metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[(μ3-isonicotinato-κ3O:O:N)(tri­phenyl­phosphine-κP)silver(I)] ethanol solvate]

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 January 2010; accepted 6 February 2010; online 13 February 2010)

In the crystal structure of {[Ag(C6H4NO2)(C18H15P)]·C2H6O}n, the 4-pyridylcarboxyl­ate ion binds to the phosphine-coordinated silver atoms through one of the two oxygen atoms of the carboxyl unit, and to a third phosphine-coordinate silver atom through the nitro­gen atom of the aromatic ring, giving a distorted tetra­hedral coordination at the metal atom. The μ3-bridging mode leads to a layer motif; the disordered ethanol mol­ecules are linked to the free carboxyl oxygen atom by O—H⋯O hydrogen bonds.

Related literature

For the crystal structure of polymeric 4-pyridylcarboxyl­atosilver, see: Yang et al. (2004[Yang, Y.-Y., Huang, Z.-Q., Ouyang, G.-F. & Ng, S. W. (2004). Acta Cryst. E60, m1158-m1159.]). For the synthesis of the reactant used in the metathetical reaction, see: Ng & Othman (1995[Ng, S. W. & Othman, A. H. (1995). Z. Kristallogr. 210, 674-675.], 1997[Ng, S. W. & Othman, A. H. (1997). Acta Cryst. C53, 1396-1400.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C6H4NO2)(C18H15P)]·C2H6O

  • Mr = 538.31

  • Monoclinic, P 21 /c

  • a = 15.8026 (10) Å

  • b = 13.2430 (9) Å

  • c = 12.5483 (8) Å

  • β = 111.1937 (9)°

  • V = 2448.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 295 K

  • 0.40 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.711, Tmax = 0.956

  • 22818 measured reflections

  • 5615 independent reflections

  • 4111 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.078

  • S = 1.06

  • 5615 reflections

  • 308 parameters

  • 29 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.84 (5) 1.92 (5) 2.749 (4) 172 (6)

Data collection: APEX2 software (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), PLATON (Spek, 200[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and OLEX (Dolomanov et al., 2003[Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Silver carboxylates form adducts with triphenylphosphine; silver acetate itself furnishes silver acetate.2triphenylphosphine hemihydrate (Ng & Othman, 1995; Ng & Othman, 1997). The carboxylate unit in this adduct can be exchanged for a pyridylcarboxylate unit reacting the compound with the pyridylcarboxylic acid as the silver pyridylcarboxylate cannot be readily synthesized by condensing silver oxide with the pyridylcarboxylic acid.

In the crystal structure of Ag(C6H4NO2)(C18H15P).C2H6O (Scheme I, Fig. 1), the anion binds through to to phosphine-cordinated silver atoms through one of the two oxygen atoms of the carboxyl unit and to a third phosphine-coordinate silver atom through the nitrogen atom of the aromatic ring to render tetrahedral coordination at the metal atom. The µ3-bridging model leads to a layer motif (Fig. 2); the disordered ethanol molecules bind to the free carboxyl oxygen atom by hydrogen bonds.

Related literature top

For the crystal structure of polymeric 4-pyridylcarboxylatosilver, see: Yang et al. (2004). For the synthesis of the reactant used in the metathetical reaction, see: Ng & Othman (1995, 1997).

Experimental top

The bis-adduct, silver acetate.2triphenylphosphine hemihydrate, was first synthesized by reacting silver acetate (1 mmol, 0.17 g) and triphenylphosphine (2 mmol, 0.53 g) in ethanol (50 ml) (Ng & Othman, 1995; Ng & Othman, 1997). The adduct was isolated as colorless crystals. The adduct, (1 mmol, 0.69 g) was reacted with 4-pyridinecarboxylic acid (1 mmol, 0.13 g ) in ethanol (50 ml). Slow evaporation of solvent afford suitable crystals (m.p. 408-409 K). The crystals rapidly turned opaque when taken out of solution. A specimen was coated in glue for the diffraction measurements.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The hydroxy H-atom was located in a difference Fourier map, and was refined with a distance restraint of O–H 0.84±0.01 Å; its temperature factor was freely refined.

They ethyl chain of the ethanol molecule is disordered over two positions; the occupancies refined to a 60:40 ratio. The oxygen-carbon distances were tightly restrained to 1.440+0.005 Å and the carbon-carbon distances to 1.54±0.005 Å. The anisotropic temperature factors of the carbon atoms were restrained to be nearly isotropic.

Computing details top

Data collection: APEX2 software (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), PLATON (Spek, 2009) and OLEX (Dolomanov et al., 2003)'; software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view showing the coordination mode of the silver with the atom labeling scheme. Ellipsoids are shown at the 30% probability level. Hydrogen atoms and the disordered solvate have been omitted for clarity. [Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, y-1/2, -z+3/2; (iii) -x+1, y+1/2, -z+3/2; (iv) x, 1/2-y, z-1/2].
[Figure 2] Fig. 2. OLEX (Dolomanov et al., 2003) representation of the layer structure.
Poly[[(µ3-isonicotinato-κ3O:O:N)(triphenylphosphine-κP)silver(I)] ethanol solvate] top
Crystal data top
[Ag(C6H4NO2)(C18H15P)]·C2H6OF(000) = 1096
Mr = 538.31Dx = 1.460 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6635 reflections
a = 15.8026 (10) Åθ = 2.4–28.1°
b = 13.2430 (9) ŵ = 0.92 mm1
c = 12.5483 (8) ÅT = 295 K
β = 111.1937 (9)°Block coated in glue, colorless
V = 2448.4 (3) Å30.40 × 0.20 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
5615 independent reflections
Radiation source: fine-focus sealed tube4111 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.711, Tmax = 0.956k = 1717
22818 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.029P)2 + 1.2212P]
where P = (Fo2 + 2Fc2)/3
5615 reflections(Δ/σ)max = 0.002
308 parametersΔρmax = 0.41 e Å3
29 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Ag(C6H4NO2)(C18H15P)]·C2H6OV = 2448.4 (3) Å3
Mr = 538.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.8026 (10) ŵ = 0.92 mm1
b = 13.2430 (9) ÅT = 295 K
c = 12.5483 (8) Å0.40 × 0.20 × 0.05 mm
β = 111.1937 (9)°
Data collection top
Bruker SMART APEX
diffractometer
5615 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4111 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.956Rint = 0.039
22818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03029 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.41 e Å3
5615 reflectionsΔρmin = 0.31 e Å3
308 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.614660 (14)0.443563 (16)0.564182 (18)0.03977 (8)
P10.73287 (5)0.49413 (6)0.50219 (6)0.03698 (17)
O10.53235 (13)0.57005 (15)0.61834 (16)0.0421 (5)
O20.63385 (16)0.54142 (18)0.79082 (19)0.0636 (7)
O30.7823 (2)0.4374 (3)0.9329 (3)0.1018 (11)
H30.738 (3)0.473 (4)0.895 (4)0.16 (3)*
N10.44392 (15)0.81511 (17)0.8642 (2)0.0396 (5)
C10.83757 (19)0.4219 (2)0.5607 (3)0.0444 (7)
C20.9230 (2)0.4634 (3)0.5938 (3)0.0674 (10)
H20.92960.53240.58540.081*
C30.9994 (2)0.4033 (4)0.6393 (4)0.0864 (13)
H3A1.05680.43220.66160.104*
C40.9907 (3)0.3027 (4)0.6516 (4)0.0881 (14)
H41.04220.26290.68320.106*
C50.9073 (3)0.2598 (3)0.6181 (4)0.0944 (15)
H50.90150.19040.62430.113*
C60.8307 (2)0.3198 (3)0.5748 (4)0.0725 (11)
H60.77360.29040.55480.087*
C70.70310 (19)0.4873 (2)0.3475 (2)0.0392 (6)
C80.6256 (2)0.5381 (2)0.2796 (3)0.0491 (8)
H80.59230.57520.31370.059*
C90.5973 (2)0.5339 (3)0.1614 (3)0.0621 (9)
H90.54570.56880.11650.075*
C100.6454 (3)0.4787 (3)0.1113 (3)0.0681 (10)
H100.62620.47550.03200.082*
C110.7216 (3)0.4281 (3)0.1764 (3)0.0686 (11)
H110.75380.39050.14130.082*
C120.7516 (2)0.4323 (3)0.2954 (3)0.0550 (8)
H120.80400.39820.33940.066*
C130.76577 (18)0.6258 (2)0.5340 (2)0.0401 (6)
C140.8048 (2)0.6813 (3)0.4702 (3)0.0565 (8)
H140.81700.65060.41070.068*
C150.8260 (3)0.7820 (3)0.4944 (3)0.0705 (10)
H150.85280.81830.45150.085*
C160.8079 (3)0.8284 (3)0.5804 (3)0.0680 (10)
H160.82140.89650.59550.082*
C170.7698 (2)0.7747 (3)0.6445 (3)0.0633 (10)
H170.75780.80650.70360.076*
C180.7487 (2)0.6734 (3)0.6226 (3)0.0500 (8)
H180.72320.63740.66720.060*
C190.56739 (18)0.5860 (2)0.7242 (2)0.0368 (6)
C200.52434 (17)0.6678 (2)0.7719 (2)0.0329 (6)
C210.44917 (19)0.7210 (2)0.7046 (2)0.0408 (7)
H210.42400.70830.62650.049*
C220.41135 (19)0.7928 (2)0.7527 (3)0.0451 (7)
H220.36060.82770.70530.054*
C230.5173 (2)0.7646 (2)0.9290 (2)0.0442 (7)
H230.54160.77921.00670.053*
C240.55900 (19)0.6919 (2)0.8871 (2)0.0421 (7)
H240.61040.65900.93590.051*
C250.8216 (4)0.4024 (7)0.8541 (5)0.075 (3)0.596 (11)
H25A0.78980.43000.77850.090*0.596 (11)
H25B0.81970.32930.84940.090*0.596 (11)
C260.9193 (4)0.4398 (7)0.9016 (7)0.166 (6)0.596 (11)
H26A0.95050.41790.85280.248*0.596 (11)
H26B0.94920.41290.97700.248*0.596 (11)
H26C0.91980.51220.90510.248*0.596 (11)
C25'0.8433 (5)0.4584 (7)0.8721 (8)0.118 (6)0.404 (11)
H25C0.80870.47790.79390.142*0.404 (11)
H25D0.88390.51340.90890.142*0.404 (11)
C26'0.8952 (4)0.3674 (7)0.8736 (11)0.172 (9)0.404 (11)
H26D0.92530.34560.95120.259*0.404 (11)
H26E0.93960.38140.83980.259*0.404 (11)
H26F0.85510.31520.83100.259*0.404 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04098 (12)0.04309 (13)0.04407 (13)0.00077 (10)0.02597 (10)0.00367 (10)
P10.0358 (3)0.0432 (4)0.0369 (4)0.0001 (3)0.0191 (3)0.0016 (3)
O10.0466 (11)0.0507 (13)0.0322 (11)0.0068 (9)0.0181 (9)0.0047 (9)
O20.0622 (14)0.0722 (16)0.0456 (13)0.0335 (12)0.0066 (11)0.0037 (11)
O30.095 (2)0.137 (3)0.0668 (19)0.046 (2)0.0219 (18)0.0116 (19)
N10.0423 (13)0.0414 (14)0.0388 (13)0.0001 (10)0.0189 (11)0.0078 (11)
C10.0389 (15)0.054 (2)0.0441 (17)0.0064 (13)0.0191 (13)0.0031 (14)
C20.0427 (18)0.077 (3)0.084 (3)0.0021 (17)0.0237 (18)0.014 (2)
C30.0393 (19)0.108 (4)0.111 (4)0.004 (2)0.025 (2)0.011 (3)
C40.052 (2)0.099 (4)0.106 (4)0.027 (2)0.019 (2)0.011 (3)
C50.069 (3)0.066 (3)0.136 (4)0.015 (2)0.021 (3)0.013 (3)
C60.0487 (19)0.058 (2)0.101 (3)0.0035 (17)0.016 (2)0.006 (2)
C70.0427 (15)0.0412 (16)0.0409 (16)0.0083 (12)0.0238 (13)0.0022 (13)
C80.0466 (16)0.060 (2)0.0435 (18)0.0016 (14)0.0200 (14)0.0002 (15)
C90.061 (2)0.075 (3)0.046 (2)0.0075 (18)0.0134 (17)0.0058 (17)
C100.089 (3)0.075 (3)0.043 (2)0.022 (2)0.027 (2)0.0057 (19)
C110.094 (3)0.073 (3)0.055 (2)0.000 (2)0.047 (2)0.0152 (19)
C120.060 (2)0.059 (2)0.055 (2)0.0043 (16)0.0310 (17)0.0039 (16)
C130.0395 (15)0.0447 (17)0.0369 (15)0.0006 (12)0.0148 (12)0.0000 (13)
C140.071 (2)0.052 (2)0.056 (2)0.0092 (17)0.0343 (18)0.0025 (16)
C150.085 (3)0.057 (2)0.074 (3)0.018 (2)0.034 (2)0.001 (2)
C160.067 (2)0.051 (2)0.072 (3)0.0088 (18)0.008 (2)0.0078 (19)
C170.062 (2)0.070 (2)0.050 (2)0.0034 (18)0.0113 (17)0.0216 (18)
C180.0452 (17)0.061 (2)0.0399 (17)0.0009 (15)0.0113 (14)0.0038 (15)
C190.0396 (15)0.0380 (15)0.0366 (16)0.0031 (12)0.0182 (13)0.0003 (12)
C200.0352 (13)0.0352 (14)0.0310 (14)0.0009 (11)0.0152 (11)0.0012 (11)
C210.0433 (15)0.0465 (17)0.0308 (15)0.0056 (13)0.0113 (12)0.0043 (12)
C220.0417 (15)0.0503 (18)0.0394 (17)0.0118 (13)0.0101 (13)0.0030 (14)
C230.0508 (17)0.0498 (18)0.0311 (15)0.0003 (14)0.0137 (13)0.0085 (13)
C240.0417 (15)0.0491 (18)0.0329 (15)0.0093 (13)0.0103 (12)0.0016 (13)
C250.067 (4)0.092 (6)0.068 (4)0.020 (4)0.025 (3)0.011 (4)
C260.146 (8)0.201 (10)0.167 (9)0.028 (7)0.078 (7)0.039 (7)
C25'0.121 (10)0.111 (9)0.106 (9)0.028 (7)0.020 (7)0.031 (7)
C26'0.187 (13)0.184 (13)0.151 (11)0.003 (9)0.068 (9)0.019 (9)
Geometric parameters (Å, º) top
Ag1—P12.3651 (7)C11—H110.9300
Ag1—O12.3662 (18)C12—H120.9300
Ag1—O1i2.6131 (19)C13—C141.386 (4)
Ag1—N1ii2.271 (2)C13—C181.387 (4)
P1—C11.820 (3)C14—C151.381 (5)
P1—C131.822 (3)C14—H140.9300
P1—C71.827 (3)C15—C161.359 (5)
O1—C191.259 (3)C15—H150.9300
O2—C191.231 (3)C16—C171.366 (5)
O3—C251.423 (4)C16—H160.9300
O3—C25'1.457 (5)C17—C181.386 (5)
O3—H30.84 (5)C17—H170.9300
N1—C231.331 (4)C18—H180.9300
N1—C221.338 (3)C19—C201.512 (4)
N1—Ag1iii2.271 (2)C20—C211.377 (4)
C1—C61.373 (5)C20—C241.385 (4)
C1—C21.375 (4)C21—C221.374 (4)
C2—C31.384 (5)C21—H210.9300
C2—H20.9300C22—H220.9300
C3—C41.354 (6)C23—C241.374 (4)
C3—H3A0.9300C23—H230.9300
C4—C51.356 (6)C24—H240.9300
C4—H40.9300C25—C261.523 (5)
C5—C61.383 (5)C25—H25A0.9700
C5—H50.9300C25—H25B0.9700
C6—H60.9300C26—H26A0.9600
C7—C121.381 (4)C26—H26B0.9600
C7—C81.387 (4)C26—H26C0.9600
C8—C91.387 (5)C25'—C26'1.4538
C8—H80.9300C25'—H25C0.9700
C9—C101.361 (5)C25'—H25D0.9700
C9—H90.9300C26'—H26D0.9600
C10—C111.362 (5)C26'—H26E0.9600
C10—H100.9300C26'—H26F0.9600
C11—C121.394 (5)
N1ii—Ag1—P1145.63 (6)C14—C13—C18118.6 (3)
N1ii—Ag1—O194.11 (8)C14—C13—P1122.2 (2)
P1—Ag1—O1118.40 (5)C18—C13—P1119.2 (2)
N1ii—Ag1—O1i86.25 (7)C15—C14—C13120.6 (3)
P1—Ag1—O1i106.79 (5)C15—C14—H14119.7
O1—Ag1—O1i83.90 (6)C13—C14—H14119.7
C1—P1—C13105.57 (14)C16—C15—C14120.5 (4)
C1—P1—C7104.47 (13)C16—C15—H15119.8
C13—P1—C7102.95 (13)C14—C15—H15119.8
C1—P1—Ag1115.44 (10)C15—C16—C17119.7 (4)
C13—P1—Ag1113.30 (9)C15—C16—H16120.1
C7—P1—Ag1113.88 (9)C17—C16—H16120.1
C19—O1—Ag1110.15 (16)C16—C17—C18120.9 (3)
C25—O3—H3106 (4)C16—C17—H17119.6
C25'—O3—H3100 (4)C18—C17—H17119.6
C23—N1—C22116.7 (2)C17—C18—C13119.8 (3)
C23—N1—Ag1iii121.66 (18)C17—C18—H18120.1
C22—N1—Ag1iii121.41 (19)C13—C18—H18120.1
C6—C1—C2117.9 (3)O2—C19—O1125.3 (3)
C6—C1—P1117.8 (2)O2—C19—C20118.1 (2)
C2—C1—P1124.2 (3)O1—C19—C20116.7 (2)
C1—C2—C3120.6 (4)C21—C20—C24116.8 (2)
C1—C2—H2119.7C21—C20—C19122.3 (2)
C3—C2—H2119.7C24—C20—C19120.9 (2)
C4—C3—C2120.2 (4)C22—C21—C20120.0 (3)
C4—C3—H3A119.9C22—C21—H21120.0
C2—C3—H3A119.9C20—C21—H21120.0
C3—C4—C5120.3 (4)N1—C22—C21123.2 (3)
C3—C4—H4119.9N1—C22—H22118.4
C5—C4—H4119.9C21—C22—H22118.4
C4—C5—C6119.7 (4)N1—C23—C24123.4 (3)
C4—C5—H5120.2N1—C23—H23118.3
C6—C5—H5120.2C24—C23—H23118.3
C1—C6—C5121.2 (4)C23—C24—C20119.8 (3)
C1—C6—H6119.4C23—C24—H24120.1
C5—C6—H6119.4C20—C24—H24120.1
C12—C7—C8118.9 (3)O3—C25—C26104.9 (5)
C12—C7—P1123.7 (2)O3—C25—H25A110.8
C8—C7—P1117.4 (2)C26—C25—H25A110.8
C7—C8—C9120.6 (3)O3—C25—H25B110.8
C7—C8—H8119.7C26—C25—H25B110.8
C9—C8—H8119.7H25A—C25—H25B108.8
C10—C9—C8119.8 (4)C26'—C25'—O3108.2 (7)
C10—C9—H9120.1C26'—C25'—H25C110.1
C8—C9—H9120.1O3—C25'—H25C110.1
C9—C10—C11120.4 (3)C26'—C25'—H25D110.1
C9—C10—H10119.8O3—C25'—H25D110.1
C11—C10—H10119.8H25C—C25'—H25D108.4
C10—C11—C12120.6 (3)C25'—C26'—H26D109.5
C10—C11—H11119.7C25'—C26'—H26E109.5
C12—C11—H11119.7H26D—C26'—H26E109.5
C7—C12—C11119.7 (3)C25'—C26'—H26F109.5
C7—C12—H12120.2H26D—C26'—H26F109.5
C11—C12—H12120.2H26E—C26'—H26F109.5
N1ii—Ag1—P1—C123.79 (16)C9—C10—C11—C120.2 (6)
O1—Ag1—P1—C1135.40 (12)C8—C7—C12—C110.6 (5)
O1i—Ag1—P1—C1132.48 (12)P1—C7—C12—C11177.4 (3)
N1ii—Ag1—P1—C13145.70 (14)C10—C11—C12—C70.7 (6)
O1—Ag1—P1—C1313.50 (11)C1—P1—C13—C1478.6 (3)
O1i—Ag1—P1—C13105.62 (11)C7—P1—C13—C1430.7 (3)
N1ii—Ag1—P1—C797.08 (15)Ag1—P1—C13—C14154.1 (2)
O1—Ag1—P1—C7103.72 (12)C1—P1—C13—C18103.5 (2)
O1i—Ag1—P1—C711.60 (12)C7—P1—C13—C18147.2 (2)
N1ii—Ag1—O1—C1975.80 (19)Ag1—P1—C13—C1823.8 (3)
P1—Ag1—O1—C1992.60 (18)C18—C13—C14—C150.2 (5)
O1i—Ag1—O1—C19161.6 (2)P1—C13—C14—C15177.7 (3)
C13—P1—C1—C6163.9 (3)C13—C14—C15—C160.7 (6)
C7—P1—C1—C687.9 (3)C14—C15—C16—C171.0 (6)
Ag1—P1—C1—C637.9 (3)C15—C16—C17—C180.4 (6)
C13—P1—C1—C214.8 (3)C16—C17—C18—C130.5 (5)
C7—P1—C1—C293.4 (3)C14—C13—C18—C170.8 (4)
Ag1—P1—C1—C2140.8 (3)P1—C13—C18—C17177.2 (2)
C6—C1—C2—C30.2 (6)Ag1—O1—C19—O21.2 (4)
P1—C1—C2—C3178.9 (3)Ag1—O1—C19—C20177.99 (18)
C1—C2—C3—C40.2 (7)O2—C19—C20—C21179.2 (3)
C2—C3—C4—C50.8 (8)O1—C19—C20—C211.6 (4)
C3—C4—C5—C62.2 (8)O2—C19—C20—C240.3 (4)
C2—C1—C6—C51.6 (6)O1—C19—C20—C24179.0 (3)
P1—C1—C6—C5179.6 (4)C24—C20—C21—C221.0 (4)
C4—C5—C6—C12.6 (7)C19—C20—C21—C22178.4 (3)
C1—P1—C7—C123.2 (3)C23—N1—C22—C210.8 (4)
C13—P1—C7—C12113.3 (3)Ag1iii—N1—C22—C21174.9 (2)
Ag1—P1—C7—C12123.6 (2)C20—C21—C22—N10.0 (5)
C1—P1—C7—C8178.8 (2)C22—N1—C23—C240.7 (4)
C13—P1—C7—C868.7 (2)Ag1iii—N1—C23—C24174.7 (2)
Ag1—P1—C7—C854.3 (2)N1—C23—C24—C200.4 (5)
C12—C7—C8—C90.1 (5)C21—C20—C24—C231.2 (4)
P1—C7—C8—C9178.2 (2)C19—C20—C24—C23178.3 (3)
C7—C8—C9—C100.7 (5)C25'—O3—C25—C2638.5 (4)
C8—C9—C10—C110.5 (6)C25—O3—C25'—C26'41.6 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.84 (5)1.92 (5)2.749 (4)172 (6)

Experimental details

Crystal data
Chemical formula[Ag(C6H4NO2)(C18H15P)]·C2H6O
Mr538.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)15.8026 (10), 13.2430 (9), 12.5483 (8)
β (°) 111.1937 (9)
V3)2448.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.40 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.711, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
22818, 5615, 4111
Rint0.039
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.078, 1.06
No. of reflections5615
No. of parameters308
No. of restraints29
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.31

Computer programs: APEX2 software (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), PLATON (Spek, 2009) and OLEX (Dolomanov et al., 2003)', publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.84 (5)1.92 (5)2.749 (4)172 (6)
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNg, S. W. & Othman, A. H. (1995). Z. Kristallogr. 210, 674–675.  Google Scholar
First citationNg, S. W. & Othman, A. H. (1997). Acta Cryst. C53, 1396–1400.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationYang, Y.-Y., Huang, Z.-Q., Ouyang, G.-F. & Ng, S. W. (2004). Acta Cryst. E60, m1158–m1159.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds