organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Cyano-N-(2-hy­droxy­benz­yl)anilinium chloride

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 18 January 2010; accepted 28 January 2010; online 3 February 2010)

In the cation of the title compound, C14H13N2O+·Cl, the two benzene rings are roughly parallel and are twisted slightly from each other by a dihedral angle of only 2.87 (1)°. In the crystal, weak inter­molecular N—H⋯Cl and O—H⋯Cl hydrogen bonds link the cations and anions into chains extended along the b axis.

Related literature

For the crystal structures and properties of related compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H., Huang, S.-P. & -, D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]); Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]); Loeb et al. (2005[Loeb, S. J., Tiburcio, J. & Vella, S. J. (2005). Org. Lett. 7, 4923-4926]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N2O+·Cl

  • Mr = 260.71

  • Monoclinic, P 21 /n

  • a = 13.071 (3) Å

  • b = 7.9437 (16) Å

  • c = 13.141 (3) Å

  • β = 90.18 (3)°

  • V = 1364.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 K

  • 0.4 × 0.35 × 0.2 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.881, Tmax = 0.940

  • 13632 measured reflections

  • 3116 independent reflections

  • 2264 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.127

  • S = 1.05

  • 3116 reflections

  • 163 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.90 2.29 3.1315 (17) 155
O1—H1⋯Cl1ii 0.85 2.24 3.0870 (18) 171
N1—H1B⋯Cl1 0.90 2.14 3.0376 (16) 173
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last few years, more and more people have focused on the chemistry of nitrile derivatives because of their wide range of applications in industry and coordination chemistry as ligands (Fu et al., 2007; Fu & Xiong 2008). For example, phthalonitriles have been used as starting materials for phthalocyanines, which are important components for dyes, pigments, gas sensors, optical limiters and liquid crystals, and which are also used in medicine, as singlet oxygen photosensitisers for photodynamic therapy. Recently, we have reported a few benzonitrile compounds (Zhao et al., 2008; Fu et al., 2008; Fu et al., 2009). As an extension of our work on the structural characterization, we report here the crystal structure of the title compound, 3-cyano-N-(2-hydroxybenzyl)anilinium chloride.

In the title compound (Fig.1), the amino N atom is protonated. The phenyl rings are roughly parallel and only slightly twisted from each other by a dihedral angle of 2.87 (1) °. A larger twist angle of 20.7 (3)° is observed in the related N-(4-(Trifluoromethyl)benzyl)-4-methoxyanilinium trifluoromethanesulfonate compound (Loeb et al., 2005). The nitrile group bond length of 1.127 (2)Å is within the normal range.

The crystal packing is stabilized by N—H···Cl and O—H···Cl hydrogen bonds to form a one-dimensional chain parallel to the b axis. (Table 1, Fig. 2).

Related literature top

For the crystal structures and properties of related compounds, see: Fu et al. (2007, 2008, 2009); Fu & Xiong (2008); Zhao et al. (2008); Loeb et al. (2005).

Experimental top

The commercial 3-(2-hydroxybenzylamino)benzonitrile (3 mmol, 669 mg) was dissolved in water/HCl (50:1 v/v) solution. The solvent was slowly evaporated in air affording colourless block-shaped crystals of the title compound suitable for X-ray analysis.

While the permittivity measurement shows that there is no phase transition within the temperature range (from 100 K to 400 K), and the permittivity is 9 at 1 MHz at room temperature.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (aromatic) and C–H = 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C or N). H atoms attached to O and N atoms located in difference Fourier maps and freely refined. In the last stage of refinement they were treated as riding on the O and N, with Uiso(H) = 1.5Ueq(O and N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the one-dimensional hydrogen-bonded chain. H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.
3-Cyano-N-(2-hydroxybenzyl)anilinium chloride top
Crystal data top
C14H13N2O+·ClF(000) = 544
Mr = 260.71Dx = 1.269 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2264 reflections
a = 13.071 (3) Åθ = 3.0–27.5°
b = 7.9437 (16) ŵ = 0.27 mm1
c = 13.141 (3) ÅT = 298 K
β = 90.18 (3)°Block, colourless
V = 1364.4 (5) Å30.4 × 0.35 × 0.2 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
3116 independent reflections
Radiation source: fine-focus sealed tube2264 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1616
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.881, Tmax = 0.940l = 1717
13632 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.2789P]
where P = (Fo2 + 2Fc2)/3
3116 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.31 e Å3
3 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H13N2O+·ClV = 1364.4 (5) Å3
Mr = 260.71Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.071 (3) ŵ = 0.27 mm1
b = 7.9437 (16) ÅT = 298 K
c = 13.141 (3) Å0.4 × 0.35 × 0.2 mm
β = 90.18 (3)°
Data collection top
Rigaku Mercury2
diffractometer
3116 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2264 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.940Rint = 0.048
13632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0503 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
3116 reflectionsΔρmin = 0.26 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.64724 (11)0.46075 (18)0.35772 (11)0.0389 (4)
H1A0.66230.54790.31660.058*
H1B0.69610.38210.34960.058*
O10.70213 (12)0.84372 (19)0.41720 (13)0.0677 (5)
H10.72410.93980.39900.102*
C120.42880 (16)0.1649 (2)0.33106 (15)0.0474 (5)
C130.52443 (14)0.2279 (2)0.35670 (14)0.0420 (4)
H130.57120.16250.39270.050*
C80.54865 (14)0.3902 (2)0.32752 (14)0.0389 (4)
C110.35950 (16)0.2619 (3)0.27743 (17)0.0559 (5)
H110.29530.21900.26100.067*
C90.48044 (15)0.4880 (2)0.27398 (17)0.0499 (5)
H90.49780.59720.25520.060*
C60.74965 (16)0.5918 (3)0.49665 (15)0.0487 (5)
C10.77360 (16)0.7568 (3)0.47075 (16)0.0494 (5)
C70.64809 (17)0.5202 (3)0.46654 (16)0.0552 (6)
H7A0.59570.60540.47530.066*
H7B0.63180.42650.51090.066*
C20.86690 (18)0.8245 (3)0.50023 (18)0.0611 (6)
H20.88340.93460.48280.073*
C100.38606 (16)0.4227 (3)0.24836 (19)0.0603 (6)
H100.34000.48770.21120.072*
C140.40186 (18)0.0046 (3)0.36042 (19)0.0601 (6)
C30.93473 (19)0.7289 (4)0.55504 (19)0.0690 (7)
H30.99730.77470.57450.083*
C50.81903 (19)0.4986 (3)0.55185 (17)0.0613 (6)
H50.80320.38820.56930.074*
C40.9113 (2)0.5654 (4)0.58170 (18)0.0702 (7)
H40.95730.50130.61940.084*
N20.3796 (2)0.1368 (3)0.3823 (2)0.0900 (8)
Cl10.79799 (4)0.17211 (7)0.33575 (4)0.05632 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0389 (8)0.0327 (8)0.0452 (9)0.0017 (6)0.0049 (6)0.0003 (7)
O10.0616 (10)0.0608 (10)0.0808 (12)0.0066 (8)0.0118 (8)0.0039 (8)
C120.0514 (12)0.0390 (10)0.0519 (12)0.0115 (9)0.0063 (9)0.0078 (9)
C130.0455 (11)0.0337 (9)0.0469 (11)0.0002 (8)0.0006 (8)0.0020 (8)
C80.0361 (10)0.0360 (9)0.0447 (10)0.0011 (8)0.0059 (8)0.0030 (8)
C110.0419 (11)0.0632 (14)0.0625 (13)0.0077 (10)0.0020 (10)0.0044 (11)
C90.0440 (12)0.0403 (11)0.0654 (13)0.0024 (9)0.0048 (9)0.0091 (9)
C60.0529 (12)0.0520 (12)0.0412 (10)0.0106 (10)0.0068 (9)0.0092 (9)
C10.0490 (12)0.0506 (12)0.0487 (11)0.0075 (10)0.0008 (9)0.0096 (10)
C70.0590 (13)0.0570 (13)0.0497 (12)0.0183 (10)0.0132 (10)0.0139 (10)
C20.0628 (15)0.0572 (13)0.0634 (14)0.0205 (11)0.0077 (11)0.0055 (11)
C100.0432 (12)0.0614 (14)0.0762 (16)0.0049 (10)0.0043 (10)0.0102 (12)
C140.0666 (15)0.0466 (13)0.0671 (14)0.0145 (11)0.0020 (11)0.0045 (11)
C30.0585 (15)0.0872 (18)0.0613 (14)0.0176 (13)0.0128 (11)0.0104 (13)
C50.0781 (17)0.0551 (13)0.0507 (12)0.0046 (12)0.0055 (11)0.0002 (10)
C40.0719 (17)0.0850 (18)0.0537 (14)0.0066 (14)0.0082 (12)0.0000 (13)
N20.111 (2)0.0551 (13)0.1037 (19)0.0313 (13)0.0078 (15)0.0019 (12)
Cl10.0555 (3)0.0508 (3)0.0628 (3)0.0132 (2)0.0059 (2)0.0056 (2)
Geometric parameters (Å, º) top
N1—C81.459 (2)C6—C51.376 (3)
N1—C71.506 (3)C6—C11.390 (3)
N1—H1A0.9000C6—C71.496 (3)
N1—H1B0.9000C1—C21.387 (3)
O1—C11.356 (3)C7—H7A0.9700
O1—H10.8500C7—H7B0.9700
C12—C111.381 (3)C2—C31.370 (3)
C12—C131.387 (3)C2—H20.9300
C12—C141.445 (3)C10—H100.9300
C13—C81.382 (3)C14—N21.127 (3)
C13—H130.9300C3—C41.380 (4)
C8—C91.375 (3)C3—H30.9300
C11—C101.378 (3)C5—C41.373 (3)
C11—H110.9300C5—H50.9300
C9—C101.379 (3)C4—H40.9300
C9—H90.9300
C8—N1—C7112.49 (14)O1—C1—C2123.5 (2)
C8—N1—H1A109.1O1—C1—C6116.84 (18)
C7—N1—H1A109.1C2—C1—C6119.7 (2)
C8—N1—H1B109.1C6—C7—N1111.97 (16)
C7—N1—H1B109.1C6—C7—H7A109.2
H1A—N1—H1B107.8N1—C7—H7A109.2
C1—O1—H1111.7C6—C7—H7B109.2
C11—C12—C13120.78 (18)N1—C7—H7B109.2
C11—C12—C14119.76 (19)H7A—C7—H7B107.9
C13—C12—C14119.5 (2)C3—C2—C1119.9 (2)
C8—C13—C12118.45 (18)C3—C2—H2120.0
C8—C13—H13120.8C1—C2—H2120.0
C12—C13—H13120.8C11—C10—C9120.5 (2)
C9—C8—C13121.38 (18)C11—C10—H10119.8
C9—C8—N1119.52 (16)C9—C10—H10119.8
C13—C8—N1119.06 (17)N2—C14—C12178.9 (3)
C10—C11—C12119.56 (19)C2—C3—C4120.7 (2)
C10—C11—H11120.2C2—C3—H3119.6
C12—C11—H11120.2C4—C3—H3119.6
C8—C9—C10119.37 (19)C4—C5—C6121.3 (2)
C8—C9—H9120.3C4—C5—H5119.4
C10—C9—H9120.3C6—C5—H5119.4
C5—C6—C1119.2 (2)C5—C4—C3119.1 (2)
C5—C6—C7121.2 (2)C5—C4—H4120.4
C1—C6—C7119.6 (2)C3—C4—H4120.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.902.293.1315 (17)155
O1—H1···Cl1ii0.852.243.0870 (18)171
N1—H1B···Cl10.902.143.0376 (16)173
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H13N2O+·Cl
Mr260.71
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)13.071 (3), 7.9437 (16), 13.141 (3)
β (°) 90.18 (3)
V3)1364.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.4 × 0.35 × 0.2
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.881, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
13632, 3116, 2264
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.127, 1.05
No. of reflections3116
No. of parameters163
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.26

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.902.293.1315 (17)154.8
O1—H1···Cl1ii0.852.243.0870 (18)171.4
N1—H1B···Cl10.902.143.0376 (16)172.8
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H., Huang, S.-P. & -, D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationLoeb, S. J., Tiburcio, J. & Vella, S. J. (2005). Org. Lett. 7, 4923–4926  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds