organic compounds
Ethylenediaminium hemioxalate thiocyanate
aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: bohari@ukm.my
In the title compound, C2H10N22+·0.5(C2O4)2−·NCS−, the ethylenediaminium dication adopts a (+)-synclinal conformation with an N—C—C—N torsion angle of 62.64 (15)°. The oxalate dianion lies across an inversion centre. In the the ions are linked through N—H⋯N, N—H⋯O and C—H⋯S hydrogen bonds, leading to the formation of a three-dimensional network.
Related literature
For related structures, see: Barnes et al. (1998); Smith et al. (2006); Seidel et al. (2008); Tang et al. (2009). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810005994/ci5031sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810005994/ci5031Isup2.hkl
An aqueous solution (10 ml) of ammonium thiocyanate (0.152 g, 2 mmol) was added into a beaker containing oxalate acid (0.126 g, 1 mmol) and ethylenediamine (2 mmol) in distilled water (40 ml). After one week of evaporation at room temperature, colourless crystals of the title compound were obtained (yield 92%; m.p. 457.1-458.3 K).
After their location in a difference map, the methylene and ammonium H-atoms were positioned geometrically [N–H = 0.89 Å and C–H = 0.97 Å] and allowed to ride on the parent atoms, with Uiso(H) = 1.2Ueq(C,N). A rotating group model was used for the ammonium group.
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms in the dianion are related to other labelled atoms in it by the symmetry operation (1 - x, -y, 1 - z). | |
Fig. 2. Packing diagram of the title compound, viewed down the b axis. Hydrogen bonds are shown as dashed lines. |
C2H10N22+·0.5C2O42−·NCS− | Z = 2 |
Mr = 164.21 | F(000) = 174 |
Triclinic, P1 | Dx = 1.452 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.4044 (19) Å | Cell parameters from 3525 reflections |
b = 6.6199 (19) Å | θ = 2.2–28.3° |
c = 9.377 (3) Å | µ = 0.38 mm−1 |
α = 80.799 (5)° | T = 298 K |
β = 81.179 (5)° | Block, colourless |
γ = 74.452 (5)° | 0.43 × 0.41 × 0.35 mm |
V = 375.5 (2) Å3 |
Bruker SMART APEX CCD area-detector diffractometer | 1867 independent reflections |
Radiation source: fine-focus sealed tube | 1718 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
Detector resolution: 83.66 pixels mm-1 | θmax = 28.3°, θmin = 2.2° |
ω scan | h = −8→8 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −8→8 |
Tmin = 0.854, Tmax = 0.879 | l = −12→12 |
5091 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.095 | w = 1/[σ2(Fo2) + (0.0453P)2 + 0.1426P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
1867 reflections | Δρmax = 0.51 e Å−3 |
94 parameters | Δρmin = −0.52 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.41 (2) |
C2H10N22+·0.5C2O42−·NCS− | γ = 74.452 (5)° |
Mr = 164.21 | V = 375.5 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.4044 (19) Å | Mo Kα radiation |
b = 6.6199 (19) Å | µ = 0.38 mm−1 |
c = 9.377 (3) Å | T = 298 K |
α = 80.799 (5)° | 0.43 × 0.41 × 0.35 mm |
β = 81.179 (5)° |
Bruker SMART APEX CCD area-detector diffractometer | 1867 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1718 reflections with I > 2σ(I) |
Tmin = 0.854, Tmax = 0.879 | Rint = 0.017 |
5091 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.51 e Å−3 |
1867 reflections | Δρmin = −0.52 e Å−3 |
94 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.23176 (14) | 0.09074 (15) | 0.45456 (11) | 0.0325 (2) | |
O2 | 0.41295 (15) | 0.23958 (14) | 0.57426 (10) | 0.0309 (2) | |
C1 | 0.39758 (18) | 0.09557 (17) | 0.50846 (12) | 0.0232 (2) | |
S1 | 0.76420 (7) | 0.30131 (6) | 0.20864 (5) | 0.04886 (18) | |
N1 | 0.7143 (2) | 0.7005 (2) | 0.04926 (17) | 0.0521 (4) | |
C2 | 0.7374 (2) | 0.5334 (2) | 0.11335 (15) | 0.0362 (3) | |
N2 | 0.2850 (2) | 0.94792 (18) | 0.17891 (12) | 0.0346 (3) | |
H2A | 0.2477 | 1.0605 | 0.1135 | 0.041* | |
H2B | 0.4190 | 0.8736 | 0.1513 | 0.041* | |
H2C | 0.2819 | 0.9898 | 0.2650 | 0.041* | |
N3 | 0.18949 (17) | 0.64628 (17) | 0.44290 (12) | 0.0287 (2) | |
H3A | 0.2241 | 0.5223 | 0.4981 | 0.034* | |
H3B | 0.0574 | 0.7188 | 0.4760 | 0.034* | |
H3C | 0.2868 | 0.7191 | 0.4460 | 0.034* | |
C3 | 0.1898 (2) | 0.6105 (2) | 0.29020 (15) | 0.0316 (3) | |
H3D | 0.0877 | 0.5264 | 0.2881 | 0.038* | |
H3E | 0.3340 | 0.5311 | 0.2548 | 0.038* | |
C4 | 0.1284 (2) | 0.8139 (2) | 0.19058 (15) | 0.0356 (3) | |
H4A | 0.1213 | 0.7813 | 0.0945 | 0.043* | |
H4B | −0.0157 | 0.8932 | 0.2262 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0227 (4) | 0.0324 (5) | 0.0425 (5) | −0.0015 (3) | −0.0087 (4) | −0.0100 (4) |
O2 | 0.0302 (5) | 0.0241 (4) | 0.0388 (5) | −0.0025 (3) | −0.0072 (4) | −0.0091 (4) |
C1 | 0.0220 (5) | 0.0207 (5) | 0.0251 (5) | −0.0035 (4) | −0.0018 (4) | −0.0013 (4) |
S1 | 0.0510 (3) | 0.0346 (2) | 0.0483 (3) | 0.00328 (17) | 0.00029 (18) | 0.00231 (16) |
N1 | 0.0485 (8) | 0.0464 (8) | 0.0511 (8) | −0.0062 (6) | −0.0010 (6) | 0.0098 (6) |
C2 | 0.0303 (6) | 0.0399 (7) | 0.0327 (7) | −0.0011 (5) | −0.0009 (5) | −0.0037 (5) |
N2 | 0.0409 (6) | 0.0288 (5) | 0.0300 (5) | −0.0051 (5) | −0.0044 (4) | 0.0023 (4) |
N3 | 0.0267 (5) | 0.0258 (5) | 0.0341 (6) | −0.0077 (4) | −0.0060 (4) | −0.0002 (4) |
C3 | 0.0323 (6) | 0.0261 (6) | 0.0353 (7) | −0.0050 (5) | −0.0018 (5) | −0.0067 (5) |
C4 | 0.0396 (7) | 0.0336 (7) | 0.0332 (7) | −0.0053 (5) | −0.0116 (5) | −0.0031 (5) |
O1—C1 | 1.2539 (15) | N3—C3 | 1.4879 (18) |
O2—C1 | 1.2474 (15) | N3—H3A | 0.89 |
C1—C1i | 1.568 (2) | N3—H3B | 0.89 |
S1—C2 | 1.6295 (16) | N3—H3C | 0.89 |
N1—C2 | 1.155 (2) | C3—C4 | 1.5054 (19) |
N2—C4 | 1.4890 (19) | C3—H3D | 0.97 |
N2—H2A | 0.89 | C3—H3E | 0.97 |
N2—H2B | 0.89 | C4—H4A | 0.97 |
N2—H2C | 0.89 | C4—H4B | 0.97 |
O2—C1—O1 | 125.46 (11) | H3A—N3—H3C | 109.5 |
O2—C1—C1i | 117.42 (13) | H3B—N3—H3C | 109.5 |
O1—C1—C1i | 117.12 (13) | N3—C3—C4 | 112.50 (11) |
N1—C2—S1 | 177.95 (14) | N3—C3—H3D | 109.1 |
C4—N2—H2A | 109.5 | C4—C3—H3D | 109.1 |
C4—N2—H2B | 109.5 | N3—C3—H3E | 109.1 |
H2A—N2—H2B | 109.5 | C4—C3—H3E | 109.1 |
C4—N2—H2C | 109.5 | H3D—C3—H3E | 107.8 |
H2A—N2—H2C | 109.5 | N2—C4—C3 | 113.05 (11) |
H2B—N2—H2C | 109.5 | N2—C4—H4A | 109.0 |
C3—N3—H3A | 109.5 | C3—C4—H4A | 109.0 |
C3—N3—H3B | 109.5 | N2—C4—H4B | 109.0 |
H3A—N3—H3B | 109.5 | C3—C4—H4B | 109.0 |
C3—N3—H3C | 109.5 | H4A—C4—H4B | 107.8 |
N3—C3—C4—N2 | 62.64 (15) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···N1 | 0.89 | 2.11 | 2.986 (2) | 169 |
N3—H3A···O2 | 0.89 | 2.02 | 2.8685 (17) | 158 |
C3—H3E···S1 | 0.97 | 2.77 | 3.7294 (18) | 169 |
N2—H2A···N1ii | 0.89 | 2.05 | 2.899 (2) | 159 |
N2—H2C···O1iii | 0.89 | 1.95 | 2.8337 (18) | 172 |
N3—H3B···O1iv | 0.89 | 2.02 | 2.9078 (17) | 174 |
N3—H3C···O1iii | 0.89 | 2.40 | 3.0465 (18) | 129 |
N3—H3C···O2v | 0.89 | 1.99 | 2.8189 (18) | 154 |
C4—H4B···S1vi | 0.97 | 2.68 | 3.4495 (18) | 136 |
Symmetry codes: (ii) −x+1, −y+2, −z; (iii) x, y+1, z; (iv) −x, −y+1, −z+1; (v) −x+1, −y+1, −z+1; (vi) x−1, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C2H10N22+·0.5C2O42−·NCS− |
Mr | 164.21 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 6.4044 (19), 6.6199 (19), 9.377 (3) |
α, β, γ (°) | 80.799 (5), 81.179 (5), 74.452 (5) |
V (Å3) | 375.5 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.38 |
Crystal size (mm) | 0.43 × 0.41 × 0.35 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.854, 0.879 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5091, 1867, 1718 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.095, 1.06 |
No. of reflections | 1867 |
No. of parameters | 94 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.51, −0.52 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···N1 | 0.89 | 2.11 | 2.986 (2) | 169 |
N3—H3A···O2 | 0.89 | 2.02 | 2.8685 (17) | 158 |
C3—H3E···S1 | 0.97 | 2.77 | 3.7294 (18) | 169 |
N2—H2A···N1i | 0.89 | 2.05 | 2.899 (2) | 159 |
N2—H2C···O1ii | 0.89 | 1.95 | 2.8337 (18) | 172 |
N3—H3B···O1iii | 0.89 | 2.02 | 2.9078 (17) | 174 |
N3—H3C···O1ii | 0.89 | 2.40 | 3.0465 (18) | 129 |
N3—H3C···O2iv | 0.89 | 1.99 | 2.8189 (18) | 154 |
C4—H4B···S1v | 0.97 | 2.68 | 3.4495 (18) | 136 |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) x, y+1, z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) x−1, y+1, z. |
Acknowledgements
The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for the research grant No. UKM-GUP-NBT-68–27-110.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Barnes, J. C., Longhurst, R. W. & Weakley, T. J. R. (1998). Acta Cryst. C54, 1347–1351. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Seidel, R. W., Winter, M. V. & Oppel, I. M. (2008). Acta Cryst. E64, o181. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Smith, G., Wermuth, U. D., Young, D. J. & Healy, P. C. (2006). Acta Cryst. E62, o3124–o3126. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tang, Z., Xu, M., Zhang, H.-C. & Feng, H. (2009). Acta Cryst. E65, o1670. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Aqueous solution of ethylenediamine and oxalic acid regardless of their stiochiometric ratio was reported to give ethylenediammonium bis(monohydrogen oxalate) monohydrate (II) (Barnes et al., 1998). However, the same reaction but in the presence of ammonium thiocyanate was found to give an ethylenediammonium hemioxalate thiocynate, the title compound, (I, Fig.1), indicating that the oxalic acid has been completely deprotonated.
The centrosymmetric oxalate anion is planar as commonly observed in many oxalate salts (Tang et al., 2009; Seidel et al., 2008). The C—O bond lengths are quite similar indicating a delocalisation of electron about the O—C—O bond as observed in (II) and N-[2-(2-chlorophenyl)-2-hydroxyethyl]-propann-2-aminium hemioxalate (III) (Tang et al., 2009). The ethylenediaminium ion in this salt is not planar but twisted with a N3—C3—C4—N2 torsion angle of 62.64 (15)°. In compound (II), and ethylenediammonium pyridine-2,5-dicarboxylate dihydrate (IV) (Smith et al., 2006), the ethylenediammonium cation is centrosymmetric and has an extended conformation with a N—C—C—N torsion angle of 180°. The thiocyanate anion is linear. The bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable with those in (II), (III) and (IV).
In the crystal structure, the molecules are linked by N—H···N, N—H···O and C—H···S hydrogen bonds (Table 1) forming a three-dimemsional network (Fig. 2).