organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Cyano­meth­yl)benzamide

aLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, and bCentre National pour la Recherche Scientifique et Technique, Division UATRS, Rabat, Morocco
*Correspondence e-mail: alamianouar@yahoo.fr

(Received 21 January 2010; accepted 28 January 2010; online 6 February 2010)

In the structure of the title compound, C9H8N2O, the amide group is twisted by a dihedral angle of 21.86 (7)° with respect to the benzene ring, while the planes of the benzene ring and cyano­methyl group form a dihedral angle of 53.13 (11)°. In the crystal structure, mol­ecules are linked via N—H⋯O hydrogen bonds, forming a chain running parallel to the a axis.

Related literature

For the biological activity and medicinal properties of tetra­zole derivatives, see: Smissman et al. (1976[Smissman, E. E., Terada, A. & El-antably, S. (1976). J. Med. Chem. 19, 165-167.]); McGuire et al. (1990[McGuire, J. J., Russell, C. A., Bolanowska, W. E., Freitag, C. M., Jones, C. S. & Kalman, T. I. (1990). Cancer Res. 50, 1726-1731.]); Lunn et al. (1992[Lunn, W. H., Schoepp, D. D., Calligaro, D. O., Vasileff, R. T., Heinz, L. J., Salhoff, C. R. & O Malley, P. J. (1992). J. Med. Chem. 35, 4608-4612.]); Itoh et al. (1995[Itoh, F., Yukishige, K., Wajima, M., Ootsu, K. & Akimoto, H. (1995). Chem. Pharm. Bull. 43, 230-235.]); Upadhayaya et al. (2004[Upadhayaya, R. S., Jain, S., Sinha, N., Kishore, N., Chandra, R. & Arora, S. K. (2004). Eur. J. Med. Chem. 39, 575-592.]); Wu et al. (2008[Wu, J., Wang, Q., Guo, J., Hu, Z., Yin, Z., Xu, J. & Wu, X. (2008). Eur. J. Pharm. 589, 220-228.]); Rostom et al. (2009[Rostom, S. F., Ashour, H. M. A., El Razik, H. A. A., Abd El Fattah, A. H. & El-Din, N. N. (2009). Bioorg. Med. Chem. 17, 2410-2422.]); Burger (1991[Burger, A. (1991). Prog. Drug Res. 37, 287-371.]); Singh et al. (1980[Singh, H., Chawla, A. S., Kapoor, V. K., Paul, D. & Malhotra, R. K. (1980). Prog. Med. Chem. 17, 151-183.]). For the synthetic procedure, see: Adams & Langley (1941a[Adams, R. & Langley, W. D. (1941a). Org. Synth. 1, 298-301.],b[Adams, R. & Langley, W. D. (1941b). Org. Synth. 1, 355-356.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N2O

  • Mr = 160.17

  • Orthorhombic, P b c a

  • a = 9.8623 (5) Å

  • b = 8.0576 (4) Å

  • c = 20.9268 (9) Å

  • V = 1662.98 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.33 × 0.28 × 0.22 mm

Data collection
  • Bruker X8 APEXII CCD area-detector diffractometer

  • 11132 measured reflections

  • 1920 independent reflections

  • 1433 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 1.02

  • 1920 reflections

  • 141 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H6⋯O1i 0.819 (17) 2.021 (18) 2.8313 (14) 169
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 amd SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 amd SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Tetrazoles derivatives are an important class of compounds, which can be used in the fields of bioorganic and medicinal chemistry as antibacterials, anti-cancer, heart disease, neurodegenerative disease, and antifungal activity (Smissman et al.,1976; McGuire et al., 1990; Lunn et al., 1992; Itoh et al., 1995; Upadhayaya et al., 2004; Wu et al., 2008; Rostom et al., 2009.

The tetrazole moiety has long been established as a bioisostere of a carboxyl unit (Burger, 1991). A major advantage of tetrazoles over carboxylic acids is that they are resistant to many biological metabolic degradation pathways (Singh et al., 1980).

With the aim of developing new tetrazolic derived, an analog isosteric of the glycine, we have prepared N-(cyanomethyl)benzamide, a key intermediate, starting from aminoacetonitrile hydrogen sulphate.

In the title compound, the amide group is rotated by 21,86° out of the plane of the benzene ring (Fig. 1). The crystal packing is stabilized by N—H···O hydrogen bonds (Table 1) to form infinite chains parallel to the a axis (Fig. 2).

Related literature top

For the biological activity and medicinal properties of tetrazole derivatives, see: Smissman et al. (1976); McGuire et al. (1990); Lunn et al. (1992); Itoh et al. (1995); Upadhayaya et al. (2004); Wu et al. (2008); Rostom et al. (2009); Burger (1991); Singh et al. (1980). For the synthetic procedure, see: Adams & Langley (1941a,b).

Experimental top

Aminoacetonitrile hydrogen sulphate was prepared in two steps from technical formaldehyde (Adams & Langley, 1941a,b).

To a solution of 10 mmol s of aminoacetonitrile hydrogen sulfate in 10 ml of methylene chloride, triethylamine was added until neutral pH at cold temperature (0 <T< 5°C ), then 11 mmol s of Benzoyl chloride was added at the same temperature. The mixture was stirred at 0°C for 1 hour. The whole is taken to room temperature and left under magnetic agitation during 16 hours. After reaction, the mixture was washed 3 times with a solution of citric acid 15%; then, the organic solution is dried over sodium sulphate and evaporated under reduced pressure. The residue was crystallized from a mixture ether/hexane (1:1) to give white solid in 82% yield. m.p.: 138- 140°C .

The structure of the product was established on the basis of NMR spectroscopy (1H, 13C ), MS data and elemental analysis.

Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

All H atoms were located in a difference map and refined without any distance restraints.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Partial packing view showing the chain generated by N—H···O hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.[Symmetry code: (i) x+1/2,y,-z+1/2].
N-(Cyanomethyl)benzamide top
Crystal data top
C9H8N2ODx = 1.280 Mg m3
Mr = 160.17Melting point: 413 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3689 reflections
a = 9.8623 (5) Åθ = 2.5–27.2°
b = 8.0576 (4) ŵ = 0.09 mm1
c = 20.9268 (9) ÅT = 296 K
V = 1662.98 (14) Å3Block, colourless
Z = 80.33 × 0.28 × 0.22 mm
F(000) = 672
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
1433 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 27.6°, θmin = 2.8°
ϕ and ω scansh = 1212
11132 measured reflectionsk = 1010
1920 independent reflectionsl = 2627
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.2439P]
where P = (Fo2 + 2Fc2)/3
1920 reflections(Δ/σ)max < 0.001
141 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C9H8N2OV = 1662.98 (14) Å3
Mr = 160.17Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.8623 (5) ŵ = 0.09 mm1
b = 8.0576 (4) ÅT = 296 K
c = 20.9268 (9) Å0.33 × 0.28 × 0.22 mm
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
1433 reflections with I > 2σ(I)
11132 measured reflectionsRint = 0.027
1920 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.14 e Å3
1920 reflectionsΔρmin = 0.18 e Å3
141 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24170 (14)0.39220 (16)0.13675 (7)0.0488 (3)
C20.25299 (17)0.43033 (18)0.07283 (7)0.0591 (4)
C30.36704 (17)0.38418 (18)0.03941 (7)0.0592 (4)
C40.47054 (16)0.30131 (19)0.06980 (7)0.0552 (4)
C50.46079 (13)0.26308 (16)0.13418 (6)0.0448 (3)
C60.34534 (11)0.30793 (14)0.16810 (6)0.0387 (3)
C70.32434 (11)0.26377 (15)0.23629 (6)0.0415 (3)
C80.41628 (14)0.17663 (17)0.33761 (6)0.0498 (3)
C90.37055 (14)0.31427 (19)0.37822 (6)0.0529 (3)
O10.21031 (8)0.25889 (15)0.26031 (5)0.0645 (3)
N10.43271 (11)0.22652 (14)0.27184 (5)0.0456 (3)
N20.33580 (17)0.4211 (2)0.40988 (7)0.0792 (4)
H10.1646 (16)0.4224 (18)0.1609 (7)0.064 (4)*
H20.1826 (17)0.489 (2)0.0525 (8)0.075 (5)*
H30.3723 (16)0.410 (2)0.0064 (8)0.073 (5)*
H40.5496 (17)0.267 (2)0.0484 (8)0.067 (5)*
H50.5302 (16)0.2004 (18)0.1546 (7)0.054 (4)*
H60.5098 (18)0.2419 (17)0.2585 (7)0.053 (4)*
H70.5037 (17)0.1326 (19)0.3548 (8)0.065 (4)*
H80.3480 (15)0.0870 (17)0.3409 (7)0.057 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0411 (7)0.0482 (7)0.0571 (8)0.0051 (6)0.0007 (6)0.0009 (6)
C20.0638 (9)0.0554 (8)0.0581 (8)0.0075 (7)0.0087 (7)0.0066 (7)
C30.0733 (11)0.0587 (8)0.0457 (7)0.0087 (8)0.0014 (7)0.0005 (6)
C40.0508 (8)0.0631 (8)0.0517 (7)0.0064 (7)0.0110 (6)0.0100 (6)
C50.0333 (6)0.0512 (7)0.0500 (7)0.0016 (5)0.0015 (5)0.0043 (5)
C60.0290 (5)0.0400 (5)0.0470 (6)0.0038 (5)0.0013 (5)0.0023 (5)
C70.0240 (5)0.0503 (6)0.0502 (7)0.0016 (5)0.0027 (5)0.0016 (5)
C80.0373 (7)0.0564 (8)0.0558 (7)0.0041 (6)0.0010 (6)0.0149 (6)
C90.0435 (7)0.0665 (8)0.0487 (7)0.0021 (6)0.0020 (6)0.0156 (7)
O10.0224 (4)0.1126 (9)0.0586 (6)0.0004 (5)0.0037 (4)0.0142 (5)
N10.0236 (5)0.0632 (7)0.0500 (6)0.0002 (5)0.0027 (4)0.0093 (5)
N20.0867 (11)0.0836 (9)0.0675 (8)0.0108 (8)0.0100 (8)0.0003 (7)
Geometric parameters (Å, º) top
C1—C21.377 (2)C5—H50.952 (16)
C1—C61.3915 (17)C6—C71.4852 (17)
C1—H10.945 (16)C7—O11.2324 (13)
C2—C31.376 (2)C7—N11.3364 (15)
C2—H20.940 (18)C8—N11.4430 (17)
C3—H30.984 (16)C8—C91.468 (2)
C4—C31.376 (2)C8—H80.990 (15)
C4—H40.940 (17)C8—H70.999 (17)
C5—C41.3854 (19)C9—N21.1389 (19)
C5—C61.3896 (17)N1—H60.820 (17)
C5—C6—C1119.21 (12)N1—C8—H8110.2 (8)
C5—C6—C7122.87 (11)C9—C8—H8107.6 (8)
C1—C6—C7117.86 (11)N1—C8—H7110.2 (9)
O1—C7—N1119.70 (11)C9—C8—H7109.0 (9)
O1—C7—C6121.79 (11)H8—C8—H7107.6 (12)
N1—C7—C6118.50 (10)N2—C9—C8179.61 (18)
C4—C5—C6119.72 (13)C3—C2—C1119.98 (14)
C4—C5—H5120.3 (9)C3—C2—H2120.6 (10)
C6—C5—H5119.9 (9)C1—C2—H2119.4 (10)
C3—C4—C5120.40 (14)C4—C3—C2120.20 (14)
C3—C4—H4122.4 (10)C4—C3—H3121.1 (10)
C5—C4—H4117.2 (10)C2—C3—H3118.7 (9)
C2—C1—C6120.49 (13)C7—N1—C8120.25 (11)
C2—C1—H1121.8 (9)C7—N1—H6121.2 (11)
C6—C1—H1117.7 (9)C8—N1—H6118.2 (11)
N1—C8—C9112.10 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H6···O1i0.819 (17)2.021 (18)2.8313 (14)169
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H8N2O
Mr160.17
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)9.8623 (5), 8.0576 (4), 20.9268 (9)
V3)1662.98 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.33 × 0.28 × 0.22
Data collection
DiffractometerBruker X8 APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11132, 1920, 1433
Rint0.027
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.02
No. of reflections1920
No. of parameters141
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and ORTEP-3 for Windows (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H6···O1i0.819 (17)2.021 (18)2.8313 (14)169
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

The authors thank the CNRST Morocco for financial support (Programs PROTAS D13/03).

References

First citationAdams, R. & Langley, W. D. (1941a). Org. Synth. 1, 298–301.  Google Scholar
First citationAdams, R. & Langley, W. D. (1941b). Org. Synth. 1, 355–356.  Google Scholar
First citationBruker (2005). APEX2 amd SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurger, A. (1991). Prog. Drug Res. 37, 287–371.  PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationItoh, F., Yukishige, K., Wajima, M., Ootsu, K. & Akimoto, H. (1995). Chem. Pharm. Bull. 43, 230–235.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLunn, W. H., Schoepp, D. D., Calligaro, D. O., Vasileff, R. T., Heinz, L. J., Salhoff, C. R. & O Malley, P. J. (1992). J. Med. Chem. 35, 4608–4612.  Google Scholar
First citationMcGuire, J. J., Russell, C. A., Bolanowska, W. E., Freitag, C. M., Jones, C. S. & Kalman, T. I. (1990). Cancer Res. 50, 1726–1731.  CAS PubMed Web of Science Google Scholar
First citationRostom, S. F., Ashour, H. M. A., El Razik, H. A. A., Abd El Fattah, A. H. & El-Din, N. N. (2009). Bioorg. Med. Chem. 17, 2410–2422.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, H., Chawla, A. S., Kapoor, V. K., Paul, D. & Malhotra, R. K. (1980). Prog. Med. Chem. 17, 151–183.  CrossRef CAS PubMed Google Scholar
First citationSmissman, E. E., Terada, A. & El-antably, S. (1976). J. Med. Chem. 19, 165–167.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpadhayaya, R. S., Jain, S., Sinha, N., Kishore, N., Chandra, R. & Arora, S. K. (2004). Eur. J. Med. Chem. 39, 575–592.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationWu, J., Wang, Q., Guo, J., Hu, Z., Yin, Z., Xu, J. & Wu, X. (2008). Eur. J. Pharm. 589, 220–228.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds