organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o691-o692

2-Amino­pyridinium tri­fluoro­acetate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 17 February 2010; accepted 18 February 2010; online 27 February 2010)

The asymmetric unit of the title compound, C5H7N2+·C2F3O2, contains four independent 2-amino­pyridinium cations and four independent trifluoro­acetate anions. In the crystal structure, these ions are linked by N—H⋯O hydrogen bonds, forming four cation–anion pairs each containing an R22(8) ring motif. The ion pairs are linked into two independent chains along [100] by N—H⋯O hydrogen bonds. In addition, C—H⋯O and C—H⋯F hydrogen bonds and ππ inter­actions [centoid–centroid separation = 3.6007 (17) Å] are observed.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles In Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For related structures, see: Chao et al. (1975[Chao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922-2924.]); Gellert & Hsu (1988[Gellert, R. W. & Hsu, I.-N. (1988). Acta Cryst. C44, 311-313.]); Demir et al. (2005[Demir, S., Yilmaz, V. T. & Harrison, W. T. A. (2005). Acta Cryst. C61, o565-o567.]); Jebas et al. (2006[Jebas, S. R. & Balasubramanian, T. (2006). Acta Cryst. E62, o2209-o2211.]); Rademeyer (2007[Rademeyer, M. (2007). Acta Cryst. E63, o545-o546.]); Windholz (1976[Windholz, M. (1976). The Merck Index, 9th ed. Boca Raton, USA: Merck & Co. Inc.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N2+·C2F3O2

  • Mr = 208.15

  • Monoclinic, P 21 /c

  • a = 11.4641 (15) Å

  • b = 10.0221 (13) Å

  • c = 29.928 (4) Å

  • β = 92.918 (3)°

  • V = 3434.1 (8) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 100 K

  • 0.35 × 0.17 × 0.04 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.994

  • 28669 measured reflections

  • 6732 independent reflections

  • 4154 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.141

  • S = 1.02

  • 6732 reflections

  • 617 parameters

  • All H-atom parameters refined

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O2Di 0.92 (3) 1.91 (3) 2.809 (3) 168 (2)
N2A—H2NA⋯O1Di 1.02 (4) 1.79 (4) 2.795 (4) 169 (4)
N2A—H3NA⋯O1Aii 0.84 (3) 2.10 (3) 2.899 (3) 160 (3)
N1B—H1NB⋯O2Ciii 0.97 (3) 1.75 (3) 2.704 (3) 166 (3)
N2B—H2NB⋯O1Ciii 0.91 (4) 2.01 (4) 2.892 (4) 164 (3)
N2B—H3NB⋯O2Biii 0.86 (3) 2.07 (3) 2.858 (3) 154 (3)
N1C—H1NC⋯O1Aiv 0.86 (3) 1.94 (3) 2.789 (3) 172 (3)
N2C—H2NC⋯O2Aiv 0.90 (3) 1.93 (3) 2.827 (4) 177 (3)
N2C—H3NC⋯O2Dv 0.94 (3) 2.04 (3) 2.894 (3) 150 (3)
N1D—H1ND⋯O2Bvi 0.92 (3) 1.80 (3) 2.701 (3) 164 (2)
N2D—H2ND⋯O1Bvi 0.95 (3) 1.97 (3) 2.878 (4) 160 (2)
N2D—H3ND⋯O2Cvii 0.84 (3) 2.21 (3) 2.908 (3) 141 (3)
C1A—H1A⋯O2A 1.00 (3) 2.20 (3) 3.141 (3) 155 (2)
C1B—H1B⋯F3Cviii 1.06 (3) 2.43 (3) 3.288 (4) 137 (2)
C1C—H1C⋯O1Dix 0.95 (2) 2.21 (2) 3.107 (3) 158 (2)
C4A—H4A⋯F1Aii 1.06 (3) 2.34 (3) 3.352 (3) 159 (2)
C4B—H4B⋯O1C 1.05 (3) 2.25 (3) 3.294 (4) 171 (2)
C4C—H4C⋯F3Dv 0.93 (3) 2.50 (3) 3.365 (3) 155 (3)
C4D—H4D⋯O1Bii 1.08 (2) 2.18 (2) 3.204 (4) 159 (2)
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x+1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z; (v) x, y-1, z; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) x-1, y, z; (ix) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). 2-Aminopyridine is used in the manufacture of pharmaceuticals, especially antihistaminic drugs (Windholz, 1976). The crystal structures of 2-aminopyridine (Chao et al., 1975), 2-aminopyridinium salicylate (Gellert & Hsu, 1988), 2-amino-pyridinium dihydrogenphosphate (Demir et al., 2005), bis(2-aminopyridinium) sulfate (Jebas et al., 2006) and 2-aminopyridinium nitrate (Rademeyer, 2007) have been reported in the literature. The crystal structure determination of the title compound was undertaken to study the hydrogen bonding interactions in it.

The asymmetric unit of the title compound consists of four crystallographically independent 2-aminopyridinium cations (A, B, C & D) and four trifluoroacetate anions (A, B, C & D) (Fig. 1). Each 2-aminopyridinium cation is planar, with a maximum deviation of 0.017 (3) Å for atom N2A (molecule A), 0.007 (2) Å for atom C3B (molecule B), 0.007 (2) Å for atom N1C (molecule C) and 0.008 (3) Å for atom C5D (molecule D).

In the crystal structure (Fig. 2), carboxylate groups of A, B, C and D trifluoroacetate anions interact with two N–H groups of D, C, A and B 2-aminopyridinium cations, respectively, via pairs of N—H···O hydrogen bonds generating R22(8) motifs (Bernstein et al., 1995). The ionic pairs are linked into chains along [100] by N—H···O hydrogen bonds involving the remaining N–H groups. The crystal structure is further stabilized by C—H···O and C—H···F hydrogen bonds (Table 1) and π···π interactions involving the N1A/C1A–C5A pyridine rings at (x, y, z) and (1-x, 1-y, -z) with a centoid-to-centroid separation of 3.6007 (17) Å.

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Chao et al. (1975); Gellert & Hsu (1988); Demir et al. (2005); Jebas et al. (2006); Rademeyer (2007); Windholz (1976). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a hot methanol solution (20 ml) of 2-aminopyridine (47 mg, Aldrich) was added a few drops of trifluoroacetic acid. The solution was warmed over a water bath for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Crystals of the title compound appeared from the mother liquor after a few days.

Refinement top

All the H atoms were located in a difference Fourier map and allowed to refine freely [N–H = 0.83 (4)–1.02 (4) Å, C–H = 0.91 (3)–1.08 (3) Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks.
2-aminopyridinium trifluoroacetate top
Crystal data top
C5H7N2+·C2F3O2F(000) = 1696
Mr = 208.15Dx = 1.610 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3066 reflections
a = 11.4641 (15) Åθ = 2.7–24.0°
b = 10.0221 (13) ŵ = 0.16 mm1
c = 29.928 (4) ÅT = 100 K
β = 92.918 (3)°Plate, colourless
V = 3434.1 (8) Å30.35 × 0.17 × 0.04 mm
Z = 16
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
6732 independent reflections
Radiation source: fine-focus sealed tube4154 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1412
Tmin = 0.947, Tmax = 0.994k = 1212
28669 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.072P)2]
where P = (Fo2 + 2Fc2)/3
6732 reflections(Δ/σ)max = 0.001
617 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C5H7N2+·C2F3O2V = 3434.1 (8) Å3
Mr = 208.15Z = 16
Monoclinic, P21/cMo Kα radiation
a = 11.4641 (15) ŵ = 0.16 mm1
b = 10.0221 (13) ÅT = 100 K
c = 29.928 (4) Å0.35 × 0.17 × 0.04 mm
β = 92.918 (3)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
6732 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4154 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.994Rint = 0.072
28669 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.141All H-atom parameters refined
S = 1.02Δρmax = 0.44 e Å3
6732 reflectionsΔρmin = 0.44 e Å3
617 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.53238 (18)0.6375 (2)0.03514 (8)0.0211 (5)
N2A0.7286 (2)0.6627 (3)0.02401 (9)0.0266 (6)
C1A0.4393 (2)0.5710 (3)0.05182 (10)0.0248 (7)
C2A0.4546 (3)0.4564 (3)0.07439 (10)0.0271 (7)
C3A0.5680 (2)0.4031 (3)0.08038 (10)0.0246 (7)
C4A0.6604 (2)0.4684 (3)0.06365 (10)0.0248 (7)
C5A0.6430 (2)0.5902 (3)0.04029 (9)0.0218 (6)
F1A0.04773 (14)0.44273 (16)0.07172 (5)0.0314 (4)
F2A0.06503 (16)0.56750 (19)0.11269 (6)0.0419 (5)
F3A0.13664 (14)0.40701 (17)0.07542 (6)0.0347 (4)
O1A0.01983 (15)0.65268 (18)0.01836 (6)0.0218 (4)
O2A0.17434 (15)0.6235 (2)0.02589 (7)0.0289 (5)
C6A0.0564 (2)0.5042 (3)0.07342 (9)0.0231 (6)
C7A0.0723 (2)0.6020 (3)0.03494 (9)0.0187 (6)
N1B0.25015 (19)0.0690 (2)0.22063 (8)0.0223 (5)
N2B0.4426 (2)0.0544 (3)0.24561 (10)0.0327 (7)
C1B0.1593 (3)0.1252 (3)0.19635 (10)0.0290 (7)
C2B0.1754 (3)0.2363 (3)0.17180 (11)0.0352 (8)
C3B0.2877 (3)0.2902 (3)0.17187 (11)0.0365 (8)
C4B0.3786 (3)0.2344 (3)0.19497 (11)0.0342 (8)
C5B0.3600 (2)0.1179 (3)0.22101 (10)0.0265 (7)
F1B0.19140 (15)0.79602 (17)0.16527 (6)0.0357 (4)
F2B0.31202 (16)0.64578 (17)0.14540 (6)0.0391 (5)
F3B0.36394 (14)0.78893 (16)0.19615 (6)0.0326 (4)
O1B0.12827 (16)0.5810 (2)0.21178 (7)0.0306 (5)
O2B0.30890 (15)0.57592 (19)0.24392 (6)0.0237 (5)
C6B0.2742 (2)0.7125 (3)0.18099 (10)0.0240 (7)
C7B0.2322 (2)0.6146 (3)0.21597 (9)0.0220 (6)
N1C0.97689 (18)0.1324 (2)0.03769 (8)0.0195 (5)
N2C0.7775 (2)0.1534 (3)0.02793 (9)0.0234 (6)
C1C1.0764 (2)0.0718 (3)0.05421 (10)0.0233 (7)
C2C1.0705 (3)0.0409 (3)0.07859 (10)0.0259 (7)
C3C0.9596 (3)0.0928 (3)0.08655 (10)0.0259 (7)
C4C0.8602 (2)0.0311 (3)0.07060 (10)0.0229 (6)
C5C0.8686 (2)0.0864 (3)0.04501 (9)0.0187 (6)
F1C0.70647 (15)0.14098 (17)0.14889 (6)0.0361 (5)
F2C0.83699 (16)0.28461 (17)0.13276 (6)0.0383 (5)
F3C0.87288 (13)0.14044 (16)0.18453 (5)0.0290 (4)
O1C0.64277 (16)0.3622 (2)0.19178 (7)0.0296 (5)
O2C0.81484 (15)0.35674 (19)0.23072 (6)0.0243 (5)
C6C0.7897 (2)0.2205 (3)0.16693 (9)0.0235 (7)
C7C0.7438 (2)0.3217 (3)0.20015 (9)0.0215 (6)
N1D0.75292 (18)0.8656 (2)0.20606 (8)0.0203 (5)
N2D0.9457 (2)0.8664 (3)0.23238 (9)0.0272 (6)
C1D0.6606 (2)0.8152 (3)0.18099 (10)0.0252 (7)
C2D0.6725 (3)0.7041 (3)0.15644 (10)0.0293 (7)
C3D0.7819 (3)0.6428 (3)0.15695 (10)0.0283 (7)
C4D0.8744 (3)0.6922 (3)0.18151 (10)0.0253 (7)
C5D0.8595 (2)0.8081 (3)0.20725 (9)0.0216 (6)
F1D0.38550 (14)0.89359 (17)0.07557 (6)0.0363 (5)
F2D0.45932 (18)1.0533 (2)0.11547 (6)0.0484 (5)
F3D0.56876 (14)0.93681 (17)0.07456 (6)0.0355 (5)
O1D0.33350 (16)1.1182 (2)0.02989 (8)0.0394 (6)
O2D0.52497 (15)1.14436 (19)0.02069 (6)0.0238 (5)
C6D0.4630 (2)0.9937 (3)0.07548 (10)0.0261 (7)
C7D0.4378 (2)1.0945 (3)0.03804 (10)0.0245 (7)
H1A0.364 (3)0.615 (3)0.0418 (9)0.026 (8)*
H2A0.383 (3)0.406 (3)0.0863 (11)0.050 (10)*
H3A0.579 (3)0.315 (3)0.0972 (10)0.037 (9)*
H4A0.748 (3)0.435 (3)0.0678 (9)0.031 (8)*
H1NA0.525 (2)0.710 (3)0.0166 (9)0.016 (7)*
H2NA0.697 (4)0.743 (4)0.0063 (13)0.080 (14)*
H3NA0.799 (3)0.641 (3)0.0250 (11)0.052 (11)*
H1B0.076 (3)0.081 (3)0.2000 (10)0.042 (9)*
H2B0.100 (3)0.280 (3)0.1548 (11)0.057 (11)*
H3B0.297 (3)0.364 (3)0.1548 (11)0.041 (10)*
H4B0.466 (3)0.266 (3)0.1957 (10)0.044 (9)*
H1NB0.240 (3)0.011 (3)0.2385 (9)0.031 (9)*
H2NB0.430 (3)0.007 (4)0.2673 (11)0.043 (11)*
H3NB0.511 (3)0.087 (3)0.2509 (10)0.038 (10)*
H1C1.148 (2)0.110 (3)0.0459 (9)0.022 (8)*
H2C1.139 (3)0.086 (3)0.0906 (10)0.035 (9)*
H3C0.955 (2)0.174 (3)0.1037 (10)0.029 (8)*
H4C0.787 (3)0.064 (3)0.0765 (9)0.027 (8)*
H1NC0.984 (3)0.202 (3)0.0213 (10)0.029 (9)*
H2NC0.792 (3)0.222 (3)0.0099 (11)0.049 (11)*
H3NC0.701 (3)0.121 (4)0.0304 (12)0.062 (12)*
H1D0.583 (2)0.864 (3)0.1846 (9)0.023 (7)*
H2D0.603 (3)0.670 (3)0.1391 (10)0.034 (8)*
H3D0.791 (2)0.560 (3)0.1406 (9)0.027 (8)*
H4D0.961 (2)0.650 (3)0.1830 (9)0.027 (8)*
H1ND0.746 (2)0.938 (3)0.2247 (9)0.026 (8)*
H2ND0.940 (2)0.937 (3)0.2533 (10)0.026 (8)*
H3ND1.009 (3)0.826 (3)0.2377 (10)0.032 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0145 (12)0.0229 (14)0.0259 (14)0.0006 (10)0.0017 (10)0.0020 (12)
N2A0.0104 (12)0.0265 (15)0.0431 (17)0.0006 (10)0.0041 (11)0.0005 (12)
C1A0.0138 (14)0.0332 (18)0.0275 (17)0.0003 (12)0.0023 (12)0.0038 (14)
C2A0.0248 (16)0.0342 (18)0.0227 (17)0.0062 (13)0.0035 (12)0.0053 (14)
C3A0.0236 (15)0.0272 (17)0.0230 (17)0.0034 (13)0.0014 (12)0.0061 (14)
C4A0.0209 (15)0.0246 (16)0.0285 (17)0.0018 (12)0.0021 (12)0.0022 (14)
C5A0.0171 (14)0.0240 (16)0.0246 (16)0.0012 (11)0.0020 (11)0.0063 (13)
F1A0.0229 (9)0.0390 (11)0.0329 (10)0.0065 (7)0.0054 (7)0.0108 (8)
F2A0.0512 (12)0.0532 (13)0.0209 (10)0.0013 (9)0.0012 (8)0.0068 (9)
F3A0.0275 (9)0.0362 (10)0.0404 (11)0.0104 (8)0.0016 (8)0.0155 (9)
O1A0.0134 (9)0.0236 (11)0.0283 (11)0.0014 (8)0.0007 (8)0.0043 (9)
O2A0.0123 (10)0.0337 (12)0.0409 (13)0.0013 (8)0.0015 (8)0.0128 (10)
C6A0.0167 (14)0.0278 (17)0.0247 (17)0.0001 (12)0.0005 (11)0.0022 (14)
C7A0.0153 (14)0.0185 (15)0.0222 (15)0.0001 (11)0.0010 (11)0.0006 (12)
N1B0.0181 (12)0.0207 (13)0.0285 (14)0.0021 (10)0.0046 (10)0.0000 (11)
N2B0.0184 (14)0.0388 (17)0.0407 (18)0.0071 (12)0.0006 (12)0.0067 (15)
C1B0.0272 (16)0.0269 (17)0.0329 (19)0.0056 (13)0.0017 (13)0.0004 (14)
C2B0.046 (2)0.0289 (19)0.0311 (19)0.0078 (15)0.0098 (15)0.0050 (15)
C3B0.056 (2)0.0247 (19)0.031 (2)0.0006 (16)0.0200 (16)0.0015 (16)
C4B0.043 (2)0.0269 (18)0.0346 (19)0.0140 (15)0.0184 (15)0.0088 (15)
C5B0.0237 (16)0.0253 (17)0.0312 (18)0.0036 (13)0.0088 (13)0.0102 (14)
F1B0.0408 (11)0.0322 (10)0.0334 (11)0.0069 (8)0.0045 (8)0.0080 (8)
F2B0.0535 (12)0.0365 (11)0.0288 (11)0.0006 (9)0.0179 (8)0.0056 (9)
F3B0.0310 (10)0.0300 (10)0.0369 (11)0.0055 (8)0.0029 (8)0.0029 (8)
O1B0.0203 (11)0.0425 (13)0.0286 (12)0.0044 (9)0.0027 (8)0.0026 (10)
O2B0.0171 (10)0.0271 (11)0.0267 (11)0.0021 (8)0.0008 (8)0.0026 (9)
C6B0.0215 (15)0.0244 (16)0.0258 (17)0.0021 (12)0.0011 (12)0.0041 (13)
C7B0.0207 (15)0.0248 (16)0.0205 (16)0.0028 (12)0.0023 (12)0.0052 (13)
N1C0.0163 (12)0.0183 (13)0.0239 (14)0.0000 (9)0.0024 (10)0.0029 (11)
N2C0.0123 (12)0.0249 (15)0.0330 (16)0.0029 (10)0.0013 (10)0.0035 (12)
C1C0.0156 (15)0.0299 (17)0.0245 (16)0.0007 (12)0.0013 (11)0.0016 (13)
C2C0.0219 (15)0.0303 (18)0.0253 (17)0.0084 (13)0.0003 (12)0.0050 (14)
C3C0.0346 (17)0.0183 (16)0.0254 (17)0.0011 (13)0.0074 (13)0.0061 (13)
C4C0.0198 (15)0.0208 (16)0.0287 (17)0.0012 (12)0.0071 (12)0.0006 (13)
C5C0.0159 (14)0.0187 (15)0.0216 (15)0.0028 (11)0.0025 (11)0.0027 (12)
F1C0.0356 (10)0.0326 (10)0.0391 (11)0.0034 (8)0.0100 (8)0.0083 (9)
F2C0.0545 (12)0.0334 (11)0.0283 (11)0.0007 (9)0.0146 (8)0.0082 (8)
F3C0.0258 (9)0.0295 (10)0.0316 (10)0.0060 (7)0.0007 (7)0.0014 (8)
O1C0.0192 (11)0.0336 (12)0.0354 (13)0.0032 (9)0.0037 (9)0.0000 (10)
O2C0.0172 (10)0.0266 (11)0.0288 (12)0.0003 (8)0.0025 (8)0.0050 (9)
C6C0.0214 (15)0.0242 (16)0.0247 (16)0.0021 (12)0.0011 (12)0.0063 (13)
C7C0.0197 (15)0.0220 (16)0.0228 (16)0.0031 (11)0.0017 (12)0.0039 (12)
N1D0.0162 (12)0.0202 (13)0.0244 (14)0.0004 (10)0.0007 (10)0.0004 (11)
N2D0.0155 (13)0.0337 (16)0.0322 (16)0.0024 (11)0.0021 (11)0.0024 (13)
C1D0.0200 (15)0.0279 (17)0.0277 (17)0.0038 (12)0.0007 (12)0.0021 (14)
C2D0.0313 (17)0.0258 (17)0.0310 (18)0.0058 (13)0.0026 (14)0.0024 (14)
C3D0.0374 (18)0.0200 (17)0.0283 (18)0.0011 (14)0.0080 (14)0.0003 (14)
C4D0.0295 (17)0.0217 (16)0.0256 (17)0.0053 (13)0.0093 (13)0.0057 (13)
C5D0.0199 (15)0.0238 (16)0.0214 (16)0.0005 (11)0.0052 (11)0.0088 (12)
F1D0.0292 (10)0.0351 (10)0.0449 (12)0.0034 (8)0.0047 (8)0.0097 (9)
F2D0.0641 (14)0.0538 (13)0.0277 (11)0.0036 (10)0.0064 (9)0.0105 (10)
F3D0.0227 (9)0.0446 (11)0.0386 (11)0.0077 (8)0.0039 (7)0.0054 (9)
O1D0.0132 (11)0.0437 (14)0.0617 (16)0.0031 (9)0.0068 (10)0.0201 (12)
O2D0.0146 (10)0.0283 (11)0.0287 (12)0.0023 (8)0.0046 (8)0.0017 (9)
C6D0.0208 (15)0.0291 (17)0.0287 (18)0.0018 (12)0.0025 (12)0.0077 (14)
C7D0.0149 (14)0.0272 (17)0.0315 (17)0.0002 (12)0.0036 (12)0.0035 (14)
Geometric parameters (Å, º) top
N1A—C5A1.355 (3)N1C—C5C1.353 (3)
N1A—C1A1.373 (4)N1C—C1C1.363 (3)
N1A—H1NA0.92 (3)N1C—H1NC0.86 (3)
N2A—C5A1.334 (4)N2C—C5C1.323 (3)
N2A—H2NA1.02 (4)N2C—H2NC0.90 (3)
N2A—H3NA0.83 (4)N2C—H3NC0.94 (4)
C1A—C2A1.340 (4)C1C—C2C1.348 (4)
C1A—H1A1.00 (3)C1C—H1C0.95 (3)
C2A—C3A1.409 (4)C2C—C3C1.406 (4)
C2A—H2A1.04 (3)C2C—H2C0.96 (3)
C3A—C4A1.362 (4)C3C—C4C1.361 (4)
C3A—H3A1.02 (3)C3C—H3C0.97 (3)
C4A—C5A1.416 (4)C4C—C5C1.410 (4)
C4A—H4A1.06 (3)C4C—H4C0.92 (3)
F1A—C6A1.342 (3)F1C—C6C1.336 (3)
F2A—C6A1.335 (3)F2C—C6C1.345 (3)
F3A—C6A1.339 (3)F3C—C6C1.334 (3)
O1A—C7A1.252 (3)O1C—C7C1.240 (3)
O2A—C7A1.233 (3)O2C—C7C1.244 (3)
C6A—C7A1.531 (4)C6C—C7C1.533 (4)
N1B—C5B1.351 (3)N1D—C5D1.349 (3)
N1B—C1B1.361 (4)N1D—C1D1.363 (3)
N1B—H1NB0.97 (3)N1D—H1ND0.92 (3)
N2B—C5B1.331 (4)N2D—C5D1.346 (4)
N2B—H2NB0.91 (3)N2D—H2ND0.95 (3)
N2B—H3NB0.86 (3)N2D—H3ND0.84 (3)
C1B—C2B1.352 (4)C1D—C2D1.345 (4)
C1B—H1B1.06 (3)C1D—H1D1.03 (3)
C2B—C3B1.396 (5)C2D—C3D1.395 (4)
C2B—H2B1.07 (3)C2D—H2D0.99 (3)
C3B—C4B1.342 (5)C3D—C4D1.353 (4)
C3B—H3B0.91 (3)C3D—H3D0.97 (3)
C4B—C5B1.426 (4)C4D—C5D1.409 (4)
C4B—H4B1.05 (3)C4D—H4D1.08 (3)
F1B—C6B1.334 (3)F1D—C6D1.340 (3)
F2B—C6B1.348 (3)F2D—C6D1.340 (3)
F3B—C6B1.343 (3)F3D—C6D1.341 (3)
O1B—C7B1.238 (3)O1D—C7D1.231 (3)
O2B—C7B1.245 (3)O2D—C7D1.253 (3)
C6B—C7B1.530 (4)C6D—C7D1.526 (4)
C5A—N1A—C1A121.9 (3)C5C—N1C—C1C123.2 (3)
C5A—N1A—H1NA113.5 (17)C5C—N1C—H1NC119 (2)
C1A—N1A—H1NA124.1 (17)C1C—N1C—H1NC118 (2)
C5A—N2A—H2NA112 (2)C5C—N2C—H2NC117 (2)
C5A—N2A—H3NA125 (2)C5C—N2C—H3NC121 (2)
H2NA—N2A—H3NA123 (3)H2NC—N2C—H3NC121 (3)
C2A—C1A—N1A121.1 (3)C2C—C1C—N1C120.4 (3)
C2A—C1A—H1A127.9 (16)C2C—C1C—H1C123.0 (16)
N1A—C1A—H1A110.7 (16)N1C—C1C—H1C116.5 (16)
C1A—C2A—C3A119.0 (3)C1C—C2C—C3C118.2 (3)
C1A—C2A—H2A120.0 (18)C1C—C2C—H2C122.2 (18)
C3A—C2A—H2A120.9 (18)C3C—C2C—H2C119.6 (18)
C4A—C3A—C2A120.1 (3)C4C—C3C—C2C121.4 (3)
C4A—C3A—H3A121.1 (17)C4C—C3C—H3C119.9 (17)
C2A—C3A—H3A118.8 (17)C2C—C3C—H3C118.7 (17)
C3A—C4A—C5A120.2 (3)C3C—C4C—C5C119.4 (3)
C3A—C4A—H4A123.7 (16)C3C—C4C—H4C121.2 (18)
C5A—C4A—H4A116.1 (16)C5C—C4C—H4C119.4 (18)
N2A—C5A—N1A118.0 (3)N2C—C5C—N1C118.5 (3)
N2A—C5A—C4A124.2 (3)N2C—C5C—C4C124.0 (3)
N1A—C5A—C4A117.8 (3)N1C—C5C—C4C117.5 (2)
F2A—C6A—F3A106.7 (2)F3C—C6C—F1C106.4 (2)
F2A—C6A—F1A106.1 (2)F3C—C6C—F2C106.2 (2)
F3A—C6A—F1A106.0 (2)F1C—C6C—F2C106.6 (2)
F2A—C6A—C7A110.6 (2)F3C—C6C—C7C113.8 (2)
F3A—C6A—C7A113.1 (2)F1C—C6C—C7C113.3 (2)
F1A—C6A—C7A113.9 (2)F2C—C6C—C7C110.0 (2)
O2A—C7A—O1A129.3 (3)O1C—C7C—O2C128.8 (3)
O2A—C7A—C6A115.3 (2)O1C—C7C—C6C115.7 (2)
O1A—C7A—C6A115.3 (2)O2C—C7C—C6C115.5 (2)
C5B—N1B—C1B122.8 (3)C5D—N1D—C1D122.2 (3)
C5B—N1B—H1NB115.4 (17)C5D—N1D—H1ND115.3 (18)
C1B—N1B—H1NB121.8 (17)C1D—N1D—H1ND122.3 (18)
C5B—N2B—H2NB126 (2)C5D—N2D—H2ND128.0 (17)
C5B—N2B—H3NB122 (2)C5D—N2D—H3ND120 (2)
H2NB—N2B—H3NB108 (3)H2ND—N2D—H3ND109 (3)
C2B—C1B—N1B120.6 (3)C2D—C1D—N1D120.6 (3)
C2B—C1B—H1B123.2 (16)C2D—C1D—H1D124.2 (15)
N1B—C1B—H1B116.0 (16)N1D—C1D—H1D115.0 (15)
C1B—C2B—C3B118.0 (3)C1D—C2D—C3D118.3 (3)
C1B—C2B—H2B117.9 (19)C1D—C2D—H2D118.3 (18)
C3B—C2B—H2B124.0 (19)C3D—C2D—H2D123.4 (18)
C4B—C3B—C2B122.0 (3)C4D—C3D—C2D121.6 (3)
C4B—C3B—H3B121 (2)C4D—C3D—H3D118.7 (17)
C2B—C3B—H3B117 (2)C2D—C3D—H3D119.6 (17)
C3B—C4B—C5B119.3 (3)C3D—C4D—C5D119.0 (3)
C3B—C4B—H4B126.8 (17)C3D—C4D—H4D124.8 (14)
C5B—C4B—H4B113.9 (17)C5D—C4D—H4D116.2 (14)
N2B—C5B—N1B117.9 (3)N2D—C5D—N1D117.9 (3)
N2B—C5B—C4B124.9 (3)N2D—C5D—C4D123.9 (3)
N1B—C5B—C4B117.3 (3)N1D—C5D—C4D118.2 (3)
F1B—C6B—F3B106.3 (2)F1D—C6D—F2D106.3 (2)
F1B—C6B—F2B106.5 (2)F1D—C6D—F3D106.4 (2)
F3B—C6B—F2B106.2 (2)F2D—C6D—F3D106.1 (2)
F1B—C6B—C7B113.6 (2)F1D—C6D—C7D113.4 (2)
F3B—C6B—C7B113.4 (2)F2D—C6D—C7D110.3 (2)
F2B—C6B—C7B110.4 (2)F3D—C6D—C7D113.8 (2)
O1B—C7B—O2B128.8 (3)O1D—C7D—O2D128.9 (3)
O1B—C7B—C6B116.1 (2)O1D—C7D—C6D114.7 (3)
O2B—C7B—C6B115.0 (2)O2D—C7D—C6D116.3 (2)
C5A—N1A—C1A—C2A0.6 (4)C5C—N1C—C1C—C2C1.1 (4)
N1A—C1A—C2A—C3A0.9 (4)N1C—C1C—C2C—C3C0.3 (4)
C1A—C2A—C3A—C4A0.5 (4)C1C—C2C—C3C—C4C0.6 (5)
C2A—C3A—C4A—C5A0.2 (4)C2C—C3C—C4C—C5C0.9 (4)
C1A—N1A—C5A—N2A178.4 (3)C1C—N1C—C5C—N2C179.2 (3)
C1A—N1A—C5A—C4A0.0 (4)C1C—N1C—C5C—C4C0.8 (4)
C3A—C4A—C5A—N2A177.9 (3)C3C—C4C—C5C—N2C179.8 (3)
C3A—C4A—C5A—N1A0.5 (4)C3C—C4C—C5C—N1C0.2 (4)
F2A—C6A—C7A—O2A85.4 (3)F3C—C6C—C7C—O1C154.3 (2)
F3A—C6A—C7A—O2A34.1 (3)F1C—C6C—C7C—O1C32.5 (3)
F1A—C6A—C7A—O2A155.3 (2)F2C—C6C—C7C—O1C86.7 (3)
F2A—C6A—C7A—O1A92.0 (3)F3C—C6C—C7C—O2C28.9 (3)
F3A—C6A—C7A—O1A148.5 (2)F1C—C6C—C7C—O2C150.7 (2)
F1A—C6A—C7A—O1A27.4 (3)F2C—C6C—C7C—O2C90.2 (3)
C5B—N1B—C1B—C2B1.3 (4)C5D—N1D—C1D—C2D0.5 (4)
N1B—C1B—C2B—C3B0.5 (5)N1D—C1D—C2D—C3D0.7 (4)
C1B—C2B—C3B—C4B0.7 (5)C1D—C2D—C3D—C4D0.3 (5)
C2B—C3B—C4B—C5B1.3 (5)C2D—C3D—C4D—C5D0.2 (4)
C1B—N1B—C5B—N2B179.4 (3)C1D—N1D—C5D—N2D178.9 (3)
C1B—N1B—C5B—C4B0.7 (4)C1D—N1D—C5D—C4D0.0 (4)
C3B—C4B—C5B—N2B179.3 (3)C3D—C4D—C5D—N2D179.1 (3)
C3B—C4B—C5B—N1B0.5 (4)C3D—C4D—C5D—N1D0.4 (4)
F1B—C6B—C7B—O1B31.0 (3)F1D—C6D—C7D—O1D37.8 (4)
F3B—C6B—C7B—O1B152.5 (2)F2D—C6D—C7D—O1D81.4 (3)
F2B—C6B—C7B—O1B88.5 (3)F3D—C6D—C7D—O1D159.6 (3)
F1B—C6B—C7B—O2B151.5 (2)F1D—C6D—C7D—O2D144.0 (3)
F3B—C6B—C7B—O2B30.0 (3)F2D—C6D—C7D—O2D96.8 (3)
F2B—C6B—C7B—O2B89.0 (3)F3D—C6D—C7D—O2D22.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O2Di0.92 (3)1.91 (3)2.809 (3)168 (2)
N2A—H2NA···O1Di1.02 (4)1.79 (4)2.795 (4)169 (4)
N2A—H3NA···O1Aii0.84 (3)2.10 (3)2.899 (3)160 (3)
N1B—H1NB···O2Ciii0.97 (3)1.75 (3)2.704 (3)166 (3)
N2B—H2NB···O1Ciii0.91 (4)2.01 (4)2.892 (4)164 (3)
N2B—H3NB···O2Biii0.86 (3)2.07 (3)2.858 (3)154 (3)
N1C—H1NC···O1Aiv0.86 (3)1.94 (3)2.789 (3)172 (3)
N2C—H2NC···O2Aiv0.90 (3)1.93 (3)2.827 (4)177 (3)
N2C—H3NC···O2Dv0.94 (3)2.04 (3)2.894 (3)150 (3)
N1D—H1ND···O2Bvi0.92 (3)1.80 (3)2.701 (3)164 (2)
N2D—H2ND···O1Bvi0.95 (3)1.97 (3)2.878 (4)160 (2)
N2D—H3ND···O2Cvii0.84 (3)2.21 (3)2.908 (3)141 (3)
C1A—H1A···O2A1.00 (3)2.20 (3)3.141 (3)155 (2)
C1B—H1B···F3Cviii1.06 (3)2.43 (3)3.288 (4)137 (2)
C1C—H1C···O1Dix0.95 (2)2.21 (2)3.107 (3)158 (2)
C4A—H4A···F1Aii1.06 (3)2.34 (3)3.352 (3)159 (2)
C4B—H4B···O1C1.05 (3)2.25 (3)3.294 (4)171 (2)
C4C—H4C···F3Dv0.93 (3)2.50 (3)3.365 (3)155 (3)
C4D—H4D···O1Bii1.08 (2)2.18 (2)3.204 (4)159 (2)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z; (v) x, y1, z; (vi) x+1, y+1/2, z+1/2; (vii) x+2, y+1/2, z+1/2; (viii) x1, y, z; (ix) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC5H7N2+·C2F3O2
Mr208.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.4641 (15), 10.0221 (13), 29.928 (4)
β (°) 92.918 (3)
V3)3434.1 (8)
Z16
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.35 × 0.17 × 0.04
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.947, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
28669, 6732, 4154
Rint0.072
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.141, 1.02
No. of reflections6732
No. of parameters617
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.44, 0.44

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O2Di0.92 (3)1.91 (3)2.809 (3)168 (2)
N2A—H2NA···O1Di1.02 (4)1.79 (4)2.795 (4)169 (4)
N2A—H3NA···O1Aii0.84 (3)2.10 (3)2.899 (3)160 (3)
N1B—H1NB···O2Ciii0.97 (3)1.75 (3)2.704 (3)166 (3)
N2B—H2NB···O1Ciii0.91 (4)2.01 (4)2.892 (4)164 (3)
N2B—H3NB···O2Biii0.86 (3)2.07 (3)2.858 (3)154 (3)
N1C—H1NC···O1Aiv0.86 (3)1.94 (3)2.789 (3)172 (3)
N2C—H2NC···O2Aiv0.90 (3)1.93 (3)2.827 (4)177 (3)
N2C—H3NC···O2Dv0.94 (3)2.04 (3)2.894 (3)150 (3)
N1D—H1ND···O2Bvi0.92 (3)1.80 (3)2.701 (3)164 (2)
N2D—H2ND···O1Bvi0.95 (3)1.97 (3)2.878 (4)160 (2)
N2D—H3ND···O2Cvii0.84 (3)2.21 (3)2.908 (3)141 (3)
C1A—H1A···O2A1.00 (3)2.20 (3)3.141 (3)155 (2)
C1B—H1B···F3Cviii1.06 (3)2.43 (3)3.288 (4)137 (2)
C1C—H1C···O1Dix0.95 (2)2.21 (2)3.107 (3)158 (2)
C4A—H4A···F1Aii1.06 (3)2.34 (3)3.352 (3)159 (2)
C4B—H4B···O1C1.05 (3)2.25 (3)3.294 (4)171 (2)
C4C—H4C···F3Dv0.93 (3)2.50 (3)3.365 (3)155 (3)
C4D—H4D···O1Bii1.08 (2)2.18 (2)3.204 (4)159 (2)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z; (v) x, y1, z; (vi) x+1, y+1/2, z+1/2; (vii) x+2, y+1/2, z+1/2; (viii) x1, y, z; (ix) x+1, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922–2924.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDemir, S., Yilmaz, V. T. & Harrison, W. T. A. (2005). Acta Cryst. C61, o565–o567.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGellert, R. W. & Hsu, I.-N. (1988). Acta Cryst. C44, 311–313.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJebas, S. R. & Balasubramanian, T. (2006). Acta Cryst. E62, o2209–o2211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles In Life and Society. New York: Wiley.  Google Scholar
First citationRademeyer, M. (2007). Acta Cryst. E63, o545–o546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWindholz, M. (1976). The Merck Index, 9th ed. Boca Raton, USA: Merck & Co. Inc.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o691-o692
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds