organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o656-o657

3,3′-Di-tert-butyl-1,1′-[1,3-phenyl­enebis(methyl­ene)]diurea

aDepartment of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: alamgir@chem.jsums.edu

(Received 10 February 2010; accepted 12 February 2010; online 20 February 2010)

The title compound, C18H30N4O2, contains two tert-butyl urea groups, each connected to a benzene ring though a methyl­ene group. One of the groups occupies a position almost normal to the aromatic plane with a C—N—C—C torsion angle of −94.4 (4)°, while the other is considerably twisted from the ring with a C—N—C—C torsion angle of −136.1 (4)°. In the crystal, pairs of mol­ecules are connected to each other, forming centrosymmetric dimers in which two NH groups of one mol­ecule act as hydrogen-bond donors to one carbonyl O atom of the other mol­ecule. The dimers are linked into sheets parallel to (100) by N—H⋯O hydrogen bonds involving the remaining N—H and C=O groups.

Related literature

For general background to urea-based compounds, see: Brooks et al. (2008[Brooks, S. J., Caltagirone, C., Cossins, A. J., Gale, P. A. & Light, M. (2008). Supramol. Chem. 20, 349-355.]); Carr et al. (1998[Carr, A. J., Melendez, R., Geib, S. J. & Hamilton, A. D. (1998). Tetrahedron Lett. 39, 6646-6649.]); Chauhan et al. (2008[Chauhan, S. M. S., Bisht, T. & Garg, B. (2008). Tetrahedron Lett. 49, 6646-6649.]); Gomez et al. (2005[Gomez, D. E., Fabbrizzi, L., Licchelli, M. & Monzani, E. (2005). Org. Biomol. Chem. 3, 1495-1500.]); Hiscock et al. (2009[Hiscock, J. R., Caltagirone, C., Light, M. E., Hursthouse, M. B. & Gale, P. A. (2009). Org. Biomol. Chem. 7, 1781-1783.]); Hossain (2008[Hossain, M. A. (2008). Curr. Org. Chem. 12, 1231-1256.]); Kyne et al. (2001[Kyne, G. M., Light, M. E., Hursthouse, M. B., Mendoza, J. & Kilburn, J. D. (2001). J. Chem. Soc., Perkin Trans. 1, pp. 1258-1263.]); Lorenzo et al. (2009[Lorenzo, A., Aller, E. & Molina, P. (2009). Tetrahedron 65, 1397-1401.]); Pérez-Casas & Yatsimirsky (2008[Pérez-Casas, C. & Yatsimirsky, A. K. (2008). J. Org. Chem. 73, 2275-2284.]); Tejeda et al. (2000[Tejeda, A., Oliva, A. I., Simón, L., Grande, M., Caballero, M.-C. & Morán, J. R. (2000). Tetrahedron Lett. 41, 4563-4566.]); Ghosh et al. (2007[Ghosh, A., Ganguly, B. & Das, A. (2007). Inorg. Chem. 46, 9912-9918.]). For related structures, see: Jose et al. (2007[Jose, D. A., Kumar, D. K., Ganguly, B. & Das, A. (2007). Inorg. Chem. 46, 5817-5819.]); Lo & Ng (2008[Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, o922.]).

[Scheme 1]

Experimental

Crystal data
  • C18H30N4O2

  • Mr = 334.46

  • Orthorhombic, P b c a

  • a = 18.070 (4) Å

  • b = 11.760 (3) Å

  • c = 18.221 (3) Å

  • V = 3872.0 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 90 K

  • 0.20 × 0.10 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler

  • 43147 measured reflections

  • 3781 independent reflections

  • 2158 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.235

  • S = 1.03

  • 3781 reflections

  • 235 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.82 (2) 2.12 (2) 2.909 (4) 162 (4)
N2—H2N⋯O2i 0.81 (2) 2.28 (2) 3.034 (4) 153 (4)
N3—H3N⋯O1ii 0.86 (2) 2.15 (2) 2.941 (4) 154 (4)
N4—H4N⋯O1ii 0.81 (2) 2.12 (2) 2.889 (4) 160 (4)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Because of the ability of urea functional groups to form hydrogen bonds with an anion, urea-based compounds are known as effective hosts for a variety of anions (Brooks et al., 2008; Carr et al., 1998; Chauhan et al., 2008; Hiscock et al., 2009; Lorenzo et al., 2009; Tejeda et al., 2000) as well as neutral species (Kyne et al., 2001) and are often used for colorimetric detection for a specific anion in solution (Ghosh et al., 2007; Pérez-Casas et al., 2008). For example, simple acyclic ligands with mono-functional urea or thiourea groups are known to form 1:1 complexes with carboxylates, halides and phosphate in DMSO (Gomez et al., 2005). Encapsulation of sulfate anion was also structurally identified within the cavity formed by two tren-based urea ligands (Jose et al., 2007). In an effort to design multifunctional anion receptors (Hossain, 2008), we synthesized a urea-based compound containing two urea units, that can be useful in anion binding.

Single crystal X-ray analysis reveals that the bis-urea cleft crystallized in an orthorhombic space group without the involvement of solvent molecules. As illustrated in Fig. 1, the carbonyl groups of the two urea fragments are oriented in opposite directions. The methylene groups connected to the aromatic units are almost co-planar with the NH groups, as indicated by C13—N3—C14—N4 and C7—N1—C8—N2 torsion angles of -164.8 (3) and 177.6 (3)°, respectively. The NH groups are oriented almost perpendicular to the aromatic plane.

There are no intramolecular hydrogen bonding in the molecule, however, each CO group forms two hydrogen bonds with two adjacent NH fragments resulting in the formation of centrosymmetric dimers with N···O distances of 2.889 (4) Å and 2.941 (4) Å (Fig. 2 and Table 1). Each dimer is then connected with four adjacent dimers forming a sheet parallel to the (100) (Fig. 3). Similar intermolecular bonding was previously reported for a mono-functional urea-based compound (Lo & Ng, 2008).

Related literature top

For general background to urea-based compounds , see: Brooks et al. (2008); Carr et al. (1998); Chauhan et al. (2008); Gomez et al. (2005); Hiscock et al. (2009); Hossain (2008); Kyne et al. (2001); Lorenzo et al. (2009); Pérez-Casas & Yatsimirsky (2008); Tejeda et al. (2000); Ghosh et al. (2007). For related structures, see: Jose et al. (2007); Lo & Ng (2008).

Experimental top

To a solution of m-xylylenediamine (0.10 g, 1.0 mmol) in CH3CN (20 ml) was added two equivalents of tert-butyl isocyanate (0.20 g, 2.0 mmol) and the mixture was stirred overnight at room temperature. The white precipitate formed was separated by filtration, washed by diethyl ether, and dried under vacuum. Yield 40%. 1H NMR (500 MHz, CDCl3, TMS): δ 7.25-7.12 (ArH, m, 4H), 4.84(CH2NH, t, J = 5 Hz, 2H), 4.64 (CNH, s, 2H), 4.21 (ArCH2, d, J = 5 Hz, 4H), 1.30 (CCH3, s, 18H). A small portion of the sample was re-dissolved in CHCl3, and crystals suitable for X-ray analysis were grown by slow evaporation of the solvent at room temperature.

Refinement top

N-bound H atoms were located in a difference map and their coordinates were refined with a N–H distance restraint of 0.81 (1) Å. C-bound H atoms were placed in idealized positions [C–H = 0.95–0.99 Å] and thereafter treated as riding. Uiso(H) values were assigned as 1.2 times Ueq of the attached atom (1.5 for methyl). A torsional parameter was refined for each methyl group. The highest residual peak is located 1.50 Å from O2.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the centrosymmetric dimer. Colour code: O, red; N, blue; C, deep gray; and H, light gray.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed along a axis.
3,3'-Di-tert-butyl-1,1'-[1,3-phenylenebis(methylene)]diurea top
Crystal data top
C18H30N4O2F(000) = 1456
Mr = 334.46Dx = 1.147 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4187 reflections
a = 18.070 (4) Åθ = 2.5–26.0°
b = 11.760 (3) ŵ = 0.08 mm1
c = 18.221 (3) ÅT = 90 K
V = 3872.0 (15) Å3Plate, colourless
Z = 80.20 × 0.10 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
2158 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.081
Graphite monochromatorθmax = 26.0°, θmin = 2.8°
ω and ϕ scansh = 2222
43147 measured reflectionsk = 1414
3781 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.235H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1146P)2 + 3.4665P]
where P = (Fo2 + 2Fc2)/3
3781 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.86 e Å3
4 restraintsΔρmin = 0.31 e Å3
Crystal data top
C18H30N4O2V = 3872.0 (15) Å3
Mr = 334.46Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 18.070 (4) ŵ = 0.08 mm1
b = 11.760 (3) ÅT = 90 K
c = 18.221 (3) Å0.20 × 0.10 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
2158 reflections with I > 2σ(I)
43147 measured reflectionsRint = 0.081
3781 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0814 restraints
wR(F2) = 0.235H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.86 e Å3
3781 reflectionsΔρmin = 0.31 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34787 (13)0.2316 (2)0.50086 (12)0.0278 (6)
O20.60321 (15)0.6965 (2)0.74637 (13)0.0341 (7)
N10.41055 (18)0.2793 (3)0.60384 (16)0.0374 (9)
H1N0.414 (2)0.267 (4)0.6479 (11)0.045*
N20.32387 (16)0.1387 (3)0.60835 (15)0.0252 (7)
H2N0.333 (2)0.138 (3)0.6520 (11)0.030*
N30.66516 (18)0.6521 (3)0.64143 (16)0.0302 (8)
H3N0.664 (2)0.664 (3)0.5948 (11)0.036*
N40.58391 (18)0.8006 (3)0.64105 (15)0.0306 (8)
H4N0.593 (2)0.798 (3)0.5976 (11)0.037*
C10.5353 (2)0.3564 (3)0.59313 (18)0.0265 (8)
C20.5746 (2)0.4512 (3)0.61638 (18)0.0284 (9)
H20.55150.52370.61600.034*
C30.6492 (2)0.4409 (3)0.64085 (18)0.0260 (8)
C40.6807 (2)0.3341 (3)0.6401 (2)0.0359 (10)
H40.73040.32540.65620.043*
C50.6429 (3)0.2405 (4)0.6169 (2)0.0472 (12)
H50.66610.16800.61650.057*
C60.5719 (2)0.2520 (4)0.5945 (2)0.0399 (10)
H60.54590.18600.57900.048*
C70.4566 (2)0.3648 (3)0.5684 (2)0.0362 (10)
H7A0.43720.44140.58010.043*
H7B0.45420.35450.51460.043*
C80.35958 (18)0.2172 (3)0.56722 (17)0.0221 (8)
C90.2612 (2)0.0693 (3)0.58226 (18)0.0303 (9)
C100.2850 (2)0.0051 (4)0.5169 (2)0.0393 (10)
H10A0.29830.04370.47530.059*
H10B0.24400.05510.50270.059*
H10C0.32780.05130.53100.059*
C110.1961 (2)0.1455 (4)0.5611 (2)0.0376 (10)
H11A0.17920.18760.60440.056*
H11B0.15560.09860.54230.056*
H11C0.21190.19930.52310.056*
C120.2391 (3)0.0088 (4)0.6458 (2)0.0457 (12)
H12A0.28180.05480.66060.069*
H12B0.19880.05900.63000.069*
H12C0.22250.03740.68750.069*
C130.6909 (2)0.5427 (3)0.6683 (2)0.0333 (10)
H13A0.68830.54330.72250.040*
H13B0.74350.53390.65450.040*
C140.6158 (2)0.7160 (3)0.68049 (18)0.0272 (8)
C150.5256 (2)0.8778 (3)0.66675 (18)0.0259 (8)
C160.5559 (2)0.9634 (3)0.7207 (2)0.0362 (10)
H16A0.57620.92340.76340.054*
H16B0.51611.01430.73660.054*
H16C0.59511.00790.69720.054*
C170.4608 (2)0.8133 (4)0.6996 (2)0.0417 (11)
H17A0.44160.75900.66350.063*
H17B0.42160.86710.71310.063*
H17C0.47730.77230.74350.063*
C180.4988 (3)0.9395 (4)0.5971 (2)0.0434 (11)
H18A0.54080.97710.57330.065*
H18B0.46160.99660.61050.065*
H18C0.47680.88430.56320.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0263 (14)0.0416 (16)0.0156 (13)0.0042 (12)0.0019 (10)0.0011 (10)
O20.0435 (17)0.0359 (16)0.0228 (14)0.0026 (13)0.0013 (11)0.0004 (11)
N10.038 (2)0.054 (2)0.0201 (16)0.0192 (18)0.0036 (14)0.0074 (15)
N20.0255 (17)0.0353 (18)0.0147 (14)0.0036 (14)0.0021 (12)0.0024 (13)
N30.0365 (19)0.0284 (18)0.0256 (16)0.0014 (16)0.0007 (14)0.0007 (13)
N40.042 (2)0.0358 (19)0.0139 (14)0.0110 (16)0.0045 (14)0.0045 (13)
C10.028 (2)0.030 (2)0.0214 (18)0.0013 (18)0.0065 (15)0.0001 (15)
C20.035 (2)0.028 (2)0.0223 (18)0.0022 (18)0.0057 (16)0.0035 (15)
C30.028 (2)0.028 (2)0.0221 (18)0.0024 (17)0.0082 (15)0.0018 (15)
C40.039 (2)0.034 (2)0.034 (2)0.011 (2)0.0043 (18)0.0051 (17)
C50.054 (3)0.028 (2)0.059 (3)0.009 (2)0.020 (2)0.008 (2)
C60.044 (3)0.034 (2)0.042 (2)0.001 (2)0.018 (2)0.0023 (19)
C70.034 (2)0.039 (2)0.036 (2)0.012 (2)0.0053 (18)0.0105 (18)
C80.0182 (18)0.030 (2)0.0179 (18)0.0015 (16)0.0030 (14)0.0008 (14)
C90.028 (2)0.037 (2)0.0263 (19)0.0075 (18)0.0020 (16)0.0036 (16)
C100.043 (3)0.034 (2)0.040 (2)0.005 (2)0.0047 (19)0.0060 (19)
C110.026 (2)0.050 (3)0.037 (2)0.005 (2)0.0007 (17)0.0004 (19)
C120.046 (3)0.054 (3)0.037 (2)0.021 (2)0.004 (2)0.010 (2)
C130.032 (2)0.037 (2)0.030 (2)0.0033 (19)0.0038 (17)0.0035 (17)
C140.031 (2)0.028 (2)0.0233 (19)0.0032 (18)0.0027 (16)0.0022 (16)
C150.029 (2)0.026 (2)0.0231 (18)0.0052 (17)0.0016 (15)0.0005 (15)
C160.046 (3)0.031 (2)0.032 (2)0.004 (2)0.0063 (18)0.0001 (16)
C170.040 (3)0.047 (3)0.038 (2)0.008 (2)0.0044 (19)0.0069 (19)
C180.055 (3)0.043 (3)0.033 (2)0.018 (2)0.002 (2)0.0009 (18)
Geometric parameters (Å, º) top
O1—C81.239 (4)C7—H7B0.99
O2—C141.243 (4)C9—C111.527 (5)
N1—C81.352 (5)C9—C121.530 (5)
N1—C71.455 (5)C9—C101.539 (5)
N1—H1N0.819 (18)C10—H10A0.98
N2—C81.353 (4)C10—H10B0.98
N2—C91.475 (5)C10—H10C0.98
N2—H2N0.813 (18)C11—H11A0.98
N3—C141.367 (5)C11—H11B0.98
N3—C131.452 (5)C11—H11C0.98
N3—H3N0.860 (18)C12—H12A0.98
N4—C141.355 (5)C12—H12B0.98
N4—C151.468 (5)C12—H12C0.98
N4—H4N0.809 (18)C13—H13A0.99
C1—C21.388 (5)C13—H13B0.99
C1—C61.395 (5)C15—C161.510 (5)
C1—C71.495 (5)C15—C171.518 (5)
C2—C31.426 (5)C15—C181.540 (5)
C2—H20.95C16—H16A0.98
C3—C41.380 (5)C16—H16B0.98
C3—C131.499 (5)C16—H16C0.98
C4—C51.362 (6)C17—H17A0.98
C4—H40.95C17—H17B0.98
C5—C61.352 (6)C17—H17C0.98
C5—H50.95C18—H18A0.98
C6—H60.95C18—H18B0.98
C7—H7A0.99C18—H18C0.98
C8—N1—C7122.9 (3)C9—C10—H10C109.5
C8—N1—H1N117 (3)H10A—C10—H10C109.5
C7—N1—H1N120 (3)H10B—C10—H10C109.5
C8—N2—C9124.4 (3)C9—C11—H11A109.5
C8—N2—H2N117 (3)C9—C11—H11B109.5
C9—N2—H2N118 (3)H11A—C11—H11B109.5
C14—N3—C13121.4 (3)C9—C11—H11C109.5
C14—N3—H3N114 (3)H11A—C11—H11C109.5
C13—N3—H3N119 (3)H11B—C11—H11C109.5
C14—N4—C15126.2 (3)C9—C12—H12A109.5
C14—N4—H4N114 (3)C9—C12—H12B109.5
C15—N4—H4N119 (3)H12A—C12—H12B109.5
C2—C1—C6117.3 (4)C9—C12—H12C109.5
C2—C1—C7121.7 (3)H12A—C12—H12C109.5
C6—C1—C7121.0 (4)H12B—C12—H12C109.5
C1—C2—C3120.8 (3)N3—C13—C3115.7 (3)
C1—C2—H2119.6N3—C13—H13A108.3
C3—C2—H2119.6C3—C13—H13A108.3
C4—C3—C2117.7 (4)N3—C13—H13B108.3
C4—C3—C13121.5 (4)C3—C13—H13B108.3
C2—C3—C13120.8 (3)H13A—C13—H13B107.4
C5—C4—C3122.1 (4)O2—C14—N4124.7 (3)
C5—C4—H4119.0O2—C14—N3121.4 (3)
C3—C4—H4119.0N4—C14—N3113.9 (3)
C6—C5—C4119.3 (4)N4—C15—C16111.0 (3)
C6—C5—H5120.3N4—C15—C17111.8 (3)
C4—C5—H5120.3C16—C15—C17110.9 (3)
C5—C6—C1122.9 (4)N4—C15—C18104.7 (3)
C5—C6—H6118.6C16—C15—C18109.7 (3)
C1—C6—H6118.6C17—C15—C18108.6 (3)
N1—C7—C1111.4 (3)C15—C16—H16A109.5
N1—C7—H7A109.3C15—C16—H16B109.5
C1—C7—H7A109.3H16A—C16—H16B109.5
N1—C7—H7B109.3C15—C16—H16C109.5
C1—C7—H7B109.3H16A—C16—H16C109.5
H7A—C7—H7B108.0H16B—C16—H16C109.5
O1—C8—N1121.6 (3)C15—C17—H17A109.5
O1—C8—N2123.5 (3)C15—C17—H17B109.5
N1—C8—N2114.8 (3)H17A—C17—H17B109.5
N2—C9—C11110.3 (3)C15—C17—H17C109.5
N2—C9—C12106.8 (3)H17A—C17—H17C109.5
C11—C9—C12110.0 (3)H17B—C17—H17C109.5
N2—C9—C10110.4 (3)C15—C18—H18A109.5
C11—C9—C10110.7 (3)C15—C18—H18B109.5
C12—C9—C10108.5 (3)H18A—C18—H18B109.5
C9—C10—H10A109.5C15—C18—H18C109.5
C9—C10—H10B109.5H18A—C18—H18C109.5
H10A—C10—H10B109.5H18B—C18—H18C109.5
C6—C1—C2—C30.3 (5)C9—N2—C8—O17.1 (5)
C7—C1—C2—C3179.0 (3)C9—N2—C8—N1173.7 (3)
C1—C2—C3—C40.4 (5)C8—N2—C9—C1161.4 (4)
C1—C2—C3—C13178.0 (3)C8—N2—C9—C12179.0 (3)
C2—C3—C4—C50.1 (5)C8—N2—C9—C1061.2 (4)
C13—C3—C4—C5178.4 (4)C14—N3—C13—C394.4 (4)
C3—C4—C5—C60.6 (6)C4—C3—C13—N3157.3 (3)
C4—C5—C6—C10.7 (6)C2—C3—C13—N324.4 (5)
C2—C1—C6—C50.3 (5)C15—N4—C14—O24.9 (6)
C7—C1—C6—C5179.5 (4)C15—N4—C14—N3175.7 (3)
C8—N1—C7—C1136.1 (4)C13—N3—C14—O215.8 (6)
C2—C1—C7—N1131.0 (4)C13—N3—C14—N4164.8 (3)
C6—C1—C7—N148.2 (5)C14—N4—C15—C1672.8 (5)
C7—N1—C8—O11.7 (6)C14—N4—C15—C1751.5 (5)
C7—N1—C8—N2177.6 (3)C14—N4—C15—C18168.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.82 (2)2.12 (2)2.909 (4)162 (4)
N2—H2N···O2i0.81 (2)2.28 (2)3.034 (4)153 (4)
N3—H3N···O1ii0.86 (2)2.15 (2)2.941 (4)154 (4)
N4—H4N···O1ii0.81 (2)2.12 (2)2.889 (4)160 (4)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H30N4O2
Mr334.46
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)90
a, b, c (Å)18.070 (4), 11.760 (3), 18.221 (3)
V3)3872.0 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.10 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
43147, 3781, 2158
Rint0.081
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.235, 1.03
No. of reflections3781
No. of parameters235
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.31

Computer programs: COLLECT (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.82 (2)2.12 (2)2.909 (4)162 (4)
N2—H2N···O2i0.81 (2)2.28 (2)3.034 (4)153 (4)
N3—H3N···O1ii0.86 (2)2.15 (2)2.941 (4)154 (4)
N4—H4N···O1ii0.81 (2)2.12 (2)2.889 (4)160 (4)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the National Institutes of Health, Division of National Center for Research Resources, under grant No. G12RR013459. The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents. This research was also sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy, under contract with Oak Ridge National Laboratory (MAH), and National Science Foundation under grant No. CHE-0821357.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrooks, S. J., Caltagirone, C., Cossins, A. J., Gale, P. A. & Light, M. (2008). Supramol. Chem. 20, 349–355.  Web of Science CSD CrossRef CAS Google Scholar
First citationCarr, A. J., Melendez, R., Geib, S. J. & Hamilton, A. D. (1998). Tetrahedron Lett. 39, 6646–6649.  Web of Science CrossRef Google Scholar
First citationChauhan, S. M. S., Bisht, T. & Garg, B. (2008). Tetrahedron Lett. 49, 6646–6649.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGhosh, A., Ganguly, B. & Das, A. (2007). Inorg. Chem. 46, 9912–9918.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGomez, D. E., Fabbrizzi, L., Licchelli, M. & Monzani, E. (2005). Org. Biomol. Chem. 3, 1495–1500.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHiscock, J. R., Caltagirone, C., Light, M. E., Hursthouse, M. B. & Gale, P. A. (2009). Org. Biomol. Chem. 7, 1781–1783.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHossain, M. A. (2008). Curr. Org. Chem. 12, 1231–1256.  Web of Science CrossRef CAS Google Scholar
First citationJose, D. A., Kumar, D. K., Ganguly, B. & Das, A. (2007). Inorg. Chem. 46, 5817–5819.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKyne, G. M., Light, M. E., Hursthouse, M. B., Mendoza, J. & Kilburn, J. D. (2001). J. Chem. Soc., Perkin Trans. 1, pp. 1258–1263.  Google Scholar
First citationLo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, o922.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLorenzo, A., Aller, E. & Molina, P. (2009). Tetrahedron 65, 1397–1401.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPérez-Casas, C. & Yatsimirsky, A. K. (2008). J. Org. Chem. 73, 2275–2284.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTejeda, A., Oliva, A. I., Simón, L., Grande, M., Caballero, M.-C. & Morán, J. R. (2000). Tetrahedron Lett. 41, 4563–4566.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o656-o657
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds