organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o595-o596

Anilinium hydrogen sulfate

aLaboratoire des Structures, Propriétés et Interactions Inter-Atomiques., Centre Universitaire Abbes Laghrour, Khenchela 40000, Algeria
*Correspondence e-mail: benalicherif@hotmail.com

(Received 23 January 2010; accepted 6 February 2010; online 13 February 2010)

The asymmetric unit of the title compound, C6H8N+·HSO4, contains two cations and two anions which are linked to each other through N—H⋯O hydrogen bonds, formed by all H atoms covalently bonded to the N atoms. In addition, strong O—H⋯O anion–anion hydrogen-bond inter­actions are also observed.

Related literature

For hydrogen bonding, see: Zimmerman & Corbin (2000[Zimmerman, S. C. & Corbin, P. S. (2000). Struct. Bond. 96, 63-94.]); Brunsveld et al. (2001[Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. (2001). Chem. Rev. 101, 4071-4097.]); Desiraju (2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p 507. New York: Oxford University Press.]); Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Benali-Cherif, Boussekine et al. (2009[Benali-Cherif, N., Boussekine, H., Boutobba, Z. & Dadda, N. (2009). Acta Cryst. E65, o2744.]); Messai et al. (2009[Messai, A., Direm, A., Benali-Cherif, N., Luneau, D. & Jeanneau, E. (2009). Acta Cryst. E65, o460.]); Benali-Cherif, Falek et al. (2009[Benali-Cherif, N., Falek, W. & Direm, A. (2009). Acta Cryst. E65, o3058-o3059.]); Rademeyer (2004[Rademeyer, M. (2004). Acta Cryst. E60, o958-o960.]); Jayaraman et al. (2002[Jayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413-422.]); Smith et al. (2004[Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o1800-o1803.]); Paixão et al. (2000[Paixão, J. A., Matos Beja, A., Ramos Silva, M. & Martin-Gil, J. (2000). Acta Cryst. C56, 1132-1135.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8N+·HSO4

  • Mr = 191.20

  • Orthorhombic, P c a 21

  • a = 14.3201 (2) Å

  • b = 9.0891 (3) Å

  • c = 12.8771 (2) Å

  • V = 1676.04 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 293 K

  • 0.2 × 0.15 × 0.1 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 16963 measured reflections

  • 4641 independent reflections

  • 3108 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.117

  • S = 1.02

  • 4641 reflections

  • 219 parameters

  • 1 restraint

  • H-atom parameters not refined

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2096 Friedel pairs

  • Flack parameter: 0.08 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H11⋯O1Ai 0.89 1.95 2.821 (2) 167
N1A—H22⋯O3B 0.89 1.95 2.817 (4) 163
N1A—H33⋯O2Biii 0.89 2.01 2.884 (3) 169
N1B—H1⋯O1Bii 0.89 1.94 2.828 (3) 175
N1B—H2⋯O3Aii 0.89 2.05 2.867 (3) 153
N1B—H3⋯O1A 0.89 2.58 3.069 (3) 115
N1B—H3⋯O2A 0.89 2.03 2.916 (3) 175
O4A—H4⋯O3B 0.82 1.79 2.603 (4) 175
O4B—H44⋯O3Ai 0.82 1.84 2.635 (4) 163
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, z]; (ii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Data collection: KappaCCD Server Software (Nonius, 1998[Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-32 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The main purpose of this structural study was a determination of the arrangement of the cations and anions which are held together by two-dimensional hydrogen-bond networks.

Hydrogen bonding is one of the most versatile noncovalent forces in supramolecular chemistry and crystal engineering (Zimmerman & Corbin, 2000; Brunsveld et al., 2001; Desiraju, 2002). Therefore, in the past decades assessment of discrete hydrogen bonding patterns had received great attention (Steiner, 2002; Desiraju & Steiner, 1999) because of its widespread occurrence in biological systems.

The aim of this paper is to discuss hydrogen patterns assuring the connection between anilinium and hydrogensulfate entities and to establish their different graph-set motifs (Bernstein et al., 1995).

Bis(anilinium hydrogensulfate) is one of the hybrid compounds, rich in H-bonds (Benali-Cherif, Boussekine, et al., 2009; Messai et al., 2009; Benali-Cherif, Falek, et al., 2009), which could have potential importance in constructing sophisticated assemblies from discrete ionic or molecular building blocks due to the strength and the directionality of hydrogen bonds (Steiner et al. 2002, Jayaraman et al., 2002).

Recently, similar structures containing anilinium cations have been reported. Among examples, can be named the folowing ones: anilinium nitrate (Rademeyer, 2004), anilinium picrate (Smith et al., 2004), anilinium hydrogenphosphite and anilinium hydrogenoxalate hemihydrate(Paixão et al., 2000).

The structure of (I) may be described as formed by alternating sheets of cations and anions (Fig. 2) which are held together with four and five-centered N—H···O H-bonds to form C44(10) infinite chains running through the c direction. Moreover, strong O—H···O hydrogen bonds observed between bisulfate anions generate C22(8) chains in the a axis direction. The infinite chains resulting from anion-anion and anion-cation interactions can be described as zigzag layers parallel to the (ac) plane (Fig. 3). The crossing of these chains builds up different rings with R33(10) and R54(16) graph set motifs (Fig. 3) (Etter et al., 1990; Bernstein et al., 1995).

Related literature top

For hydrogen bonding, see: Zimmerman & Corbin (2000); Brunsveld et al. (2001); Desiraju (2002); Desiraju & Steiner (1999); Steiner (2002); Etter et al. (1990); Bernstein et al. (1995). For related structures, see: Benali-Cherif, Boussekine et al. (2009); Messai et al. (2009); Benali-Cherif, Falek, et al. (2009); Rademeyer (2004); Jayaraman et al. (2002); Smith et al. (2004); Paixão et al., (2000).

Experimental top

Single crystals of the title compound are prepared by slow evaporation at room temperature of an aqueous solution of aniline and sulfuric acid.

Refinement top

The title compound crystallizes in the centrosymmetric space group P c a 21. All non-H atoms were refined with anisotropic atomic displacement parameters. H atoms were located from Fourier difference maps and treated as riding with C—H = 0.93 Å, N—H = 0.89 Å and O—H = 0.82 Å. Their isotropic displacement parameters were set equal to 1.2Ueq (C) and 1.5Ueq (N, O).

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-32 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP view of the asymmetric unit of (I) showing 10% probability displacement ellipsoids.
[Figure 2] Fig. 2. Alternating cationic and anionc layers visualized through the (001) plane.
[Figure 3] Fig. 3. Intermolecular hydrogen bonding patterns running parallel to (bc) plane. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) x-1/2, -y+1, z; (ii) -x+1, -y+1, z+1/2; (iii) -x+1/2, y, z+1/2.
Anilinium hydrogen sulfate top
Crystal data top
C6H8N+·HSO4F(000) = 800
Mr = 191.20Dx = 1.516 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 16963 reflections
a = 14.3201 (2) Åθ = 2.7–30.0°
b = 9.0891 (3) ŵ = 0.36 mm1
c = 12.8771 (2) ÅT = 293 K
V = 1676.04 (7) Å3Prism, colourless
Z = 80.2 × 0.15 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
3108 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 30.0°, θmin = 2.7°
ωθ scansh = 1917
16963 measured reflectionsk = 912
4641 independent reflectionsl = 1816
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters not refined
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.1354P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4641 reflectionsΔρmax = 0.35 e Å3
219 parametersΔρmin = 0.47 e Å3
1 restraintAbsolute structure: Flack (1983), 2096 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (9)
Crystal data top
C6H8N+·HSO4V = 1676.04 (7) Å3
Mr = 191.20Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 14.3201 (2) ŵ = 0.36 mm1
b = 9.0891 (3) ÅT = 293 K
c = 12.8771 (2) Å0.2 × 0.15 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
3108 reflections with I > 2σ(I)
16963 measured reflectionsRint = 0.049
4641 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters not refined
wR(F2) = 0.117Δρmax = 0.35 e Å3
S = 1.02Δρmin = 0.47 e Å3
4641 reflectionsAbsolute structure: Flack (1983), 2096 Friedel pairs
219 parametersAbsolute structure parameter: 0.08 (9)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.21732 (15)0.3085 (2)0.3390 (2)0.0432 (5)
H220.23920.35250.28230.065*
H330.25500.32730.39240.065*
H110.16030.34220.35300.065*
C1A0.21307 (19)0.1496 (3)0.3217 (3)0.0363 (7)
C2A0.1721 (3)0.0988 (4)0.2311 (3)0.0531 (8)
H2A0.14820.16410.18230.064*
C3A0.1676 (3)0.0512 (4)0.2153 (3)0.0626 (10)
H3A0.13980.08750.15530.075*
C4A0.2039 (2)0.1480 (4)0.2873 (4)0.0640 (11)
H4A0.20060.24890.27600.077*
C5A0.2449 (3)0.0940 (4)0.3758 (3)0.0555 (9)
H5A0.26980.15880.42430.067*
C6A0.2493 (3)0.0551 (4)0.3931 (3)0.0458 (7)
H6A0.27700.09120.45330.055*
N1B0.52868 (13)0.2975 (2)0.5035 (2)0.0403 (5)
H10.58610.33420.49890.061*
H20.49890.33970.55640.061*
H30.49780.31540.44480.061*
C1B0.53385 (18)0.1390 (3)0.5207 (2)0.0330 (6)
C2B0.5767 (2)0.0855 (4)0.6081 (3)0.0498 (8)
H2B0.60150.14930.65730.060*
C3B0.5824 (3)0.0655 (4)0.6217 (4)0.0622 (10)
H3B0.61040.10370.68100.075*
C4B0.5467 (3)0.1590 (4)0.5479 (4)0.0622 (11)
H4B0.55210.26020.55680.075*
C5B0.5030 (3)0.1046 (4)0.4610 (4)0.0599 (11)
H5B0.47750.16850.41220.072*
C6B0.4973 (3)0.0456 (4)0.4468 (3)0.0453 (7)
H6B0.46880.08360.38770.054*
S1A0.47642 (6)0.50293 (6)0.27815 (5)0.0354 (3)
O1A0.53917 (14)0.5609 (3)0.3548 (2)0.0588 (5)
O2A0.43955 (15)0.3610 (2)0.30490 (17)0.0501 (5)
O3A0.5129 (3)0.5072 (3)0.1721 (3)0.0610 (11)
O4A0.39386 (13)0.6139 (2)0.27837 (19)0.0492 (5)
H40.34950.57840.24680.074*
S1B0.22562 (6)0.50860 (7)0.06533 (5)0.0340 (3)
O1B0.29288 (13)0.5696 (2)0.00469 (18)0.0543 (5)
O2B0.18378 (13)0.3739 (2)0.02858 (18)0.0477 (5)
O3B0.2609 (3)0.4930 (2)0.1701 (3)0.0570 (10)
O4B0.14771 (13)0.6268 (2)0.0699 (2)0.0493 (5)
H440.10670.60000.11000.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0488 (13)0.0354 (12)0.0452 (12)0.0039 (9)0.0019 (9)0.0050 (10)
C1A0.0319 (14)0.0339 (15)0.0431 (16)0.0026 (11)0.0016 (12)0.0062 (12)
C2A0.0594 (19)0.0502 (19)0.0496 (18)0.0050 (16)0.0107 (17)0.0079 (17)
C3A0.069 (2)0.055 (2)0.063 (3)0.001 (2)0.0126 (19)0.023 (2)
C4A0.0542 (19)0.0386 (19)0.099 (3)0.0010 (14)0.007 (2)0.022 (2)
C5A0.0558 (18)0.0426 (17)0.068 (3)0.0087 (16)0.0002 (19)0.0097 (17)
C6A0.0451 (15)0.045 (2)0.0471 (18)0.0003 (18)0.0043 (14)0.0026 (16)
N1B0.0429 (11)0.0348 (12)0.0433 (11)0.0024 (9)0.0007 (9)0.0008 (10)
C1B0.0320 (14)0.0303 (14)0.0366 (15)0.0033 (10)0.0044 (11)0.0006 (11)
C2B0.0532 (18)0.0478 (18)0.0483 (17)0.0025 (15)0.0088 (16)0.0018 (15)
C3B0.062 (2)0.058 (3)0.067 (2)0.008 (2)0.003 (2)0.024 (2)
C4B0.0561 (19)0.0345 (18)0.096 (3)0.0007 (15)0.021 (2)0.0099 (19)
C5B0.0511 (18)0.045 (2)0.084 (3)0.0072 (17)0.004 (2)0.0201 (19)
C6B0.0410 (15)0.0461 (19)0.0487 (19)0.0017 (18)0.0040 (14)0.0100 (17)
S1A0.0319 (6)0.0352 (5)0.0392 (6)0.0012 (2)0.0005 (5)0.0038 (2)
O1A0.0503 (12)0.0554 (14)0.0705 (14)0.0116 (11)0.0226 (10)0.0051 (12)
O2A0.0625 (13)0.0365 (11)0.0514 (12)0.0065 (10)0.0036 (10)0.0067 (8)
O3A0.058 (2)0.075 (2)0.050 (2)0.0183 (11)0.0188 (19)0.0205 (10)
O4A0.0391 (10)0.0430 (11)0.0655 (13)0.0065 (8)0.0047 (9)0.0081 (10)
S1B0.0305 (6)0.0341 (5)0.0374 (5)0.0020 (2)0.0013 (4)0.0020 (3)
O1B0.0427 (11)0.0621 (16)0.0580 (13)0.0112 (10)0.0141 (9)0.0022 (12)
O2B0.0499 (11)0.0368 (10)0.0564 (12)0.0074 (9)0.0048 (9)0.0099 (9)
O3B0.0476 (18)0.073 (2)0.050 (2)0.0086 (10)0.0119 (18)0.0084 (10)
O4B0.0470 (11)0.0379 (11)0.0630 (12)0.0054 (9)0.0082 (10)0.0013 (10)
Geometric parameters (Å, º) top
N1A—C1A1.462 (4)C1B—C6B1.378 (4)
N1A—H220.8900C2B—C3B1.386 (6)
N1A—H330.8900C2B—H2B0.9300
N1A—H110.8900C3B—C4B1.373 (6)
C1A—C6A1.361 (5)C3B—H3B0.9300
C1A—C2A1.385 (5)C4B—C5B1.374 (6)
C2A—C3A1.380 (5)C4B—H4B0.9300
C2A—H2A0.9300C5B—C6B1.380 (4)
C3A—C4A1.380 (6)C5B—H5B0.9300
C3A—H3A0.9300C6B—H6B0.9300
C4A—C5A1.372 (6)S1A—O1A1.435 (2)
C4A—H4A0.9300S1A—O2A1.436 (2)
C5A—C6A1.375 (4)S1A—O3A1.463 (4)
C5A—H5A0.9300S1A—O4A1.554 (2)
C6A—H6A0.9300O4A—H40.8201
N1B—C1B1.460 (3)S1B—O1B1.431 (2)
N1B—H10.8900S1B—O2B1.4430 (19)
N1B—H20.8900S1B—O3B1.448 (4)
N1B—H30.8900S1B—O4B1.550 (2)
C1B—C2B1.371 (4)O4B—H440.8200
C1A—N1A—H22109.5C2B—C1B—N1B119.8 (3)
C1A—N1A—H33109.5C6B—C1B—N1B119.0 (3)
H22—N1A—H33109.5C1B—C2B—C3B118.8 (3)
C1A—N1A—H11109.5C1B—C2B—H2B120.6
H22—N1A—H11109.5C3B—C2B—H2B120.6
H33—N1A—H11109.5C4B—C3B—C2B120.2 (3)
C6A—C1A—C2A121.4 (3)C4B—C3B—H3B119.9
C6A—C1A—N1A120.3 (3)C2B—C3B—H3B119.9
C2A—C1A—N1A118.4 (3)C3B—C4B—C5B120.7 (4)
C3A—C2A—C1A118.2 (3)C3B—C4B—H4B119.7
C3A—C2A—H2A120.9C5B—C4B—H4B119.7
C1A—C2A—H2A120.9C4B—C5B—C6B119.4 (3)
C2A—C3A—C4A120.9 (3)C4B—C5B—H5B120.3
C2A—C3A—H3A119.6C6B—C5B—H5B120.3
C4A—C3A—H3A119.6C1B—C6B—C5B119.7 (3)
C5A—C4A—C3A119.4 (3)C1B—C6B—H6B120.2
C5A—C4A—H4A120.3C5B—C6B—H6B120.2
C3A—C4A—H4A120.3O1A—S1A—O2A113.28 (16)
C4A—C5A—C6A120.5 (3)O1A—S1A—O3A114.1 (2)
C4A—C5A—H5A119.8O2A—S1A—O3A112.27 (15)
C6A—C5A—H5A119.8O1A—S1A—O4A103.72 (14)
C1A—C6A—C5A119.6 (3)O2A—S1A—O4A107.62 (12)
C1A—C6A—H6A120.2O3A—S1A—O4A104.85 (16)
C5A—C6A—H6A120.2S1A—O4A—H4109.5
C1B—N1B—H1109.5O1B—S1B—O2B113.68 (16)
C1B—N1B—H2109.5O1B—S1B—O3B113.0 (2)
H1—N1B—H2109.5O2B—S1B—O3B111.55 (14)
C1B—N1B—H3109.5O1B—S1B—O4B103.86 (13)
H1—N1B—H3109.5O2B—S1B—O4B107.56 (12)
H2—N1B—H3109.5O3B—S1B—O4B106.47 (17)
C2B—C1B—C6B121.2 (3)S1B—O4B—H44109.5
C6A—C1A—C2A—C3A0.9 (5)C6B—C1B—C2B—C3B0.4 (4)
N1A—C1A—C2A—C3A179.6 (3)N1B—C1B—C2B—C3B178.8 (3)
C1A—C2A—C3A—C4A0.7 (5)C1B—C2B—C3B—C4B0.9 (4)
C2A—C3A—C4A—C5A0.0 (6)C2B—C3B—C4B—C5B1.6 (5)
C3A—C4A—C5A—C6A0.4 (6)C3B—C4B—C5B—C6B1.7 (6)
C2A—C1A—C6A—C5A0.4 (5)C2B—C1B—C6B—C5B0.5 (5)
N1A—C1A—C6A—C5A180.0 (3)N1B—C1B—C6B—C5B178.9 (3)
C4A—C5A—C6A—C1A0.2 (5)C4B—C5B—C6B—C1B1.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H11···O1Ai0.891.952.821 (2)167
N1B—H2···O3Aii0.892.052.867 (3)153
N1A—H33···O2Biii0.892.012.884 (3)169
N1B—H3···O1A0.892.583.069 (3)115
N1B—H3···O2A0.892.032.916 (3)175
N1A—H22···O3B0.891.952.817 (4)163
O4A—H4···O3B0.821.792.603 (4)175
O4B—H44···O3Ai0.821.842.635 (4)163
N1B—H1···O1Bii0.891.942.828 (3)175
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1, y+1, z+1/2; (iii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H8N+·HSO4
Mr191.20
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)14.3201 (2), 9.0891 (3), 12.8771 (2)
V3)1676.04 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.2 × 0.15 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16963, 4641, 3108
Rint0.049
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.02
No. of reflections4641
No. of parameters219
No. of restraints1
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.35, 0.47
Absolute structureFlack (1983), 2096 Friedel pairs
Absolute structure parameter0.08 (9)

Computer programs: KappaCCD Server Software (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-32 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H11···O1Ai0.8901.9462.821 (2)167.38
N1B—H2···O3Aii0.8902.0462.867 (3)152.79
N1A—H33···O2Biii0.8902.0062.884 (3)168.60
N1B—H3···O1A0.8902.5833.069 (3)115.14
N1B—H3···O2A0.8902.0292.916 (3)174.49
N1A—H22···O3B0.8901.9532.817 (4)163.16
O4A—H4···O3B0.8201.7862.603 (4)174.56
O4B—H44···O3Ai0.8201.8412.635 (4)162.51
N1B—H1···O1Bii0.8901.9412.828 (3)174.68
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1, y+1, z+1/2; (iii) x+1/2, y, z+1/2.
 

Acknowledgements

We wish to thank Dr M. Giorgi, Faculté des Sciences et Techniques de Saint Jérome, Marseille, France, for providing diffraction facilities and the Centre Universitaire de Khenchela for financial support.

References

First citationBenali-Cherif, N., Boussekine, H., Boutobba, Z. & Dadda, N. (2009). Acta Cryst. E65, o2744.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBenali-Cherif, N., Falek, W. & Direm, A. (2009). Acta Cryst. E65, o3058–o3059.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. (2001). Chem. Rev. 101, 4071–4097.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p 507. New York: Oxford University Press.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413–422.  Web of Science CSD CrossRef CAS Google Scholar
First citationMessai, A., Direm, A., Benali-Cherif, N., Luneau, D. & Jeanneau, E. (2009). Acta Cryst. E65, o460.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPaixão, J. A., Matos Beja, A., Ramos Silva, M. & Martin-Gil, J. (2000). Acta Cryst. C56, 1132–1135.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRademeyer, M. (2004). Acta Cryst. E60, o958–o960.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o1800–o1803.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationZimmerman, S. C. & Corbin, P. S. (2000). Struct. Bond. 96, 63–94.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o595-o596
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds