Experimental
Crystal data
C7H6ClNO2 Mr = 171.58 Monoclinic, P 21 /c a = 12.1219 (10) Å b = 4.5104 (4) Å c = 15.1219 (11) Å β = 112.709 (2)° V = 762.69 (11) Å3 Z = 4 Mo Kα radiation μ = 0.44 mm−1 T = 296 K 0.34 × 0.18 × 0.11 mm
|
Data collection
Bruker Kappa APEXII CCD area-detector diffractometer 8475 measured reflections 1903 independent reflections 1350 reflections with I > 2σ(I) Rint = 0.023
|
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | C2—H2⋯O1i | 0.93 | 2.67 | 3.583 (3) | 166 | C6—H6⋯O2ii | 0.93 | 2.67 | 3.374 (3) | 133 | Symmetry codes: (i) -x+2, -y+3, -z+1; (ii) . | |
Data collection: APEX2 (Bruker, 2007
); cell refinement: SAINT (Bruker, 2007
); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008
); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008
); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997
); software used to prepare material for publication: WinGX (Farrugia, 1999
) and PLATON (Spek, 2009
).
Supporting information
1-(Chloromethyl)-3-nitrobenzene (m-nitrobenzyl chloride) was prepared from the m-nitrobenzyl alcohol, 5 g; being refluxed with 25 ml of concentrated hydrochloric acid on a boiling water bath for 1.5 h. The ether was washed with water and sodium carbonate and dried with sodium sulfate. Evaporation of ether yielded an oily residue which crystallized on cooling. A 70 per cent yield of the crude compound was obtained. Recrystallization from petroleum ether gave a product melting at 317-319 K (Livermore and Sealock, 1947). m-Nitrobenzyl alcohol was purchased from Sigma Aldrich while all other chemicals involved were obtained from Merk, Germany.
H atoms were geometrically positioned (C—H = 0.93-0.97 Å), and treated using a riding model, with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
1-Chloromethyl-3-nitrobenzene
top Crystal data top C7H6ClNO2 | F(000) = 352 |
Mr = 171.58 | Dx = 1.494 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2610 reflections |
a = 12.1219 (10) Å | θ = 2.8–26.9° |
b = 4.5104 (4) Å | µ = 0.44 mm−1 |
c = 15.1219 (11) Å | T = 296 K |
β = 112.709 (2)° | Slab, pale yellow |
V = 762.69 (11) Å3 | 0.34 × 0.18 × 0.11 mm |
Z = 4 | |
Data collection top Bruker Kappa APEXII CCD area-detector diffractometer | 1350 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.023 |
Graphite monochromator | θmax = 28.4°, θmin = 1.8° |
ϕ and ω scans | h = −16→16 |
8475 measured reflections | k = −6→5 |
1903 independent reflections | l = −19→20 |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0443P)2 + 0.2569P] where P = (Fo2 + 2Fc2)/3 |
1903 reflections | (Δ/σ)max < 0.001 |
100 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Crystal data top C7H6ClNO2 | V = 762.69 (11) Å3 |
Mr = 171.58 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.1219 (10) Å | µ = 0.44 mm−1 |
b = 4.5104 (4) Å | T = 296 K |
c = 15.1219 (11) Å | 0.34 × 0.18 × 0.11 mm |
β = 112.709 (2)° | |
Data collection top Bruker Kappa APEXII CCD area-detector diffractometer | 1350 reflections with I > 2σ(I) |
8475 measured reflections | Rint = 0.023 |
1903 independent reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.25 e Å−3 |
1903 reflections | Δρmin = −0.26 e Å−3 |
100 parameters | |
Special details top Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cl1 | 0.46056 (5) | 0.88735 (16) | 0.10489 (5) | 0.0856 (2) | |
O1 | 0.91285 (17) | 1.2499 (5) | 0.51307 (11) | 0.0999 (7) | |
O2 | 0.78454 (18) | 0.9074 (5) | 0.49378 (12) | 0.1009 (8) | |
N1 | 0.83972 (16) | 1.0739 (5) | 0.46346 (11) | 0.0666 (6) | |
C1 | 0.86599 (17) | 1.2052 (5) | 0.23036 (13) | 0.0593 (6) | |
C2 | 0.88908 (16) | 1.2205 (5) | 0.32703 (13) | 0.0559 (6) | |
C3 | 0.81640 (15) | 1.0604 (4) | 0.36006 (11) | 0.0499 (5) | |
C4 | 0.72367 (16) | 0.8898 (4) | 0.30166 (13) | 0.0540 (6) | |
C5 | 0.70089 (15) | 0.8763 (4) | 0.20455 (13) | 0.0526 (6) | |
C6 | 0.77357 (17) | 1.0351 (4) | 0.17013 (12) | 0.0559 (6) | |
C7 | 0.60014 (19) | 0.6926 (5) | 0.13890 (17) | 0.0738 (8) | |
H1 | 0.91350 | 1.31120 | 0.20570 | 0.0710* | |
H2 | 0.95160 | 1.33500 | 0.36830 | 0.0670* | |
H4 | 0.67650 | 0.78420 | 0.32670 | 0.0650* | |
H6 | 0.75960 | 1.02650 | 0.10520 | 0.0670* | |
H7A | 0.59560 | 0.50880 | 0.17070 | 0.0890* | |
H7B | 0.61490 | 0.64360 | 0.08200 | 0.0890* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cl1 | 0.0538 (3) | 0.1001 (5) | 0.0947 (4) | −0.0057 (3) | 0.0195 (3) | −0.0148 (3) |
O1 | 0.1089 (13) | 0.1307 (16) | 0.0585 (9) | −0.0134 (13) | 0.0306 (9) | −0.0266 (10) |
O2 | 0.1138 (14) | 0.1320 (17) | 0.0669 (10) | 0.0001 (12) | 0.0459 (10) | 0.0313 (10) |
N1 | 0.0684 (10) | 0.0841 (13) | 0.0505 (9) | 0.0193 (10) | 0.0265 (8) | 0.0092 (9) |
C1 | 0.0587 (10) | 0.0689 (12) | 0.0572 (10) | −0.0008 (9) | 0.0300 (9) | 0.0060 (9) |
C2 | 0.0500 (9) | 0.0607 (11) | 0.0548 (10) | 0.0006 (9) | 0.0179 (8) | −0.0025 (9) |
C3 | 0.0518 (9) | 0.0558 (11) | 0.0436 (8) | 0.0127 (8) | 0.0200 (7) | 0.0054 (7) |
C4 | 0.0546 (9) | 0.0498 (10) | 0.0624 (10) | 0.0059 (8) | 0.0278 (8) | 0.0097 (8) |
C5 | 0.0517 (9) | 0.0445 (10) | 0.0583 (10) | 0.0084 (8) | 0.0175 (8) | −0.0027 (8) |
C6 | 0.0593 (10) | 0.0640 (12) | 0.0471 (9) | 0.0104 (9) | 0.0236 (8) | 0.0004 (8) |
C7 | 0.0683 (13) | 0.0587 (12) | 0.0863 (15) | 0.0003 (10) | 0.0210 (11) | −0.0148 (11) |
Geometric parameters (Å, º) top Cl1—C7 | 1.796 (3) | C5—C6 | 1.384 (3) |
O1—N1 | 1.211 (3) | C5—C7 | 1.493 (3) |
O2—N1 | 1.208 (3) | C1—H1 | 0.9300 |
N1—C3 | 1.479 (2) | C2—H2 | 0.9300 |
C1—C2 | 1.380 (3) | C4—H4 | 0.9300 |
C1—C6 | 1.373 (3) | C6—H6 | 0.9300 |
C2—C3 | 1.374 (3) | C7—H7A | 0.9700 |
C3—C4 | 1.367 (3) | C7—H7B | 0.9700 |
C4—C5 | 1.387 (3) | | |
| | | |
Cl1···H4i | 2.8900 | C6···C7vi | 3.560 (3) |
O1···N1ii | 3.230 (3) | C6···O2viii | 3.374 (3) |
O1···O1ii | 3.217 (3) | C7···C6vii | 3.560 (3) |
O1···O1iii | 3.218 (3) | C1···H1ix | 3.0400 |
O1···C2ii | 3.410 (3) | C5···H7Avi | 3.0900 |
O1···C3ii | 3.399 (3) | C6···H7Avi | 3.0400 |
O2···C6iv | 3.374 (3) | H1···C1x | 3.0400 |
O1···H2 | 2.4400 | H2···O1 | 2.4400 |
O1···H6v | 2.9000 | H2···O1iii | 2.6700 |
O1···H2iii | 2.6700 | H4···O2 | 2.4200 |
O2···H4 | 2.4200 | H4···H7A | 2.5100 |
O2···H6iv | 2.6700 | H4···Cl1xi | 2.8900 |
O2···H7Biv | 2.8600 | H6···H7B | 2.3900 |
N1···O1ii | 3.230 (3) | H6···O1xii | 2.9000 |
C1···C5vi | 3.566 (3) | H6···O2viii | 2.6700 |
C2···C4vi | 3.562 (3) | H7A···C5vii | 3.0900 |
C2···O1ii | 3.410 (3) | H7A···C6vii | 3.0400 |
C3···O1ii | 3.399 (3) | H7A···H4 | 2.5100 |
C4···C2vii | 3.562 (3) | H7B···H6 | 2.3900 |
C5···C1vii | 3.566 (3) | H7B···O2viii | 2.8600 |
| | | |
O1—N1—O2 | 123.57 (18) | C2—C1—H1 | 120.00 |
O1—N1—C3 | 118.53 (19) | C6—C1—H1 | 120.00 |
O2—N1—C3 | 117.90 (18) | C1—C2—H2 | 121.00 |
C2—C1—C6 | 120.7 (2) | C3—C2—H2 | 121.00 |
C1—C2—C3 | 117.56 (18) | C3—C4—H4 | 120.00 |
N1—C3—C2 | 118.37 (17) | C5—C4—H4 | 120.00 |
N1—C3—C4 | 118.69 (17) | C1—C6—H6 | 120.00 |
C2—C3—C4 | 122.94 (16) | C5—C6—H6 | 120.00 |
C3—C4—C5 | 119.12 (18) | Cl1—C7—H7A | 109.00 |
C4—C5—C6 | 118.70 (17) | Cl1—C7—H7B | 109.00 |
C4—C5—C7 | 120.40 (18) | C5—C7—H7A | 109.00 |
C6—C5—C7 | 120.90 (17) | C5—C7—H7B | 109.00 |
C1—C6—C5 | 120.98 (17) | H7A—C7—H7B | 108.00 |
Cl1—C7—C5 | 110.94 (15) | | |
| | | |
O1—N1—C3—C2 | 8.1 (3) | N1—C3—C4—C5 | 179.84 (18) |
O1—N1—C3—C4 | −171.9 (2) | C2—C3—C4—C5 | −0.1 (3) |
O2—N1—C3—C2 | −171.8 (2) | C3—C4—C5—C6 | 0.4 (3) |
O2—N1—C3—C4 | 8.3 (3) | C3—C4—C5—C7 | −179.86 (18) |
C6—C1—C2—C3 | −0.1 (3) | C4—C5—C6—C1 | −0.5 (3) |
C2—C1—C6—C5 | 0.4 (3) | C7—C5—C6—C1 | 179.7 (2) |
C1—C2—C3—N1 | 180.0 (2) | C4—C5—C7—Cl1 | 81.5 (2) |
C1—C2—C3—C4 | −0.1 (3) | C6—C5—C7—Cl1 | −98.7 (2) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+2, −y+2, −z+1; (iii) −x+2, −y+3, −z+1; (iv) x, −y+3/2, z+1/2; (v) x, −y+5/2, z+1/2; (vi) x, y+1, z; (vii) x, y−1, z; (viii) x, −y+3/2, z−1/2; (ix) −x+2, y−1/2, −z+1/2; (x) −x+2, y+1/2, −z+1/2; (xi) −x+1, y−1/2, −z+1/2; (xii) x, −y+5/2, z−1/2. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1iii | 0.93 | 2.67 | 3.583 (3) | 166 |
C6—H6···O2viii | 0.93 | 2.67 | 3.374 (3) | 133 |
Symmetry codes: (iii) −x+2, −y+3, −z+1; (viii) x, −y+3/2, z−1/2. |
Experimental details
Crystal data |
Chemical formula | C7H6ClNO2 |
Mr | 171.58 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 12.1219 (10), 4.5104 (4), 15.1219 (11) |
β (°) | 112.709 (2) |
V (Å3) | 762.69 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.44 |
Crystal size (mm) | 0.34 × 0.18 × 0.11 |
|
Data collection |
Diffractometer | Bruker Kappa APEXII CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8475, 1903, 1350 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.670 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.116, 1.03 |
No. of reflections | 1903 |
No. of parameters | 100 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.26 |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.93 | 2.67 | 3.583 (3) | 166.0 |
C6—H6···O2ii | 0.93 | 2.67 | 3.374 (3) | 133.0 |
Symmetry codes: (i) −x+2, −y+3, −z+1; (ii) x, −y+3/2, z−1/2. |
Acknowledgements
The authors are grateful to the Higher Education Commission of Pakistan for financial support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Livermore, A. H. & Sealock, R. R. (1947). J. Biol. Chem. 167, 699–704. CAS PubMed Web of Science Google Scholar
Moreno, S. N. J., Schreiber, J. & Mason, R. P. (1986). J. Biol. Chem. 261, 7811–7815. CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open

access
The irreversible binding of the reductive intermediates of nitroaromatic compounds to protein and DNA is thought to be responsible for the carcinogenicity and mutagenicity of this class of compounds. Several studies revealed that some nitro radical metabolites with special features are expected to decompose to form neutral carbon-centered free radicals with not net reduction of the nitro group occuring. The radicals anions of p-and o-nitrobenzyl chloride are known to expel chloride to form the corresponding carbon-centered nitrobenzyl radicals with rate constants of 1 × 104 and 4 × 103 s-1. Such species are highly reactive and could account for the unusual cytotoxicity of these nitrocompounds (Moreno et al., 1986). This structural report on 1-(chloromethyl)-3-nitrobenzene (m-nitrobenzyl chloride) might be helpful to carry out such studies on these nitroaromatic compounds in future.
The molecule of the title compound has normal bond lengths (Allen et al., 1987). The benzene ring (C1-C6) forms dihedral angles of 8.2 (3) and 67.55 (12)°, with the plane of the nitro group (N1/O1/O2) and with the direction of the chloromethyl group (C7/Cl1), respectively.
In the crystal structure, there is no classic hydrogen bonds. Weak intermolecular C—H···O interactions (Table 1) link molecules into corrugated sheets parallel to bc plane.