organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Chloro­meth­yl-3-nitro­benzene

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 4 February 2010; accepted 8 February 2010; online 13 February 2010)

In the title mol­ecule, C7H6ClNO2, the plane of the nitro group and the direction of the chloro­methyl group are twisted away from the benzene ring, forming dihedral angles of 8.2 (3) and 67.55 (12)°, respectively. In the crystal structure, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into corrugated sheets parallel to the bc plane.

Related literature

For the characteristics of nitro­aromatic compounds, see: Moreno et al. (1986[Moreno, S. N. J., Schreiber, J. & Mason, R. P. (1986). J. Biol. Chem. 261, 7811-7815.]). For details of the synthesis, see: Livermore & Sealock (1947[Livermore, A. H. & Sealock, R. R. (1947). J. Biol. Chem. 167, 699-704.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6ClNO2

  • Mr = 171.58

  • Monoclinic, P 21 /c

  • a = 12.1219 (10) Å

  • b = 4.5104 (4) Å

  • c = 15.1219 (11) Å

  • β = 112.709 (2)°

  • V = 762.69 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 296 K

  • 0.34 × 0.18 × 0.11 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • 8475 measured reflections

  • 1903 independent reflections

  • 1350 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.03

  • 1903 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.67 3.583 (3) 166
C6—H6⋯O2ii 0.93 2.67 3.374 (3) 133
Symmetry codes: (i) -x+2, -y+3, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The irreversible binding of the reductive intermediates of nitroaromatic compounds to protein and DNA is thought to be responsible for the carcinogenicity and mutagenicity of this class of compounds. Several studies revealed that some nitro radical metabolites with special features are expected to decompose to form neutral carbon-centered free radicals with not net reduction of the nitro group occuring. The radicals anions of p-and o-nitrobenzyl chloride are known to expel chloride to form the corresponding carbon-centered nitrobenzyl radicals with rate constants of 1 × 104 and 4 × 103 s-1. Such species are highly reactive and could account for the unusual cytotoxicity of these nitrocompounds (Moreno et al., 1986). This structural report on 1-(chloromethyl)-3-nitrobenzene (m-nitrobenzyl chloride) might be helpful to carry out such studies on these nitroaromatic compounds in future.

The molecule of the title compound has normal bond lengths (Allen et al., 1987). The benzene ring (C1-C6) forms dihedral angles of 8.2 (3) and 67.55 (12)°, with the plane of the nitro group (N1/O1/O2) and with the direction of the chloromethyl group (C7/Cl1), respectively.

In the crystal structure, there is no classic hydrogen bonds. Weak intermolecular C—H···O interactions (Table 1) link molecules into corrugated sheets parallel to bc plane.

Related literature top

For the characteristics of nitroaromatic compounds, see: Moreno et al. (1986). For details of the synthesis, see: Livermore & Sealock (1947). For reference bond lengths, see: Allen et al. (1987).

Experimental top

1-(Chloromethyl)-3-nitrobenzene (m-nitrobenzyl chloride) was prepared from the m-nitrobenzyl alcohol, 5 g; being refluxed with 25 ml of concentrated hydrochloric acid on a boiling water bath for 1.5 h. The ether was washed with water and sodium carbonate and dried with sodium sulfate. Evaporation of ether yielded an oily residue which crystallized on cooling. A 70 per cent yield of the crude compound was obtained. Recrystallization from petroleum ether gave a product melting at 317-319 K (Livermore and Sealock, 1947). m-Nitrobenzyl alcohol was purchased from Sigma Aldrich while all other chemicals involved were obtained from Merk, Germany.

Refinement top

H atoms were geometrically positioned (C—H = 0.93-0.97 Å), and treated using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
1-Chloromethyl-3-nitrobenzene top
Crystal data top
C7H6ClNO2F(000) = 352
Mr = 171.58Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2610 reflections
a = 12.1219 (10) Åθ = 2.8–26.9°
b = 4.5104 (4) ŵ = 0.44 mm1
c = 15.1219 (11) ÅT = 296 K
β = 112.709 (2)°Slab, pale yellow
V = 762.69 (11) Å30.34 × 0.18 × 0.11 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
1350 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.023
Graphite monochromatorθmax = 28.4°, θmin = 1.8°
ϕ and ω scansh = 1616
8475 measured reflectionsk = 65
1903 independent reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.2569P]
where P = (Fo2 + 2Fc2)/3
1903 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C7H6ClNO2V = 762.69 (11) Å3
Mr = 171.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1219 (10) ŵ = 0.44 mm1
b = 4.5104 (4) ÅT = 296 K
c = 15.1219 (11) Å0.34 × 0.18 × 0.11 mm
β = 112.709 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
1350 reflections with I > 2σ(I)
8475 measured reflectionsRint = 0.023
1903 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
1903 reflectionsΔρmin = 0.26 e Å3
100 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46056 (5)0.88735 (16)0.10489 (5)0.0856 (2)
O10.91285 (17)1.2499 (5)0.51307 (11)0.0999 (7)
O20.78454 (18)0.9074 (5)0.49378 (12)0.1009 (8)
N10.83972 (16)1.0739 (5)0.46346 (11)0.0666 (6)
C10.86599 (17)1.2052 (5)0.23036 (13)0.0593 (6)
C20.88908 (16)1.2205 (5)0.32703 (13)0.0559 (6)
C30.81640 (15)1.0604 (4)0.36006 (11)0.0499 (5)
C40.72367 (16)0.8898 (4)0.30166 (13)0.0540 (6)
C50.70089 (15)0.8763 (4)0.20455 (13)0.0526 (6)
C60.77357 (17)1.0351 (4)0.17013 (12)0.0559 (6)
C70.60014 (19)0.6926 (5)0.13890 (17)0.0738 (8)
H10.913501.311200.205700.0710*
H20.951601.335000.368300.0670*
H40.676500.784200.326700.0650*
H60.759601.026500.105200.0670*
H7A0.595600.508800.170700.0890*
H7B0.614900.643600.082000.0890*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0538 (3)0.1001 (5)0.0947 (4)0.0057 (3)0.0195 (3)0.0148 (3)
O10.1089 (13)0.1307 (16)0.0585 (9)0.0134 (13)0.0306 (9)0.0266 (10)
O20.1138 (14)0.1320 (17)0.0669 (10)0.0001 (12)0.0459 (10)0.0313 (10)
N10.0684 (10)0.0841 (13)0.0505 (9)0.0193 (10)0.0265 (8)0.0092 (9)
C10.0587 (10)0.0689 (12)0.0572 (10)0.0008 (9)0.0300 (9)0.0060 (9)
C20.0500 (9)0.0607 (11)0.0548 (10)0.0006 (9)0.0179 (8)0.0025 (9)
C30.0518 (9)0.0558 (11)0.0436 (8)0.0127 (8)0.0200 (7)0.0054 (7)
C40.0546 (9)0.0498 (10)0.0624 (10)0.0059 (8)0.0278 (8)0.0097 (8)
C50.0517 (9)0.0445 (10)0.0583 (10)0.0084 (8)0.0175 (8)0.0027 (8)
C60.0593 (10)0.0640 (12)0.0471 (9)0.0104 (9)0.0236 (8)0.0004 (8)
C70.0683 (13)0.0587 (12)0.0863 (15)0.0003 (10)0.0210 (11)0.0148 (11)
Geometric parameters (Å, º) top
Cl1—C71.796 (3)C5—C61.384 (3)
O1—N11.211 (3)C5—C71.493 (3)
O2—N11.208 (3)C1—H10.9300
N1—C31.479 (2)C2—H20.9300
C1—C21.380 (3)C4—H40.9300
C1—C61.373 (3)C6—H60.9300
C2—C31.374 (3)C7—H7A0.9700
C3—C41.367 (3)C7—H7B0.9700
C4—C51.387 (3)
Cl1···H4i2.8900C6···C7vi3.560 (3)
O1···N1ii3.230 (3)C6···O2viii3.374 (3)
O1···O1ii3.217 (3)C7···C6vii3.560 (3)
O1···O1iii3.218 (3)C1···H1ix3.0400
O1···C2ii3.410 (3)C5···H7Avi3.0900
O1···C3ii3.399 (3)C6···H7Avi3.0400
O2···C6iv3.374 (3)H1···C1x3.0400
O1···H22.4400H2···O12.4400
O1···H6v2.9000H2···O1iii2.6700
O1···H2iii2.6700H4···O22.4200
O2···H42.4200H4···H7A2.5100
O2···H6iv2.6700H4···Cl1xi2.8900
O2···H7Biv2.8600H6···H7B2.3900
N1···O1ii3.230 (3)H6···O1xii2.9000
C1···C5vi3.566 (3)H6···O2viii2.6700
C2···C4vi3.562 (3)H7A···C5vii3.0900
C2···O1ii3.410 (3)H7A···C6vii3.0400
C3···O1ii3.399 (3)H7A···H42.5100
C4···C2vii3.562 (3)H7B···H62.3900
C5···C1vii3.566 (3)H7B···O2viii2.8600
O1—N1—O2123.57 (18)C2—C1—H1120.00
O1—N1—C3118.53 (19)C6—C1—H1120.00
O2—N1—C3117.90 (18)C1—C2—H2121.00
C2—C1—C6120.7 (2)C3—C2—H2121.00
C1—C2—C3117.56 (18)C3—C4—H4120.00
N1—C3—C2118.37 (17)C5—C4—H4120.00
N1—C3—C4118.69 (17)C1—C6—H6120.00
C2—C3—C4122.94 (16)C5—C6—H6120.00
C3—C4—C5119.12 (18)Cl1—C7—H7A109.00
C4—C5—C6118.70 (17)Cl1—C7—H7B109.00
C4—C5—C7120.40 (18)C5—C7—H7A109.00
C6—C5—C7120.90 (17)C5—C7—H7B109.00
C1—C6—C5120.98 (17)H7A—C7—H7B108.00
Cl1—C7—C5110.94 (15)
O1—N1—C3—C28.1 (3)N1—C3—C4—C5179.84 (18)
O1—N1—C3—C4171.9 (2)C2—C3—C4—C50.1 (3)
O2—N1—C3—C2171.8 (2)C3—C4—C5—C60.4 (3)
O2—N1—C3—C48.3 (3)C3—C4—C5—C7179.86 (18)
C6—C1—C2—C30.1 (3)C4—C5—C6—C10.5 (3)
C2—C1—C6—C50.4 (3)C7—C5—C6—C1179.7 (2)
C1—C2—C3—N1180.0 (2)C4—C5—C7—Cl181.5 (2)
C1—C2—C3—C40.1 (3)C6—C5—C7—Cl198.7 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+2, z+1; (iii) x+2, y+3, z+1; (iv) x, y+3/2, z+1/2; (v) x, y+5/2, z+1/2; (vi) x, y+1, z; (vii) x, y1, z; (viii) x, y+3/2, z1/2; (ix) x+2, y1/2, z+1/2; (x) x+2, y+1/2, z+1/2; (xi) x+1, y1/2, z+1/2; (xii) x, y+5/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1iii0.932.673.583 (3)166
C6—H6···O2viii0.932.673.374 (3)133
Symmetry codes: (iii) x+2, y+3, z+1; (viii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC7H6ClNO2
Mr171.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.1219 (10), 4.5104 (4), 15.1219 (11)
β (°) 112.709 (2)
V3)762.69 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.34 × 0.18 × 0.11
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8475, 1903, 1350
Rint0.023
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.03
No. of reflections1903
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.673.583 (3)166.0
C6—H6···O2ii0.932.673.374 (3)133.0
Symmetry codes: (i) x+2, y+3, z+1; (ii) x, y+3/2, z1/2.
 

Footnotes

Additional corresponding author: atrabbasi@yahoo.com.

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLivermore, A. H. & Sealock, R. R. (1947). J. Biol. Chem. 167, 699–704.  CAS PubMed Web of Science Google Scholar
First citationMoreno, S. N. J., Schreiber, J. & Mason, R. P. (1986). J. Biol. Chem. 261, 7811–7815.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds