organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o682-o683

Orphenadrinium picrate picric acid

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, V. V. Puram College of Science, Bangalore 560 004, India, cDeapartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 17 February 2010; accepted 18 February 2010; online 24 February 2010)

The asymmetric unit of the title compound N,N-dimethyl-2-[(2-methyl­phen­yl)phenyl­meth­oxy]ethanaminium picrate picric acid, C18H24NO+·C6H2N3O7·C6H3N3O7, contains one orphenadrinium cation, one picrate anion and one picric acid mol­ecule. In the orphenadrine cation, the two aromatic rings form a dihedral angle of 70.30 (7)°. There is an intra­molecular O—H⋯O hydrogen bond in the picric acid mol­ecule, which generates an S(6) ring motif. In the crystal structure, the orphenadrine cations, picrate anions and picric acid mol­ecules are connected by strong inter­molecular N—H⋯O hydrogen bonds, ππ inter­actions between the benzene rings of cations and anions [centroid–centroid distance = 3.5603 (9) Å] and weak C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For the efficiency of the anti­cholinergic drug orphenadrine (systematic name N,N-dimethyl-2-[(2-methyl­phen­yl)phenyl­meth­oxy]ethanamine), see: Hunskaar & Donnel (1991[Hunskaar, S. & Donnel, D. (1991). J. Int. Med. Res. 19, 71-87.]). For related structures, see: Glaser et al. (1992[Glaser, R., Donnel, D. & Maartmann-Moe, K. (1992). J. Pharm. Sci. 81, 858-862.]); Yathirajan et al. (2007[Yathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, o1795-o1797.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding, A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H24NO+·C6H2N3O7·C6H3N3O7

  • Mr = 727.60

  • Monoclinic, P 21 /c

  • a = 11.1914 (9) Å

  • b = 12.4481 (10) Å

  • c = 22.6127 (19) Å

  • β = 93.601 (1)°

  • V = 3144.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.34 × 0.25 × 0.18 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.978

  • 34841 measured reflections

  • 9224 independent reflections

  • 6851 reflections with I > 2s(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.127

  • S = 1.02

  • 9224 reflections

  • 480 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N4⋯O1A 0.90 (2) 1.88 (2) 2.6860 (15) 149 (2)
N4—H1N4⋯O2A 0.90 (2) 2.32 (2) 2.9718 (16) 129 (2)
O1B—H1OB⋯O2B 0.99 (3) 1.66 (3) 2.5412 (15) 146 (3)
C5B—H5BA⋯O3Ai 0.93 2.41 3.2833 (19) 156
C9—H9A⋯O6Bii 0.93 2.59 3.4884 (19) 163
C20—H20B⋯O4Aiii 0.97 2.47 3.2841 (17) 141
C23—H23C⋯O7Biv 0.96 2.58 3.4901 (18) 158
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) x+1, y, z; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Orphenadrine (systematic IUPAC name: N,N-dimethyl-2-[(2-methylphenyl) phenyl-methoxy]ethanamine) is an anticholinergic drug of the ethanolamine antihistamine class with prominent CNS and peripheral actions used to treat painful muscle spasm and other symptoms and conditions as well as some aspects of Parkinson's disease. It is closely related to diphenhydramine and therefore related to other drugs used for Parkinson's like benztropine and trihexyphenidyl and is also structurally related to nefopam, a centrally-acting yet non-opioid analgesic. Clinical and pharmacological review of the efficacy of orphenadrine and its combination with paracetamol has been described (Hunskaar & Donnel, 1991). The solid-state structure of orphenadrine hydrochloride and conformational comparisons with diphenhydramine hydrochloride and nefopam hydrochloride was reported (Glaser et al., 1992). The present work reports the crystal structure of the title compound which was obtained by the interaction between orphenadrine hydrochloride and 2,4,6-trinitrophenol in aqueous medium.

The asymmetric unit of the title compound (Fig. 1), contains a protonated orphenadrine cation, a picrate anion and a picric acid. In the orphenadrine cation, the two aromatic rings (C7–C12 and C14–C19) form a dihedral angle of 70.30 (7)°. The phenol and phenolate O atoms are bent slightly away from the plane of the attached benzene rings, with O1A—C1A—C2A—C3A and O1B—C1B—C2B—C3B torsion angles of 168.56 (13)° and -177.10 (13)°, respectively. The mean planes of the p-NO2 oxygen atoms (O4A/N2A/O5A and O4B/N2B/O5B) of picrate anion and the picric acid molecule are twisted by 4.26 (7)° and 10.12 (8)°, respectively, from the mean plane of the attached benzene rings.

In the crystal structure (Fig. 2), the picrate anion interacts with the protonated cations through bifurcated N4—H1N4···O1A and N4—H1N4···O2A hydrogen bonds, forming R12(6) ring motifs. This type of hydrogen bonds was also observed in the crystal structure of chloropromazinium picrate (Yathirajan et al., 2007). There is an intramolecular O—H···O hydrogen bond in the picric acid molecule, which generates an S(6) ring motif. The crystal structure is further stabilized by π···π interaction between the benzene ring of the cation and anion [centroid-to-centroid distance = 3.5603 (9) Å] and several weak C—H···O hydrogen bonds (Table 1). A short O6A···N3B(-1+x, 3/2-y, -1/2+z) contact of 2.8301 (16) Å is also observed.

Related literature top

For the efficiency of the anticholinergic drug orphenadrine (systematic name N,N-dimethyl-2-[(2-methylphenyl)phenylmethoxy]ethanamine), see: Hunskaar & Donnel (1991). For related structures, see: Glaser et al. (1992); Yathirajan et al. (2007). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Orphenadrine hydrochloride (3.05 g, 0.01 mol) was dissolved in 25 ml of water and picric acid (2.4 g, 0.01 mol) was also dissolved in 25 ml of water. Both solutions were mixed and stirred in a beaker at room temperature for 1 h. The mixture was kept aside for 2 d at room temperature. The formed product was filtered and dried in vaccum desiccator over phosphorous pentoxide. The product was recrystallized from methanol by slow evaporation (m.p. 403-405 K).

Refinement top

Atoms H1N4 and H1O3 were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [C–H = 0.93–0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) network.
N,N-dimethyl-2-[(2-methylphenyl) phenylmethoxy]ethanaminium picrate picric acid top
Crystal data top
C18H24NO+·C6H2N3O7·C6H3N3O7F(000) = 1512
Mr = 727.60Dx = 1.537 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8774 reflections
a = 11.1914 (9) Åθ = 2.4–30.0°
b = 12.4481 (10) ŵ = 0.13 mm1
c = 22.6127 (19) ÅT = 100 K
β = 93.601 (1)°Block, yellow
V = 3144.0 (4) Å30.34 × 0.25 × 0.18 mm
Z = 4
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
9224 independent reflections
Radiation source: fine-focus sealed tube6851 reflections with I > 2s(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 30.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.959, Tmax = 0.978k = 1716
34841 measured reflectionsl = 3031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0621P)2 + 1.1401P]
where P = (Fo2 + 2Fc2)/3
9224 reflections(Δ/σ)max = 0.001
480 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C18H24NO+·C6H2N3O7·C6H3N3O7V = 3144.0 (4) Å3
Mr = 727.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1914 (9) ŵ = 0.13 mm1
b = 12.4481 (10) ÅT = 100 K
c = 22.6127 (19) Å0.34 × 0.25 × 0.18 mm
β = 93.601 (1)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
9224 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6851 reflections with I > 2s(I)
Tmin = 0.959, Tmax = 0.978Rint = 0.039
34841 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.56 e Å3
9224 reflectionsΔρmin = 0.47 e Å3
480 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.29799 (8)0.35411 (8)0.45233 (4)0.0182 (2)
O2A0.26460 (9)0.14380 (9)0.43358 (6)0.0318 (3)
O3A0.08488 (11)0.09425 (10)0.41005 (8)0.0455 (4)
O4A0.19368 (9)0.32322 (10)0.30733 (6)0.0324 (3)
O5A0.16667 (10)0.49561 (10)0.30775 (6)0.0312 (3)
O6A0.19194 (10)0.64682 (9)0.40080 (5)0.0255 (2)
O7A0.34962 (9)0.54552 (9)0.40303 (5)0.0236 (2)
N1A0.16227 (10)0.16434 (10)0.41499 (6)0.0193 (2)
N2A0.13373 (10)0.40319 (11)0.31998 (6)0.0229 (3)
N3A0.24039 (10)0.55773 (10)0.40000 (5)0.0177 (2)
C1A0.20748 (11)0.36151 (11)0.41721 (6)0.0149 (3)
C2A0.12853 (11)0.27347 (11)0.39928 (6)0.0156 (3)
C3A0.01861 (11)0.28696 (12)0.36858 (6)0.0179 (3)
H3AA0.03020.22800.35960.021*
C4A0.01768 (11)0.38852 (12)0.35144 (6)0.0180 (3)
C5A0.05516 (12)0.47732 (12)0.36265 (6)0.0177 (3)
H5AA0.03030.54530.35000.021*
C6A0.16441 (11)0.46326 (11)0.39269 (6)0.0156 (3)
O1B0.97430 (9)0.90711 (9)0.97661 (5)0.0211 (2)
O2B0.77967 (10)0.99530 (9)0.93846 (5)0.0260 (2)
O3B0.63236 (9)0.90050 (9)0.90035 (6)0.0278 (3)
O4B0.65060 (9)0.52065 (9)0.89499 (5)0.0262 (2)
O5B0.82135 (10)0.43835 (9)0.90729 (5)0.0248 (2)
O6B1.17444 (9)0.64338 (9)0.97116 (5)0.0243 (2)
O7B1.14073 (9)0.78048 (9)1.02692 (5)0.0217 (2)
N1B0.73404 (10)0.90814 (10)0.92275 (6)0.0201 (2)
N2B0.75924 (10)0.51912 (10)0.90699 (5)0.0181 (2)
N3B1.10999 (10)0.71454 (10)0.98881 (5)0.0174 (2)
C1B0.92362 (11)0.81618 (11)0.95787 (6)0.0153 (3)
C2B0.80552 (11)0.81061 (11)0.93132 (6)0.0164 (3)
C3B0.75193 (11)0.71467 (12)0.91434 (6)0.0168 (3)
H3BA0.67370.71290.89790.020*
C4B0.81729 (11)0.62166 (11)0.92236 (6)0.0159 (3)
C5B0.93580 (11)0.62156 (11)0.94473 (6)0.0161 (3)
H5BA0.97990.55820.94750.019*
C6B0.98593 (11)0.71820 (11)0.96275 (6)0.0153 (3)
O80.41316 (8)0.30752 (8)0.32088 (4)0.0186 (2)
N40.50481 (10)0.24548 (10)0.44887 (5)0.0170 (2)
C70.49369 (13)0.30347 (13)0.19733 (7)0.0230 (3)
H7A0.45060.24080.20310.028*
C80.58017 (14)0.30557 (16)0.15569 (7)0.0300 (4)
H8A0.59540.24410.13400.036*
C90.64370 (14)0.39915 (17)0.14640 (7)0.0341 (4)
H9A0.70090.40060.11830.041*
C100.62187 (14)0.48991 (17)0.17894 (8)0.0325 (4)
H10A0.66430.55270.17270.039*
C110.53631 (13)0.48776 (14)0.22113 (7)0.0247 (3)
H11A0.52250.54900.24320.030*
C120.47145 (12)0.39479 (12)0.23045 (6)0.0186 (3)
C130.38138 (11)0.39039 (12)0.27850 (6)0.0174 (3)
H13A0.38290.45960.29920.021*
C140.25466 (12)0.37030 (12)0.25284 (6)0.0187 (3)
C150.18191 (13)0.45666 (13)0.23244 (6)0.0217 (3)
C160.06643 (13)0.43435 (15)0.20804 (7)0.0263 (3)
H16A0.01790.49090.19440.032*
C170.02249 (13)0.33060 (16)0.20362 (7)0.0286 (4)
H17A0.05450.31780.18730.034*
C180.09432 (13)0.24604 (15)0.22372 (7)0.0262 (3)
H18A0.06570.17600.22090.031*
C190.20997 (13)0.26597 (13)0.24823 (7)0.0224 (3)
H19A0.25780.20880.26170.027*
C200.52997 (12)0.32655 (13)0.34831 (7)0.0230 (3)
H20A0.53100.39450.36940.028*
H20B0.58810.33040.31830.028*
C210.56231 (12)0.23669 (12)0.39088 (6)0.0195 (3)
H21A0.53890.16900.37230.023*
H21B0.64860.23550.39850.023*
C220.51695 (13)0.14244 (14)0.48196 (7)0.0270 (3)
H22A0.48170.08550.45820.040*
H22B0.47680.14800.51810.040*
H22C0.60020.12730.49100.040*
C230.55619 (13)0.33515 (14)0.48613 (8)0.0274 (3)
H23A0.51690.33810.52260.041*
H23B0.54450.40180.46530.041*
H23C0.64030.32320.49450.041*
C240.22435 (15)0.57185 (14)0.23662 (8)0.0297 (4)
H24A0.16010.61890.22350.045*
H24B0.29040.58150.21210.045*
H24C0.24950.58820.27700.045*
H1N40.4270 (16)0.2605 (15)0.4420 (8)0.022 (4)*
H1OB0.914 (3)0.964 (2)0.9690 (13)0.077 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0146 (4)0.0210 (5)0.0186 (5)0.0008 (4)0.0020 (4)0.0019 (4)
O2A0.0215 (5)0.0204 (6)0.0521 (8)0.0028 (4)0.0079 (5)0.0023 (5)
O3A0.0318 (6)0.0223 (7)0.0799 (11)0.0109 (5)0.0165 (7)0.0081 (7)
O4A0.0176 (5)0.0352 (7)0.0434 (7)0.0039 (5)0.0069 (5)0.0041 (6)
O5A0.0226 (5)0.0316 (7)0.0383 (7)0.0064 (5)0.0072 (5)0.0054 (5)
O6A0.0285 (5)0.0156 (5)0.0331 (6)0.0009 (4)0.0071 (5)0.0015 (4)
O7A0.0166 (4)0.0241 (6)0.0300 (6)0.0042 (4)0.0002 (4)0.0033 (5)
N1A0.0167 (5)0.0174 (6)0.0238 (6)0.0011 (4)0.0005 (4)0.0002 (5)
N2A0.0144 (5)0.0309 (7)0.0231 (6)0.0014 (5)0.0012 (4)0.0009 (5)
N3A0.0196 (5)0.0179 (6)0.0157 (6)0.0017 (4)0.0026 (4)0.0022 (5)
C1A0.0130 (5)0.0173 (7)0.0147 (6)0.0000 (5)0.0034 (4)0.0022 (5)
C2A0.0144 (5)0.0154 (7)0.0171 (6)0.0007 (5)0.0021 (5)0.0002 (5)
C3A0.0137 (5)0.0208 (7)0.0194 (7)0.0023 (5)0.0028 (5)0.0026 (5)
C4A0.0116 (5)0.0240 (7)0.0182 (7)0.0005 (5)0.0012 (5)0.0004 (5)
C5A0.0171 (6)0.0193 (7)0.0169 (6)0.0033 (5)0.0024 (5)0.0010 (5)
C6A0.0157 (5)0.0157 (6)0.0158 (6)0.0019 (5)0.0033 (5)0.0019 (5)
O1B0.0189 (4)0.0162 (5)0.0282 (6)0.0028 (4)0.0020 (4)0.0043 (4)
O2B0.0260 (5)0.0148 (5)0.0375 (7)0.0002 (4)0.0045 (5)0.0014 (5)
O3B0.0183 (5)0.0240 (6)0.0407 (7)0.0041 (4)0.0022 (4)0.0031 (5)
O4B0.0192 (5)0.0237 (6)0.0346 (6)0.0067 (4)0.0071 (4)0.0016 (5)
O5B0.0277 (5)0.0157 (5)0.0304 (6)0.0002 (4)0.0020 (4)0.0001 (4)
O6B0.0175 (4)0.0266 (6)0.0289 (6)0.0042 (4)0.0022 (4)0.0047 (5)
O7B0.0193 (4)0.0233 (6)0.0221 (5)0.0036 (4)0.0025 (4)0.0050 (4)
N1B0.0188 (5)0.0164 (6)0.0254 (6)0.0012 (4)0.0046 (5)0.0016 (5)
N2B0.0203 (5)0.0157 (6)0.0179 (6)0.0031 (4)0.0013 (4)0.0007 (5)
N3B0.0149 (5)0.0198 (6)0.0174 (6)0.0019 (4)0.0011 (4)0.0002 (5)
C1B0.0155 (5)0.0156 (6)0.0153 (6)0.0026 (5)0.0043 (5)0.0011 (5)
C2B0.0159 (5)0.0153 (6)0.0183 (6)0.0015 (5)0.0034 (5)0.0005 (5)
C3B0.0147 (5)0.0190 (7)0.0168 (6)0.0020 (5)0.0015 (5)0.0010 (5)
C4B0.0181 (6)0.0146 (6)0.0149 (6)0.0033 (5)0.0010 (5)0.0005 (5)
C5B0.0171 (6)0.0161 (6)0.0151 (6)0.0001 (5)0.0014 (5)0.0003 (5)
C6B0.0126 (5)0.0172 (6)0.0160 (6)0.0015 (5)0.0010 (4)0.0002 (5)
O80.0160 (4)0.0225 (5)0.0170 (5)0.0011 (4)0.0023 (4)0.0033 (4)
N40.0119 (5)0.0211 (6)0.0175 (6)0.0006 (4)0.0019 (4)0.0009 (5)
C70.0231 (6)0.0270 (8)0.0187 (7)0.0070 (6)0.0006 (5)0.0007 (6)
C80.0263 (7)0.0432 (10)0.0202 (7)0.0137 (7)0.0004 (6)0.0055 (7)
C90.0198 (6)0.0622 (13)0.0205 (8)0.0027 (7)0.0033 (6)0.0003 (8)
C100.0247 (7)0.0484 (11)0.0242 (8)0.0097 (7)0.0017 (6)0.0040 (8)
C110.0236 (6)0.0303 (8)0.0200 (7)0.0031 (6)0.0009 (6)0.0009 (6)
C120.0161 (5)0.0246 (7)0.0149 (6)0.0044 (5)0.0009 (5)0.0012 (5)
C130.0177 (6)0.0191 (7)0.0152 (6)0.0031 (5)0.0007 (5)0.0008 (5)
C140.0170 (6)0.0251 (7)0.0140 (6)0.0042 (5)0.0024 (5)0.0003 (5)
C150.0211 (6)0.0290 (8)0.0151 (6)0.0075 (6)0.0031 (5)0.0019 (6)
C160.0199 (6)0.0407 (10)0.0184 (7)0.0111 (6)0.0018 (5)0.0033 (6)
C170.0172 (6)0.0504 (11)0.0180 (7)0.0016 (6)0.0001 (5)0.0016 (7)
C180.0230 (7)0.0350 (9)0.0207 (7)0.0049 (6)0.0019 (6)0.0037 (7)
C190.0217 (6)0.0259 (8)0.0195 (7)0.0027 (6)0.0006 (5)0.0008 (6)
C200.0170 (6)0.0291 (8)0.0224 (7)0.0016 (6)0.0038 (5)0.0061 (6)
C210.0173 (6)0.0238 (7)0.0172 (7)0.0054 (5)0.0001 (5)0.0000 (6)
C220.0224 (7)0.0326 (9)0.0259 (8)0.0047 (6)0.0007 (6)0.0110 (7)
C230.0172 (6)0.0350 (9)0.0294 (8)0.0003 (6)0.0026 (6)0.0137 (7)
C240.0345 (8)0.0284 (9)0.0261 (8)0.0094 (7)0.0003 (6)0.0032 (7)
Geometric parameters (Å, º) top
O1A—C1A1.2507 (16)N4—C211.5004 (18)
O2A—N1A1.2219 (15)N4—H1N40.894 (18)
O3A—N1A1.2296 (16)C7—C121.392 (2)
O4A—N2A1.2243 (18)C7—C81.392 (2)
O5A—N2A1.2342 (18)C7—H7A0.93
O6A—N3A1.2351 (16)C8—C91.388 (3)
O7A—N3A1.2295 (15)C8—H8A0.93
N1A—C2A1.4482 (18)C9—C101.378 (3)
N2A—C4A1.4527 (17)C9—H9A0.93
N3A—C6A1.4545 (18)C10—C111.394 (2)
C1A—C2A1.4495 (19)C10—H10A0.93
C1A—C6A1.4528 (19)C11—C121.389 (2)
C2A—C3A1.3842 (18)C11—H11A0.93
C3A—C4A1.376 (2)C12—C131.5288 (19)
C3A—H3AA0.93C13—C141.5188 (19)
C4A—C5A1.387 (2)C13—H13A0.98
C5A—C6A1.3720 (19)C14—C191.393 (2)
C5A—H5AA0.93C14—C151.409 (2)
O1B—C1B1.3237 (17)C15—C161.401 (2)
O1B—H1OB0.99 (3)C15—C241.512 (2)
O2B—N1B1.2416 (17)C16—C171.383 (3)
O3B—N1B1.2200 (16)C16—H16A0.93
O4B—N2B1.2290 (15)C17—C181.384 (2)
O5B—N2B1.2222 (16)C17—H17A0.93
O6B—N3B1.2249 (15)C18—C191.398 (2)
O7B—N3B1.2238 (16)C18—H18A0.93
N1B—C2B1.4601 (18)C19—H19A0.93
N2B—C4B1.4642 (18)C20—C211.505 (2)
N3B—C6B1.4745 (16)C20—H20A0.97
C1B—C6B1.4059 (19)C20—H20B0.97
C1B—C2B1.4186 (18)C21—H21A0.97
C2B—C3B1.380 (2)C21—H21B0.97
C3B—C4B1.3754 (19)C22—H22A0.96
C3B—H3BA0.93C22—H22B0.96
C4B—C5B1.3895 (18)C22—H22C0.96
C5B—C6B1.3782 (19)C23—H23A0.96
C5B—H5BA0.93C23—H23B0.96
O8—C201.4311 (16)C23—H23C0.96
O8—C131.4375 (17)C24—H24A0.96
N4—C221.487 (2)C24—H24B0.96
N4—C231.4919 (19)C24—H24C0.96
O2A—N1A—O3A121.49 (13)C7—C8—H8A119.9
O2A—N1A—C2A120.33 (12)C10—C9—C8119.84 (15)
O3A—N1A—C2A118.17 (12)C10—C9—H9A120.1
O4A—N2A—O5A123.64 (12)C8—C9—H9A120.1
O4A—N2A—C4A118.18 (13)C9—C10—C11120.14 (17)
O5A—N2A—C4A118.18 (13)C9—C10—H10A119.9
O7A—N3A—O6A123.09 (12)C11—C10—H10A119.9
O7A—N3A—C6A118.59 (12)C12—C11—C10120.51 (16)
O6A—N3A—C6A118.27 (11)C12—C11—H11A119.7
O1A—C1A—C2A125.25 (13)C10—C11—H11A119.7
O1A—C1A—C6A122.86 (12)C11—C12—C7119.07 (13)
C2A—C1A—C6A111.75 (11)C11—C12—C13120.78 (13)
C3A—C2A—N1A116.53 (12)C7—C12—C13120.08 (13)
C3A—C2A—C1A123.74 (13)O8—C13—C14108.81 (11)
N1A—C2A—C1A119.71 (11)O8—C13—C12110.66 (11)
C4A—C3A—C2A119.34 (13)C14—C13—C12112.08 (11)
C4A—C3A—H3AA120.3O8—C13—H13A108.4
C2A—C3A—H3AA120.3C14—C13—H13A108.4
C3A—C4A—C5A121.39 (12)C12—C13—H13A108.4
C3A—C4A—N2A119.50 (13)C19—C14—C15119.31 (13)
C5A—C4A—N2A119.10 (13)C19—C14—C13120.28 (13)
C6A—C5A—C4A118.94 (13)C15—C14—C13120.40 (13)
C6A—C5A—H5AA120.5C16—C15—C14118.53 (15)
C4A—C5A—H5AA120.5C16—C15—C24119.42 (14)
C5A—C6A—C1A124.35 (12)C14—C15—C24122.04 (13)
C5A—C6A—N3A116.71 (12)C17—C16—C15121.91 (15)
C1A—C6A—N3A118.94 (11)C17—C16—H16A119.0
C1B—O1B—H1OB106.4 (17)C15—C16—H16A119.0
O3B—N1B—O2B122.90 (12)C16—C17—C18119.33 (14)
O3B—N1B—C2B118.64 (12)C16—C17—H17A120.3
O2B—N1B—C2B118.47 (12)C18—C17—H17A120.3
O5B—N2B—O4B124.64 (12)C17—C18—C19119.97 (16)
O5B—N2B—C4B118.17 (11)C17—C18—H18A120.0
O4B—N2B—C4B117.19 (12)C19—C18—H18A120.0
O7B—N3B—O6B124.70 (12)C14—C19—C18120.94 (15)
O7B—N3B—C6B118.47 (11)C14—C19—H19A119.5
O6B—N3B—C6B116.81 (12)C18—C19—H19A119.5
O1B—C1B—C6B121.08 (12)O8—C20—C21109.30 (12)
O1B—C1B—C2B123.12 (12)O8—C20—H20A109.8
C6B—C1B—C2B115.80 (12)C21—C20—H20A109.8
C3B—C2B—C1B122.49 (13)O8—C20—H20B109.8
C3B—C2B—N1B117.24 (12)C21—C20—H20B109.8
C1B—C2B—N1B120.24 (12)H20A—C20—H20B108.3
C4B—C3B—C2B118.26 (12)N4—C21—C20113.93 (12)
C4B—C3B—H3BA120.9N4—C21—H21A108.8
C2B—C3B—H3BA120.9C20—C21—H21A108.8
C3B—C4B—C5B122.44 (13)N4—C21—H21B108.8
C3B—C4B—N2B118.56 (12)C20—C21—H21B108.8
C5B—C4B—N2B119.00 (12)H21A—C21—H21B107.7
C6B—C5B—C4B117.94 (13)N4—C22—H22A109.5
C6B—C5B—H5BA121.0N4—C22—H22B109.5
C4B—C5B—H5BA121.0H22A—C22—H22B109.5
C5B—C6B—C1B122.91 (12)N4—C22—H22C109.5
C5B—C6B—N3B116.54 (12)H22A—C22—H22C109.5
C1B—C6B—N3B120.54 (12)H22B—C22—H22C109.5
C20—O8—C13110.56 (11)N4—C23—H23A109.5
C22—N4—C23109.96 (12)N4—C23—H23B109.5
C22—N4—C21110.26 (12)H23A—C23—H23B109.5
C23—N4—C21112.14 (12)N4—C23—H23C109.5
C22—N4—H1N4108.9 (12)H23A—C23—H23C109.5
C23—N4—H1N4106.1 (12)H23B—C23—H23C109.5
C21—N4—H1N4109.3 (12)C15—C24—H24A109.5
C12—C7—C8120.25 (16)C15—C24—H24B109.5
C12—C7—H7A119.9H24A—C24—H24B109.5
C8—C7—H7A119.9C15—C24—H24C109.5
C9—C8—C7120.18 (16)H24A—C24—H24C109.5
C9—C8—H8A119.9H24B—C24—H24C109.5
O2A—N1A—C2A—C3A168.43 (13)N2B—C4B—C5B—C6B175.54 (12)
O3A—N1A—C2A—C3A12.8 (2)C4B—C5B—C6B—C1B1.9 (2)
O2A—N1A—C2A—C1A13.2 (2)C4B—C5B—C6B—N3B177.26 (12)
O3A—N1A—C2A—C1A165.56 (14)O1B—C1B—C6B—C5B178.87 (13)
O1A—C1A—C2A—C3A168.56 (13)C2B—C1B—C6B—C5B1.84 (19)
C6A—C1A—C2A—C3A7.27 (18)O1B—C1B—C6B—N3B0.22 (19)
O1A—C1A—C2A—N1A9.7 (2)C2B—C1B—C6B—N3B179.08 (11)
C6A—C1A—C2A—N1A174.46 (11)O7B—N3B—C6B—C5B148.70 (13)
N1A—C2A—C3A—C4A178.86 (12)O6B—N3B—C6B—C5B29.92 (17)
C1A—C2A—C3A—C4A2.8 (2)O7B—N3B—C6B—C1B30.44 (18)
C2A—C3A—C4A—C5A2.0 (2)O6B—N3B—C6B—C1B150.94 (13)
C2A—C3A—C4A—N2A179.11 (12)C12—C7—C8—C90.8 (2)
O4A—N2A—C4A—C3A3.2 (2)C7—C8—C9—C100.6 (2)
O5A—N2A—C4A—C3A176.42 (13)C8—C9—C10—C110.1 (3)
O4A—N2A—C4A—C5A175.66 (13)C9—C10—C11—C120.6 (2)
O5A—N2A—C4A—C5A4.7 (2)C10—C11—C12—C70.4 (2)
C3A—C4A—C5A—C6A1.5 (2)C10—C11—C12—C13177.33 (14)
N2A—C4A—C5A—C6A179.62 (12)C8—C7—C12—C110.3 (2)
C4A—C5A—C6A—C1A3.9 (2)C8—C7—C12—C13176.63 (13)
C4A—C5A—C6A—N3A176.24 (12)C20—O8—C13—C14177.11 (11)
O1A—C1A—C6A—C5A168.09 (13)C20—O8—C13—C1259.33 (15)
C2A—C1A—C6A—C5A7.87 (18)C11—C12—C13—O8120.56 (14)
O1A—C1A—C6A—N3A11.76 (19)C7—C12—C13—O856.29 (17)
C2A—C1A—C6A—N3A172.28 (11)C11—C12—C13—C14117.78 (15)
O7A—N3A—C6A—C5A150.15 (13)C7—C12—C13—C1465.37 (17)
O6A—N3A—C6A—C5A27.39 (18)O8—C13—C14—C1929.84 (17)
O7A—N3A—C6A—C1A29.99 (18)C12—C13—C14—C1992.88 (16)
O6A—N3A—C6A—C1A152.48 (12)O8—C13—C14—C15151.37 (13)
O1B—C1B—C2B—C3B177.10 (13)C12—C13—C14—C1585.91 (16)
C6B—C1B—C2B—C3B3.62 (19)C19—C14—C15—C160.0 (2)
O1B—C1B—C2B—N1B0.8 (2)C13—C14—C15—C16178.78 (12)
C6B—C1B—C2B—N1B178.46 (12)C19—C14—C15—C24179.42 (14)
O3B—N1B—C2B—C3B1.22 (19)C13—C14—C15—C241.8 (2)
O2B—N1B—C2B—C3B178.99 (13)C14—C15—C16—C170.1 (2)
O3B—N1B—C2B—C1B179.25 (13)C24—C15—C16—C17179.37 (14)
O2B—N1B—C2B—C1B0.97 (19)C15—C16—C17—C180.1 (2)
C1B—C2B—C3B—C4B1.6 (2)C16—C17—C18—C190.1 (2)
N1B—C2B—C3B—C4B179.57 (12)C15—C14—C19—C180.0 (2)
C2B—C3B—C4B—C5B2.4 (2)C13—C14—C19—C18178.82 (13)
C2B—C3B—C4B—N2B177.23 (12)C17—C18—C19—C140.0 (2)
O5B—N2B—C4B—C3B171.21 (13)C13—O8—C20—C21178.14 (12)
O4B—N2B—C4B—C3B9.23 (19)C22—N4—C21—C20166.36 (12)
O5B—N2B—C4B—C5B9.11 (19)C23—N4—C21—C2070.75 (15)
O4B—N2B—C4B—C5B170.45 (12)O8—C20—C21—N478.40 (16)
C3B—C4B—C5B—C6B4.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···O1A0.90 (2)1.88 (2)2.6860 (15)149 (2)
N4—H1N4···O2A0.90 (2)2.32 (2)2.9718 (16)129 (2)
O1B—H1OB···O2B0.99 (3)1.66 (3)2.5412 (15)146 (3)
C5B—H5BA···O3Ai0.932.413.2833 (19)156
C9—H9A···O6Bii0.932.593.4884 (19)163
C20—H20B···O4Aiii0.972.473.2841 (17)141
C23—H23C···O7Biv0.962.583.4901 (18)158
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H24NO+·C6H2N3O7·C6H3N3O7
Mr727.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.1914 (9), 12.4481 (10), 22.6127 (19)
β (°) 93.601 (1)
V3)3144.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.34 × 0.25 × 0.18
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.959, 0.978
No. of measured, independent and
observed [I > 2s(I)] reflections
34841, 9224, 6851
Rint0.039
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.02
No. of reflections9224
No. of parameters480
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.47

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···O1A0.90 (2)1.88 (2)2.6860 (15)149 (2)
N4—H1N4···O2A0.90 (2)2.32 (2)2.9718 (16)129 (2)
O1B—H1OB···O2B0.99 (3)1.66 (3)2.5412 (15)146 (3)
C5B—H5BA···O3Ai0.932.413.2833 (19)156
C9—H9A···O6Bii0.932.593.4884 (19)163
C20—H20B···O4Aiii0.972.473.2841 (17)141
C23—H23C···O7Biv0.962.583.4901 (18)158
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x+2, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HSY thanks the University of Mysore for research facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGlaser, R., Donnel, D. & Maartmann-Moe, K. (1992). J. Pharm. Sci. 81, 858–862.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHunskaar, S. & Donnel, D. (1991). J. Int. Med. Res. 19, 71–87.  PubMed CAS Web of Science Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding, A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, o1795–o1797.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o682-o683
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds