculated positions [N–H = 0.87 Å and C–H = 0.94-0.99 Å] and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2-1.5 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound.
7-p-Tolyl-10,11-dihydrobenzo[h]furo[3,4-b]quinolin-8(7H)-one top
Crystal data top
C22H17NO2F(000) = 688
Mr = 327.37Dx = 1.339 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 5302 reflections
a = 10.6954 (16) Åθ = 3.0–25.3°
b = 13.0566 (18) ŵ = 0.09 mm1
c = 12.183 (2) ÅT = 223 K
β = 107.322 (3)°Block, colourless
V = 1624.1 (4) Å30.60 × 0.34 × 0.30 mm
Z = 4
Data collection top
Rigaku Mercury
diffractometer
2978 independent reflections
Radiation source: fine-focus sealed tube2476 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.1°
ω scansh = 1211
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1512
Tmin = 0.770, Tmax = 0.975l = 1414
15611 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.6601P]
where P = (Fo2 + 2Fc2)/3
2978 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C22H17NO2V = 1624.1 (4) Å3
Mr = 327.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6954 (16) ŵ = 0.09 mm1
b = 13.0566 (18) ÅT = 223 K
c = 12.183 (2) Å0.60 × 0.34 × 0.30 mm
β = 107.322 (3)°
Data collection top
Rigaku Mercury
diffractometer
2978 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2476 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.975Rint = 0.043
15611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.18Δρmax = 0.22 e Å3
2978 reflectionsΔρmin = 0.18 e Å3
228 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.04628 (16)0.87892 (12)0.19046 (14)0.0446 (4)
O21.02197 (17)0.72658 (13)0.26734 (16)0.0520 (5)
N10.88595 (17)1.05854 (13)0.32900 (16)0.0357 (5)
H10.89211.12000.30350.043*
C10.8218 (2)1.04144 (15)0.41266 (18)0.0303 (5)
C20.8127 (2)0.94420 (16)0.45353 (18)0.0321 (5)
C30.8734 (2)0.84879 (15)0.41573 (19)0.0323 (5)
H30.94550.82520.48270.039*
C40.9332 (2)0.88088 (16)0.32405 (18)0.0327 (5)
C50.9376 (2)0.97791 (16)0.28925 (19)0.0330 (5)
C60.7450 (2)0.93198 (18)0.5358 (2)0.0442 (6)
H60.73840.86610.56480.053*
C70.6888 (3)1.01196 (18)0.5748 (2)0.0481 (7)
H70.64361.00040.62910.058*
C80.6977 (2)1.11247 (17)0.5345 (2)0.0398 (6)
C90.6407 (3)1.19767 (19)0.5729 (2)0.0518 (7)
H90.59411.18780.62640.062*
C100.6521 (3)1.2934 (2)0.5338 (3)0.0570 (7)
H100.61401.34930.56050.068*
C110.7207 (3)1.30888 (18)0.4538 (2)0.0515 (7)
H110.72961.37550.42790.062*
C120.7747 (2)1.22844 (16)0.4130 (2)0.0413 (6)
H120.81891.24000.35800.050*
C130.7652 (2)1.12779 (16)0.45230 (19)0.0330 (5)
C141.0009 (2)0.81812 (18)0.2636 (2)0.0392 (6)
C151.0079 (2)0.98353 (17)0.2007 (2)0.0410 (6)
H15A0.95001.00880.12740.049*
H15B1.08461.02840.22580.049*
C160.7751 (2)0.76137 (15)0.38090 (19)0.0332 (5)
C170.7769 (2)0.68286 (17)0.4572 (2)0.0436 (6)
H170.84200.68220.52880.052*
C180.6844 (3)0.60477 (17)0.4302 (2)0.0463 (6)
H180.68750.55270.48420.056*
C190.5881 (2)0.60229 (17)0.3254 (2)0.0395 (6)
C200.5876 (2)0.68095 (17)0.2488 (2)0.0407 (6)
H200.52390.68090.17650.049*
C210.6785 (2)0.75938 (17)0.2760 (2)0.0376 (5)
H210.67470.81210.22250.045*
C220.4884 (3)0.51737 (19)0.2961 (3)0.0541 (7)
H22A0.50150.47220.36180.081*
H22B0.49850.47880.23120.081*
H22C0.40100.54640.27630.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0519 (10)0.0402 (9)0.0490 (10)0.0012 (7)0.0264 (9)0.0075 (8)
O20.0626 (12)0.0345 (10)0.0664 (12)0.0061 (8)0.0305 (10)0.0097 (8)
N10.0415 (11)0.0252 (9)0.0463 (12)0.0009 (8)0.0222 (9)0.0003 (8)
C10.0299 (11)0.0312 (12)0.0313 (12)0.0018 (9)0.0113 (9)0.0033 (9)
C20.0358 (12)0.0297 (12)0.0310 (12)0.0014 (9)0.0101 (10)0.0026 (9)
C30.0336 (12)0.0266 (11)0.0348 (12)0.0022 (8)0.0076 (10)0.0009 (9)
C40.0306 (12)0.0307 (12)0.0357 (13)0.0018 (9)0.0084 (10)0.0052 (9)
C50.0316 (12)0.0320 (12)0.0367 (13)0.0003 (9)0.0119 (10)0.0032 (9)
C60.0605 (16)0.0341 (13)0.0444 (15)0.0012 (11)0.0254 (12)0.0034 (11)
C70.0632 (17)0.0431 (14)0.0503 (16)0.0005 (12)0.0355 (14)0.0009 (11)
C80.0432 (14)0.0387 (13)0.0404 (13)0.0012 (10)0.0171 (11)0.0048 (10)
C90.0601 (17)0.0476 (16)0.0573 (17)0.0051 (12)0.0321 (14)0.0091 (12)
C100.0614 (18)0.0427 (16)0.075 (2)0.0090 (12)0.0321 (16)0.0141 (13)
C110.0565 (16)0.0305 (13)0.0739 (19)0.0039 (11)0.0291 (14)0.0036 (12)
C120.0426 (13)0.0309 (12)0.0540 (16)0.0001 (10)0.0198 (12)0.0020 (11)
C130.0313 (12)0.0312 (12)0.0368 (13)0.0018 (9)0.0108 (10)0.0039 (9)
C140.0393 (13)0.0370 (14)0.0409 (14)0.0001 (10)0.0114 (11)0.0074 (10)
C150.0456 (14)0.0368 (13)0.0450 (15)0.0006 (10)0.0201 (11)0.0048 (10)
C160.0366 (12)0.0256 (11)0.0379 (13)0.0019 (9)0.0118 (10)0.0013 (9)
C170.0518 (15)0.0333 (13)0.0394 (14)0.0025 (11)0.0038 (11)0.0035 (10)
C180.0605 (16)0.0293 (12)0.0495 (16)0.0050 (11)0.0168 (13)0.0046 (10)
C190.0372 (13)0.0318 (12)0.0523 (15)0.0022 (9)0.0178 (11)0.0070 (10)
C200.0358 (13)0.0414 (13)0.0410 (14)0.0001 (10)0.0056 (10)0.0050 (11)
C210.0418 (13)0.0320 (12)0.0383 (14)0.0018 (10)0.0109 (11)0.0027 (10)
C220.0510 (15)0.0437 (15)0.071 (2)0.0125 (12)0.0231 (14)0.0085 (13)
Geometric parameters (Å, º) top
O1—C141.385 (3)C9—H90.94
O1—C151.442 (3)C10—C111.398 (4)
O2—C141.215 (3)C10—H100.94
N1—C51.344 (3)C11—C121.362 (3)
N1—C11.406 (3)C11—H110.94
N1—H10.87C12—C131.413 (3)
C1—C21.378 (3)C12—H120.94
C1—C131.430 (3)C15—H15A0.98
C2—C61.409 (3)C15—H15B0.98
C2—C31.538 (3)C16—C171.380 (3)
C3—C41.503 (3)C16—C211.384 (3)
C3—C161.524 (3)C17—C181.390 (3)
C3—H30.99C17—H170.94
C4—C51.341 (3)C18—C191.382 (3)
C4—C141.433 (3)C18—H180.94
C5—C151.489 (3)C19—C201.387 (3)
C6—C71.359 (3)C19—C221.506 (3)
C6—H60.94C20—C211.383 (3)
C7—C81.414 (3)C20—H200.94
C7—H70.94C21—H210.94
C8—C131.413 (3)C22—H22A0.97
C8—C91.413 (3)C22—H22B0.97
C9—C101.356 (4)C22—H22C0.97
C14—O1—C15108.88 (16)C11—C12—C13120.8 (2)
C5—N1—C1118.59 (18)C11—C12—H12119.6
C5—N1—H1120.7C13—C12—H12119.6
C1—N1—H1120.7C8—C13—C12118.4 (2)
C2—C1—N1120.70 (18)C8—C13—C1119.01 (19)
C2—C1—C13121.46 (19)C12—C13—C1122.6 (2)
N1—C1—C13117.83 (18)O2—C14—O1119.4 (2)
C1—C2—C6117.90 (19)O2—C14—C4131.3 (2)
C1—C2—C3123.82 (18)O1—C14—C4109.28 (19)
C6—C2—C3118.28 (19)O1—C15—C5103.55 (18)
C4—C3—C16114.39 (18)O1—C15—H15A111.1
C4—C3—C2107.95 (17)C5—C15—H15A111.1
C16—C3—C2111.84 (17)O1—C15—H15B111.1
C4—C3—H3107.5C5—C15—H15B111.1
C16—C3—H3107.5H15A—C15—H15B109.0
C2—C3—H3107.5C17—C16—C21117.7 (2)
C5—C4—C14107.9 (2)C17—C16—C3119.9 (2)
C5—C4—C3124.11 (19)C21—C16—C3122.32 (19)
C14—C4—C3127.9 (2)C16—C17—C18121.3 (2)
C4—C5—N1124.7 (2)C16—C17—H17119.4
C4—C5—C15110.36 (19)C18—C17—H17119.4
N1—C5—C15124.93 (19)C19—C18—C17121.2 (2)
C7—C6—C2122.4 (2)C19—C18—H18119.4
C7—C6—H6118.8C17—C18—H18119.4
C2—C6—H6118.8C18—C19—C20117.2 (2)
C6—C7—C8120.6 (2)C18—C19—C22121.2 (2)
C6—C7—H7119.7C20—C19—C22121.7 (2)
C8—C7—H7119.7C21—C20—C19121.7 (2)
C13—C8—C9119.0 (2)C21—C20—H20119.1
C13—C8—C7118.6 (2)C19—C20—H20119.1
C9—C8—C7122.4 (2)C20—C21—C16120.9 (2)
C10—C9—C8121.1 (2)C20—C21—H21119.6
C10—C9—H9119.4C16—C21—H21119.6
C8—C9—H9119.4C19—C22—H22A109.5
C9—C10—C11119.9 (2)C19—C22—H22B109.5
C9—C10—H10120.0H22A—C22—H22B109.5
C11—C10—H10120.0C19—C22—H22C109.5
C12—C11—C10120.7 (2)H22A—C22—H22C109.5
C12—C11—H11119.6H22B—C22—H22C109.5
C10—C11—H11119.6
C5—N1—C1—C20.4 (3)C9—C8—C13—C1179.4 (2)
C5—N1—C1—C13178.79 (19)C7—C8—C13—C10.1 (3)
N1—C1—C2—C6178.9 (2)C11—C12—C13—C80.3 (4)
C13—C1—C2—C60.3 (3)C11—C12—C13—C1179.3 (2)
N1—C1—C2—C31.9 (3)C2—C1—C13—C80.5 (3)
C13—C1—C2—C3178.92 (19)N1—C1—C13—C8178.7 (2)
C1—C2—C3—C43.7 (3)C2—C1—C13—C12179.1 (2)
C6—C2—C3—C4177.1 (2)N1—C1—C13—C121.7 (3)
C1—C2—C3—C16130.4 (2)C15—O1—C14—O2179.3 (2)
C6—C2—C3—C1650.4 (3)C15—O1—C14—C40.6 (2)
C16—C3—C4—C5128.9 (2)C5—C4—C14—O2179.8 (3)
C2—C3—C4—C53.7 (3)C3—C4—C14—O23.2 (4)
C16—C3—C4—C1454.9 (3)C5—C4—C14—O10.3 (3)
C2—C3—C4—C14179.9 (2)C3—C4—C14—O1176.95 (19)
C14—C4—C5—N1178.8 (2)C14—O1—C15—C51.1 (2)
C3—C4—C5—N12.0 (4)C4—C5—C15—O11.3 (3)
C14—C4—C5—C151.0 (3)N1—C5—C15—O1178.54 (19)
C3—C4—C5—C15177.8 (2)C4—C3—C16—C17137.1 (2)
C1—N1—C5—C40.4 (3)C2—C3—C16—C1799.8 (2)
C1—N1—C5—C15179.8 (2)C4—C3—C16—C2145.9 (3)
C1—C2—C6—C70.4 (4)C2—C3—C16—C2177.3 (3)
C3—C2—C6—C7179.6 (2)C21—C16—C17—C180.5 (3)
C2—C6—C7—C80.8 (4)C3—C16—C17—C18176.7 (2)
C6—C7—C8—C130.5 (4)C16—C17—C18—C190.7 (4)
C6—C7—C8—C9180.0 (2)C17—C18—C19—C200.1 (4)
C13—C8—C9—C101.3 (4)C17—C18—C19—C22179.7 (2)
C7—C8—C9—C10179.2 (3)C18—C19—C20—C210.7 (3)
C8—C9—C10—C110.3 (4)C22—C19—C20—C21179.5 (2)
C9—C10—C11—C121.0 (4)C19—C20—C21—C160.9 (3)
C10—C11—C12—C131.3 (4)C17—C16—C21—C200.3 (3)
C9—C8—C13—C121.0 (3)C3—C16—C21—C20177.4 (2)
C7—C8—C13—C12179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.872.002.802 (2)153
C12—H12···O1i0.942.493.248 (3)137
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H17NO2
Mr327.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)10.6954 (16), 13.0566 (18), 12.183 (2)
β (°) 107.322 (3)
V3)1624.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.34 × 0.30
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.770, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
15611, 2978, 2476
Rint0.043
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.138, 1.18
No. of reflections2978
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: CrystalClear (Rigaku, 2000), CrystalStructure (Rigaku/MSC, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.872.002.802 (2)153
C12—H12···O1i0.942.493.248 (3)137
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Acknowledgements

The author thanks the Scientific Research Item of Xuzhou Institute of Technology (grant No. XKY2009114) for financial support.

References

First citationBosmans, J. P., Eycken, J. V. & Vandewalle, M. (1989). Tetrahedron Lett. 30, 3877–3880.  CrossRef CAS Web of Science Google Scholar
First citationEycken, J. V., Bosmans, J. P., Haver, D. V. & Vandewalle, M. (1989). Tetrahedron Lett. 30, 3873–3876.  Google Scholar
First citationHitosuyanagi, Y., Kobayashi, M., Fukuyo, M., Takeya, K. & Itokawa, H. (1997). Tetrahedron Lett. 38, 8295–8296.  Google Scholar
First citationHitosuyanagi, Y., Kobayashi, M., Morita, H., Itokawa, H. & Takeya, K. (1999). Tetrahedron Lett. 40, 9107–9110.  Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLienard, P., Royer, J., Quirion, J. C. & Husson, H. P. (1991). Tetrahedron Lett. 32, 2489–2492.  CAS Google Scholar
First citationMagedov, I. V., Manapadi, M., Rozhkova, E., Przheval'skii, N. M., Rogelj, S., Shors, S. T., Steelant, W. A., Slambrouck, S. V. & Korinienko, A. (2007). Bioorg. Med. Chem. Lett. 17, 1381–1385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPoli, G. & Giambastiani, G. (2002). J. Org. Chem. 67, 9456–9459.  CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, C. & Ji, M. (2009). Acta Cryst. E65, o100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTomioka, K., Kubota, Y. & Koga, K. (1989). Tetrahedron Lett. 30, 2953–2954.  CrossRef CAS Web of Science Google Scholar
First citationTomioka, K., Kubota, Y. & Koga, K. (1993). Tetrahedron, 49, 1891–1900.  CrossRef CAS Web of Science Google Scholar
First citationTratrat, C., Renault, S. G. & Husson, H. P. (2002). Org. Lett. 4, 3187–3189.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds