organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­phen­yl)-3-phenyl-1H-pyrazol-5(4H)-one

aDepartment of Chemistry, East China Normal University, Shanghai 200062, People's Republic of China, and bDepartment of Chemistry, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
*Correspondence e-mail: chunxiangzhao@163.com

(Received 9 December 2009; accepted 23 December 2009; online 27 February 2010)

In the crystal of the title compound, C15H11ClN2O, the molecules are linked by C—H⋯O and weak C—H⋯π inter­actions. The chloro­phenyl and phenyl rings are twisted with respect to the central pyrazolone ring, making dihedral angles of 18.23 (8) and 8.35 (8)°, respectively. The N—N and C=O bond lengths are comparable to those reported for pyrazolone compounds.

Related literature

For the properties and applications of pyrazolones and their derivatives, see: Bao et al. (2006[Bao, F., Lu, X., Kang, B.-S. & Wu, Q. (2006). Eur. Polym. J. 42, 928-934.]); Bose et al. (2005[Bose, R., Murty, D. S. R. & Chakrapani, G. (2005). J. Radioanal. Nucl. Chem. 265, 115-122.]); Ito et al. (2001[Ito, T., Goto, C. & Noguchi, K. (2001). Anal. Chim. Acta, 443, 41-51.]); Li et al. (2000[Li, J.-Z., Li, G. & Yu, W.-J. (2000). J. Rare Earth, 18, 233-236.]); Shi, et al. (2005[Shi, M., Li, F.-Y., Yi, T., Zhang, D.-Q., Hu, H.-M. & Huang, C.-H. (2005). Inorg. Chem. 44, 8929-8936.]); Whitaker (1995[Whitaker, A. (1995). J. Soc. Dyers Colour. 111, 66-72.]). For the synthesis, see: Jensen (1959[Jensen, B. S. (1959). Acta Chem. Scand. 13,1668-1670.]). For related structures, see: Bovio et al. (1974[Bovio, B. & Locchi, S. (1974). J. Cryst. Mol. Struct. 4, 129-140.]); Dardonville et al. (1998[Dardonville, C., Elguero, J., Rozas, I., Fernández-Castao, C., Foces-Foces, C. & Sobrados, I. (1998). New J. Chem. 22, 1421-1430.]); Ferretti et al. (1985[Ferretti, V., Bertolasi, V., Gilli, G. & Borea, P. A. (1985). Acta Cryst. C41, 107-110.]); Holzer et al. (1999[Holzer, W., Mereiter, K. & Plagens, B. (1999). Heterocycles, 50, 799-818.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11ClN2O

  • Mr = 270.71

  • Monoclinic, P 21 /c

  • a = 11.2593 (4) Å

  • b = 12.1848 (4) Å

  • c = 9.5498 (3) Å

  • β = 103.053 (1)°

  • V = 1276.31 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.32 × 0.28 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 17039 measured reflections

  • 3172 independent reflections

  • 2578 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.111

  • S = 1.04

  • 3172 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O1i 0.97 2.40 3.3115 (19) 156
C8—H8ACg1ii 0.97 2.76 3.5026 (17) 134
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+2.

Table 2
Comparison of C=O and N—N bond lengths (Å) between the title compound and reported pyrazolone compounds.

Compound C=O N—N
C13H14N2O2a 1.313 (2) 1.395 (2)
C19H16N2O2a 1.261 (2) 1.404 (2)
C15H12N2O2Sa 1.246 (2) 1.373 (2)
C22H15ClN2Oc 1.228 (2) 1.405 (2)
C16H11N3Oc 1.252 (3) 1.412 (4)
C16H10ClN3Oc 1.250 (5) 1.420 (5)
C10H8N4O5d 1.207 (3) 1.412 (2)
C15H11ClN2Oe 1.213 (2) 1.404 (2)
Notes: (a) Holzer et al. (1999[Holzer, W., Mereiter, K. & Plagens, B. (1999). Heterocycles, 50, 799-818.]); (b) Bovio et al. (1974[Bovio, B. & Locchi, S. (1974). J. Cryst. Mol. Struct. 4, 129-140.]); (c) Ferretti et al. (1985[Ferretti, V., Bertolasi, V., Gilli, G. & Borea, P. A. (1985). Acta Cryst. C41, 107-110.]); (d) Dardonville et al. (1998[Dardonville, C., Elguero, J., Rozas, I., Fernández-Castao, C., Foces-Foces, C. & Sobrados, I. (1998). New J. Chem. 22, 1421-1430.]); (e) this work.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazolones and their derivatives constitute a group of organic compounds that have been extensively studied due to their diverse properties and applications. For example, many more applications have been devised for this group of molecules in the pharmaceutical field. Moreover, they have been applied to the solvent extraction of metal ions (Bose et al., 2005), for analytical purposes (Ito et al., 2001), in the preparation of azo colorants (Whitaker, 1995), as ligands in complexes with catalytic activity (Bao et al., 2006) and in the synthesis of rare earth metal complexes with interesting photophysical properties (Shi et al., 2005). Also, it is important in understanding the behaviour of these compounds with respect to the mechanisms of pharmacological activities (Li et al., 2000). In order to expand this field, the novel title compound (I) has been synthesized, and its crystal structure is reported herein for the first time.

The asymmetric unit of the title compound is built up from a central pyrazolone ring substituted in 1,3 by a 4-chlorophenyl and a phenyl rings (Fig. 1). The chlorophenyl and phenyl rings are slightly twisted with respect to the central pyrazolone ring making dihedral angles of 18.23 (8)° and 8.35 (8)° respectively, thus indicating a high degree of conjugation and electron delocalization.The N(1)–N(2) and C(7)=O(1) distances are comparable, within experimental errors, with related pyrazolones reported in the literature (Table 2).

The cohesion of the crystal is assured by weak C-H···O and C-H···π interactions (Table 1).

Related literature top

For the properties and applications of pyrazolones and their derivatives, see: Bao et al. (2006); Bose et al. (2005); Ito et al. (2001); Li et al. (2000); Shi, et al. (2005); Whitaker (1995). For the synthesis, see: Jensen (1959).For related structures, see: Bovio et al. (1974); Dardonville et al. (1998); Ferretti et al. (1985); Holzer et al. (1999).

Experimental top

All reagents were obtained from commercial sources and used without further purification. 1-(4-chlorophenyl)-3-phenyl-1H-pyrazol-5(4H)-one was synthesized according to the method proposed by Jensen (1959). (yield 84.5%; m.p. 435–436 K). Analysis required for C15H11ClN2O: C 66.55%, H 4.10%, N10.35%; found: C 66.51, H 4.08, N 10.41%. Block-like golden single crystals of CPP were grown from ethanol by slow evaporation over a period of several weeks.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93Å for phenyl and 0.97 Å for methylene, and treated as riding with Uiso(H) =1.2Ueq (C) .

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (thermal ellipsoids are shown at 30% probability levels).
1-(4-Chlorophenyl)-3-phenyl-1H-pyrazol-5(4H)-one top
Crystal data top
C15H11ClN2OF(000) = 560.0
Mr = 270.71Dx = 1.409 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8730 reflections
a = 11.2593 (4) Åθ = 2.5–28.4°
b = 12.1848 (4) ŵ = 0.29 mm1
c = 9.5498 (3) ÅT = 296 K
β = 103.053 (1)°Block, yellow
V = 1276.31 (7) Å30.32 × 0.28 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2578 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 28.4°, θmin = 1.9°
ϕ and ω scansh = 1415
17039 measured reflectionsk = 1516
3172 independent reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.3591P]
where P = (Fo2 + 2Fc2)/3
3172 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H11ClN2OV = 1276.31 (7) Å3
Mr = 270.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2593 (4) ŵ = 0.29 mm1
b = 12.1848 (4) ÅT = 296 K
c = 9.5498 (3) Å0.32 × 0.28 × 0.15 mm
β = 103.053 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2578 reflections with I > 2σ(I)
17039 measured reflectionsRint = 0.021
3172 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.04Δρmax = 0.23 e Å3
3172 reflectionsΔρmin = 0.20 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49588 (4)0.36865 (4)0.10838 (4)0.06295 (16)
N20.73364 (11)0.53865 (9)0.68321 (12)0.0405 (3)
N10.75985 (10)0.46368 (9)0.79773 (12)0.0396 (3)
C70.76387 (14)0.64516 (11)0.72628 (15)0.0442 (3)
C80.82119 (14)0.63688 (11)0.88421 (15)0.0434 (3)
H8A0.90600.65930.90470.052*
H8B0.77770.68110.94070.052*
C10.67906 (12)0.49854 (11)0.54432 (14)0.0380 (3)
C40.56921 (13)0.41944 (13)0.27598 (14)0.0445 (3)
O10.74620 (13)0.72658 (9)0.65145 (12)0.0620 (3)
C50.56870 (15)0.35700 (12)0.39612 (16)0.0491 (3)
H50.53170.28830.38660.059*
C100.85009 (12)0.46390 (11)1.05204 (14)0.0392 (3)
C90.80911 (12)0.51759 (11)0.91237 (14)0.0375 (3)
C30.62544 (16)0.51956 (13)0.28785 (16)0.0538 (4)
H30.62600.56070.20600.065*
C150.82395 (14)0.35388 (12)1.07152 (17)0.0476 (3)
H150.77870.31350.99520.057*
C60.62340 (13)0.39676 (12)0.53086 (15)0.0448 (3)
H60.62280.35510.61230.054*
C110.91727 (14)0.52294 (13)1.16804 (15)0.0481 (3)
H110.93400.59671.15690.058*
C130.93286 (17)0.36390 (16)1.31805 (18)0.0617 (4)
H130.96060.33041.40690.074*
C20.68150 (16)0.55939 (13)0.42195 (16)0.0531 (4)
H20.72090.62700.43030.064*
C120.95927 (16)0.47258 (15)1.29984 (16)0.0582 (4)
H121.00540.51221.37630.070*
C140.86514 (16)0.30462 (15)1.20418 (18)0.0594 (4)
H140.84720.23131.21680.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0769 (3)0.0676 (3)0.0378 (2)0.0076 (2)0.00071 (18)0.01026 (16)
N20.0514 (6)0.0331 (5)0.0348 (5)0.0008 (5)0.0052 (5)0.0022 (4)
N10.0474 (6)0.0345 (6)0.0352 (5)0.0001 (5)0.0058 (5)0.0031 (4)
C70.0551 (8)0.0358 (7)0.0416 (7)0.0025 (6)0.0108 (6)0.0011 (5)
C80.0559 (8)0.0347 (7)0.0392 (7)0.0025 (6)0.0101 (6)0.0032 (5)
C10.0415 (7)0.0371 (7)0.0347 (6)0.0030 (5)0.0071 (5)0.0001 (5)
C40.0479 (7)0.0494 (8)0.0342 (6)0.0093 (6)0.0053 (5)0.0045 (6)
O10.0983 (9)0.0359 (5)0.0487 (6)0.0051 (5)0.0098 (6)0.0068 (5)
C50.0574 (9)0.0413 (7)0.0435 (7)0.0040 (6)0.0007 (6)0.0003 (6)
C100.0409 (7)0.0420 (7)0.0354 (6)0.0008 (5)0.0100 (5)0.0003 (5)
C90.0408 (6)0.0354 (6)0.0369 (6)0.0001 (5)0.0099 (5)0.0018 (5)
C30.0736 (10)0.0533 (9)0.0353 (7)0.0010 (7)0.0141 (7)0.0050 (6)
C150.0506 (8)0.0447 (8)0.0452 (7)0.0065 (6)0.0059 (6)0.0028 (6)
C60.0535 (8)0.0408 (7)0.0370 (7)0.0022 (6)0.0035 (6)0.0048 (5)
C110.0593 (9)0.0468 (8)0.0380 (7)0.0041 (6)0.0106 (6)0.0038 (6)
C130.0682 (10)0.0733 (12)0.0418 (8)0.0019 (8)0.0088 (7)0.0161 (7)
C20.0733 (10)0.0446 (8)0.0422 (7)0.0109 (7)0.0144 (7)0.0013 (6)
C120.0662 (10)0.0706 (11)0.0355 (7)0.0048 (8)0.0067 (7)0.0033 (7)
C140.0665 (10)0.0543 (9)0.0559 (9)0.0069 (8)0.0106 (8)0.0155 (7)
Geometric parameters (Å, º) top
Cl1—C41.7406 (14)C10—C111.3923 (19)
N2—C71.3806 (17)C10—C151.394 (2)
N2—N11.4042 (15)C10—C91.4635 (18)
N2—C11.4169 (16)C3—C21.382 (2)
N1—C91.2897 (17)C3—H30.9300
C7—O11.2126 (17)C15—C141.384 (2)
C7—C81.504 (2)C15—H150.9300
C8—C91.4900 (18)C6—H60.9300
C8—H8A0.9700C11—C121.384 (2)
C8—H8B0.9700C11—H110.9300
C1—C61.3824 (19)C13—C121.377 (3)
C1—C21.3894 (19)C13—C141.382 (3)
C4—C31.367 (2)C13—H130.9300
C4—C51.378 (2)C2—H20.9300
C5—C61.383 (2)C12—H120.9300
C5—H50.9300C14—H140.9300
C7—N2—N1112.65 (11)N1—C9—C8112.52 (11)
C7—N2—C1128.96 (11)C10—C9—C8125.29 (12)
N1—N2—C1118.37 (10)C4—C3—C2119.75 (14)
C9—N1—N2107.72 (11)C4—C3—H3120.1
O1—C7—N2126.65 (14)C2—C3—H3120.1
O1—C7—C8128.47 (13)C14—C15—C10120.14 (15)
N2—C7—C8104.88 (11)C14—C15—H15119.9
C9—C8—C7102.15 (11)C10—C15—H15119.9
C9—C8—H8A111.3C1—C6—C5119.88 (13)
C7—C8—H8A111.3C1—C6—H6120.1
C9—C8—H8B111.3C5—C6—H6120.1
C7—C8—H8B111.3C12—C11—C10120.47 (15)
H8A—C8—H8B109.2C12—C11—H11119.8
C6—C1—C2119.68 (13)C10—C11—H11119.8
C6—C1—N2119.22 (12)C12—C13—C14119.98 (15)
C2—C1—N2121.10 (12)C12—C13—H13120.0
C3—C4—C5120.84 (13)C14—C13—H13120.0
C3—C4—Cl1120.53 (11)C3—C2—C1120.03 (14)
C5—C4—Cl1118.63 (12)C3—C2—H2120.0
C4—C5—C6119.79 (14)C1—C2—H2120.0
C4—C5—H5120.1C13—C12—C11120.14 (16)
C6—C5—H5120.1C13—C12—H12119.9
C11—C10—C15118.94 (13)C11—C12—H12119.9
C11—C10—C9119.80 (13)C13—C14—C15120.32 (16)
C15—C10—C9121.26 (13)C13—C14—H14119.8
N1—C9—C10122.18 (12)C15—C14—H14119.8
C7—N2—N1—C91.81 (16)C15—C10—C9—C8173.39 (14)
C1—N2—N1—C9179.69 (11)C7—C8—C9—N11.93 (16)
N1—N2—C7—O1176.48 (15)C7—C8—C9—C10179.50 (13)
C1—N2—C7—O11.8 (3)C5—C4—C3—C20.7 (2)
N1—N2—C7—C82.95 (16)Cl1—C4—C3—C2178.94 (13)
C1—N2—C7—C8178.75 (13)C11—C10—C15—C140.4 (2)
O1—C7—C8—C9176.62 (16)C9—C10—C15—C14179.13 (14)
N2—C7—C8—C92.79 (15)C2—C1—C6—C51.1 (2)
C7—N2—C1—C6160.62 (14)N2—C1—C6—C5179.36 (13)
N1—N2—C1—C617.60 (18)C4—C5—C6—C10.5 (2)
C7—N2—C1—C219.9 (2)C15—C10—C11—C121.2 (2)
N1—N2—C1—C2161.90 (13)C9—C10—C11—C12178.37 (13)
C3—C4—C5—C61.4 (2)C4—C3—C2—C11.0 (3)
Cl1—C4—C5—C6178.24 (12)C6—C1—C2—C31.9 (2)
N2—N1—C9—C10178.86 (11)N2—C1—C2—C3178.65 (14)
N2—N1—C9—C80.24 (15)C14—C13—C12—C110.6 (3)
C11—C10—C9—N1171.35 (13)C10—C11—C12—C131.3 (3)
C15—C10—C9—N18.2 (2)C12—C13—C14—C150.2 (3)
C11—C10—C9—C87.1 (2)C10—C15—C14—C130.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···O1i0.972.403.3115 (19)156
C8—H8A···Cg1ii0.972.763.5026 (17)134
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H11ClN2O
Mr270.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.2593 (4), 12.1848 (4), 9.5498 (3)
β (°) 103.053 (1)
V3)1276.31 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.32 × 0.28 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17039, 3172, 2578
Rint0.021
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.04
No. of reflections3172
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···O1i0.972.403.3115 (19)156
C8—H8A···Cg1ii0.972.763.5026 (17)134
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y+1, z+2.
Comparison of CO and N—N bond lengths (Å) between the title compound and reported pyrazolone compounds. top
CompoundCON—N
C13H14N2O2a1.313 (2)1.395 (2)
C19H16N2O2a1.261 (2)1.404 (2)
C15H12N2O2Sa1.246 (2)1.373 (2)
C22H15ClN2Oc1.228 (2)1.405 (2)
C16H11N3Oc1.252 (3)1.412 (4)
C16H10ClN3Oc1.250 (5)1.420 (5)
C10H8N4O5d1.207 (3)1.412 (2)
C15H11ClN2Oe1.213 (2)1.404 (2)
Notes: (a) Holzer et al. (1999); (b) Bovio et al. (1974); (c) Ferretti et al. (1985); (d) Dardonville et al. (1998); (e) this work.
 

Acknowledgements

The authors gratefully acknowledge financial support by the Scientific Research Innovation Foundation for youth teachers of Zhoukou Normal University

References

First citationBao, F., Lu, X., Kang, B.-S. & Wu, Q. (2006). Eur. Polym. J. 42, 928–934.  Web of Science CSD CrossRef CAS Google Scholar
First citationBose, R., Murty, D. S. R. & Chakrapani, G. (2005). J. Radioanal. Nucl. Chem. 265, 115–122.  Web of Science CrossRef CAS Google Scholar
First citationBovio, B. & Locchi, S. (1974). J. Cryst. Mol. Struct. 4, 129–140.  CSD CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDardonville, C., Elguero, J., Rozas, I., Fernández-Castao, C., Foces-Foces, C. & Sobrados, I. (1998). New J. Chem. 22, 1421–1430.  Web of Science CSD CrossRef CAS Google Scholar
First citationFerretti, V., Bertolasi, V., Gilli, G. & Borea, P. A. (1985). Acta Cryst. C41, 107–110.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHolzer, W., Mereiter, K. & Plagens, B. (1999). Heterocycles, 50, 799–818.  CrossRef CAS Google Scholar
First citationIto, T., Goto, C. & Noguchi, K. (2001). Anal. Chim. Acta, 443, 41–51.  Web of Science CrossRef CAS Google Scholar
First citationJensen, B. S. (1959). Acta Chem. Scand. 13,1668–1670.  CrossRef CAS Web of Science Google Scholar
First citationLi, J.-Z., Li, G. & Yu, W.-J. (2000). J. Rare Earth, 18, 233–236.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, M., Li, F.-Y., Yi, T., Zhang, D.-Q., Hu, H.-M. & Huang, C.-H. (2005). Inorg. Chem. 44, 8929–8936.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWhitaker, A. (1995). J. Soc. Dyers Colour. 111, 66–72.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds