organic compounds
Anilinium hydrogen sulfate
aLaboratoire des Structures, Propriétés et Interactions Inter-Atomiques., Centre Universitaire Abbes Laghrour, Khenchela 40000, Algeria
*Correspondence e-mail: benalicherif@hotmail.com
The 6H8N+·HSO4−, contains two cations and two anions which are linked to each other through N—H⋯O hydrogen bonds, formed by all H atoms covalently bonded to the N atoms. In addition, strong O—H⋯O anion–anion hydrogen-bond interactions are also observed.
of the title compound, CRelated literature
For hydrogen bonding, see: Zimmerman & Corbin (2000); Brunsveld et al. (2001); Desiraju (2002); Desiraju & Steiner (1999); Steiner (2002); Etter et al. (1990); Bernstein et al. (1995). For related structures, see: Benali-Cherif, Boussekine et al. (2009); Messai et al. (2009); Benali-Cherif, Falek et al. (2009); Rademeyer (2004); Jayaraman et al. (2002); Smith et al. (2004); Paixão et al. (2000).
Experimental
Crystal data
|
Data collection
|
Data collection: KappaCCD Server Software (Nonius, 1998); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-32 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).
Supporting information
10.1107/S1600536810004782/dn2534sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810004782/dn2534Isup2.hkl
Single crystals of the title compound are prepared by slow evaporation at room temperature of an aqueous solution of aniline and sulfuric acid.
The title compound crystallizes in the centrosymmetric
P c a 21. All non-H atoms were refined with anisotropic atomic displacement parameters. H atoms were located from Fourier difference maps and treated as riding with C—H = 0.93 Å, N—H = 0.89 Å and O—H = 0.82 Å. Their isotropic displacement parameters were set equal to 1.2Ueq (C) and 1.5Ueq (N, O).Data collection: KappaCCD Server Software (Nonius, 1998); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-32 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).Fig. 1. ORTEP view of the asymmetric unit of (I) showing 10% probability displacement ellipsoids. | |
Fig. 2. Alternating cationic and anionc layers visualized through the (001) plane. | |
Fig. 3. Intermolecular hydrogen bonding patterns running parallel to (bc) plane. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) x-1/2, -y+1, z; (ii) -x+1, -y+1, z+1/2; (iii) -x+1/2, y, z+1/2. |
C6H8N+·HSO4− | F(000) = 800 |
Mr = 191.20 | Dx = 1.516 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 16963 reflections |
a = 14.3201 (2) Å | θ = 2.7–30.0° |
b = 9.0891 (3) Å | µ = 0.36 mm−1 |
c = 12.8771 (2) Å | T = 293 K |
V = 1676.04 (7) Å3 | Prism, colourless |
Z = 8 | 0.2 × 0.15 × 0.1 mm |
Nonius KappaCCD diffractometer | 3108 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.049 |
Graphite monochromator | θmax = 30.0°, θmin = 2.7° |
ω – θ scans | h = −19→17 |
16963 measured reflections | k = −9→12 |
4641 independent reflections | l = −18→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters not refined |
wR(F2) = 0.117 | w = 1/[σ2(Fo2) + (0.0622P)2 + 0.1354P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
4641 reflections | Δρmax = 0.35 e Å−3 |
219 parameters | Δρmin = −0.47 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 2096 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.08 (9) |
C6H8N+·HSO4− | V = 1676.04 (7) Å3 |
Mr = 191.20 | Z = 8 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 14.3201 (2) Å | µ = 0.36 mm−1 |
b = 9.0891 (3) Å | T = 293 K |
c = 12.8771 (2) Å | 0.2 × 0.15 × 0.1 mm |
Nonius KappaCCD diffractometer | 3108 reflections with I > 2σ(I) |
16963 measured reflections | Rint = 0.049 |
4641 independent reflections |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters not refined |
wR(F2) = 0.117 | Δρmax = 0.35 e Å−3 |
S = 1.02 | Δρmin = −0.47 e Å−3 |
4641 reflections | Absolute structure: Flack (1983), 2096 Friedel pairs |
219 parameters | Absolute structure parameter: 0.08 (9) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1A | 0.21732 (15) | 0.3085 (2) | 0.3390 (2) | 0.0432 (5) | |
H22 | 0.2392 | 0.3525 | 0.2823 | 0.065* | |
H33 | 0.2550 | 0.3273 | 0.3924 | 0.065* | |
H11 | 0.1603 | 0.3422 | 0.3530 | 0.065* | |
C1A | 0.21307 (19) | 0.1496 (3) | 0.3217 (3) | 0.0363 (7) | |
C2A | 0.1721 (3) | 0.0988 (4) | 0.2311 (3) | 0.0531 (8) | |
H2A | 0.1482 | 0.1641 | 0.1823 | 0.064* | |
C3A | 0.1676 (3) | −0.0512 (4) | 0.2153 (3) | 0.0626 (10) | |
H3A | 0.1398 | −0.0875 | 0.1553 | 0.075* | |
C4A | 0.2039 (2) | −0.1480 (4) | 0.2873 (4) | 0.0640 (11) | |
H4A | 0.2006 | −0.2489 | 0.2760 | 0.077* | |
C5A | 0.2449 (3) | −0.0940 (4) | 0.3758 (3) | 0.0555 (9) | |
H5A | 0.2698 | −0.1588 | 0.4243 | 0.067* | |
C6A | 0.2493 (3) | 0.0551 (4) | 0.3931 (3) | 0.0458 (7) | |
H6A | 0.2770 | 0.0912 | 0.4533 | 0.055* | |
N1B | 0.52868 (13) | 0.2975 (2) | 0.5035 (2) | 0.0403 (5) | |
H1 | 0.5861 | 0.3342 | 0.4989 | 0.061* | |
H2 | 0.4989 | 0.3397 | 0.5564 | 0.061* | |
H3 | 0.4978 | 0.3154 | 0.4448 | 0.061* | |
C1B | 0.53385 (18) | 0.1390 (3) | 0.5207 (2) | 0.0330 (6) | |
C2B | 0.5767 (2) | 0.0855 (4) | 0.6081 (3) | 0.0498 (8) | |
H2B | 0.6015 | 0.1493 | 0.6573 | 0.060* | |
C3B | 0.5824 (3) | −0.0655 (4) | 0.6217 (4) | 0.0622 (10) | |
H3B | 0.6104 | −0.1037 | 0.6810 | 0.075* | |
C4B | 0.5467 (3) | −0.1590 (4) | 0.5479 (4) | 0.0622 (11) | |
H4B | 0.5521 | −0.2602 | 0.5568 | 0.075* | |
C5B | 0.5030 (3) | −0.1046 (4) | 0.4610 (4) | 0.0599 (11) | |
H5B | 0.4775 | −0.1685 | 0.4122 | 0.072* | |
C6B | 0.4973 (3) | 0.0456 (4) | 0.4468 (3) | 0.0453 (7) | |
H6B | 0.4688 | 0.0836 | 0.3877 | 0.054* | |
S1A | 0.47642 (6) | 0.50293 (6) | 0.27815 (5) | 0.0354 (3) | |
O1A | 0.53917 (14) | 0.5609 (3) | 0.3548 (2) | 0.0588 (5) | |
O2A | 0.43955 (15) | 0.3610 (2) | 0.30490 (17) | 0.0501 (5) | |
O3A | 0.5129 (3) | 0.5072 (3) | 0.1721 (3) | 0.0610 (11) | |
O4A | 0.39386 (13) | 0.6139 (2) | 0.27837 (19) | 0.0492 (5) | |
H4 | 0.3495 | 0.5784 | 0.2468 | 0.074* | |
S1B | 0.22562 (6) | 0.50860 (7) | 0.06533 (5) | 0.0340 (3) | |
O1B | 0.29288 (13) | 0.5696 (2) | −0.00469 (18) | 0.0543 (5) | |
O2B | 0.18378 (13) | 0.3739 (2) | 0.02858 (18) | 0.0477 (5) | |
O3B | 0.2609 (3) | 0.4930 (2) | 0.1701 (3) | 0.0570 (10) | |
O4B | 0.14771 (13) | 0.6268 (2) | 0.0699 (2) | 0.0493 (5) | |
H44 | 0.1067 | 0.6000 | 0.1100 | 0.074* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1A | 0.0488 (13) | 0.0354 (12) | 0.0452 (12) | 0.0039 (9) | −0.0019 (9) | −0.0050 (10) |
C1A | 0.0319 (14) | 0.0339 (15) | 0.0431 (16) | 0.0026 (11) | 0.0016 (12) | −0.0062 (12) |
C2A | 0.0594 (19) | 0.0502 (19) | 0.0496 (18) | 0.0050 (16) | −0.0107 (17) | −0.0079 (17) |
C3A | 0.069 (2) | 0.055 (2) | 0.063 (3) | −0.001 (2) | −0.0126 (19) | −0.023 (2) |
C4A | 0.0542 (19) | 0.0386 (19) | 0.099 (3) | −0.0010 (14) | 0.007 (2) | −0.022 (2) |
C5A | 0.0558 (18) | 0.0426 (17) | 0.068 (3) | 0.0087 (16) | −0.0002 (19) | 0.0097 (17) |
C6A | 0.0451 (15) | 0.045 (2) | 0.0471 (18) | −0.0003 (18) | −0.0043 (14) | −0.0026 (16) |
N1B | 0.0429 (11) | 0.0348 (12) | 0.0433 (11) | −0.0024 (9) | 0.0007 (9) | −0.0008 (10) |
C1B | 0.0320 (14) | 0.0303 (14) | 0.0366 (15) | −0.0033 (10) | 0.0044 (11) | 0.0006 (11) |
C2B | 0.0532 (18) | 0.0478 (18) | 0.0483 (17) | 0.0025 (15) | −0.0088 (16) | 0.0018 (15) |
C3B | 0.062 (2) | 0.058 (3) | 0.067 (2) | 0.008 (2) | 0.003 (2) | 0.024 (2) |
C4B | 0.0561 (19) | 0.0345 (18) | 0.096 (3) | −0.0007 (15) | 0.021 (2) | 0.0099 (19) |
C5B | 0.0511 (18) | 0.045 (2) | 0.084 (3) | −0.0072 (17) | 0.004 (2) | −0.0201 (19) |
C6B | 0.0410 (15) | 0.0461 (19) | 0.0487 (19) | −0.0017 (18) | −0.0040 (14) | −0.0100 (17) |
S1A | 0.0319 (6) | 0.0352 (5) | 0.0392 (6) | −0.0012 (2) | −0.0005 (5) | 0.0038 (2) |
O1A | 0.0503 (12) | 0.0554 (14) | 0.0705 (14) | −0.0116 (11) | −0.0226 (10) | 0.0051 (12) |
O2A | 0.0625 (13) | 0.0365 (11) | 0.0514 (12) | −0.0065 (10) | −0.0036 (10) | 0.0067 (8) |
O3A | 0.058 (2) | 0.075 (2) | 0.050 (2) | 0.0183 (11) | 0.0188 (19) | 0.0205 (10) |
O4A | 0.0391 (10) | 0.0430 (11) | 0.0655 (13) | 0.0065 (8) | −0.0047 (9) | −0.0081 (10) |
S1B | 0.0305 (6) | 0.0341 (5) | 0.0374 (5) | −0.0020 (2) | 0.0013 (4) | −0.0020 (3) |
O1B | 0.0427 (11) | 0.0621 (16) | 0.0580 (13) | −0.0112 (10) | 0.0141 (9) | 0.0022 (12) |
O2B | 0.0499 (11) | 0.0368 (10) | 0.0564 (12) | −0.0074 (9) | 0.0048 (9) | −0.0099 (9) |
O3B | 0.0476 (18) | 0.073 (2) | 0.050 (2) | −0.0086 (10) | −0.0119 (18) | 0.0084 (10) |
O4B | 0.0470 (11) | 0.0379 (11) | 0.0630 (12) | 0.0054 (9) | 0.0082 (10) | 0.0013 (10) |
N1A—C1A | 1.462 (4) | C1B—C6B | 1.378 (4) |
N1A—H22 | 0.8900 | C2B—C3B | 1.386 (6) |
N1A—H33 | 0.8900 | C2B—H2B | 0.9300 |
N1A—H11 | 0.8900 | C3B—C4B | 1.373 (6) |
C1A—C6A | 1.361 (5) | C3B—H3B | 0.9300 |
C1A—C2A | 1.385 (5) | C4B—C5B | 1.374 (6) |
C2A—C3A | 1.380 (5) | C4B—H4B | 0.9300 |
C2A—H2A | 0.9300 | C5B—C6B | 1.380 (4) |
C3A—C4A | 1.380 (6) | C5B—H5B | 0.9300 |
C3A—H3A | 0.9300 | C6B—H6B | 0.9300 |
C4A—C5A | 1.372 (6) | S1A—O1A | 1.435 (2) |
C4A—H4A | 0.9300 | S1A—O2A | 1.436 (2) |
C5A—C6A | 1.375 (4) | S1A—O3A | 1.463 (4) |
C5A—H5A | 0.9300 | S1A—O4A | 1.554 (2) |
C6A—H6A | 0.9300 | O4A—H4 | 0.8201 |
N1B—C1B | 1.460 (3) | S1B—O1B | 1.431 (2) |
N1B—H1 | 0.8900 | S1B—O2B | 1.4430 (19) |
N1B—H2 | 0.8900 | S1B—O3B | 1.448 (4) |
N1B—H3 | 0.8900 | S1B—O4B | 1.550 (2) |
C1B—C2B | 1.371 (4) | O4B—H44 | 0.8200 |
C1A—N1A—H22 | 109.5 | C2B—C1B—N1B | 119.8 (3) |
C1A—N1A—H33 | 109.5 | C6B—C1B—N1B | 119.0 (3) |
H22—N1A—H33 | 109.5 | C1B—C2B—C3B | 118.8 (3) |
C1A—N1A—H11 | 109.5 | C1B—C2B—H2B | 120.6 |
H22—N1A—H11 | 109.5 | C3B—C2B—H2B | 120.6 |
H33—N1A—H11 | 109.5 | C4B—C3B—C2B | 120.2 (3) |
C6A—C1A—C2A | 121.4 (3) | C4B—C3B—H3B | 119.9 |
C6A—C1A—N1A | 120.3 (3) | C2B—C3B—H3B | 119.9 |
C2A—C1A—N1A | 118.4 (3) | C3B—C4B—C5B | 120.7 (4) |
C3A—C2A—C1A | 118.2 (3) | C3B—C4B—H4B | 119.7 |
C3A—C2A—H2A | 120.9 | C5B—C4B—H4B | 119.7 |
C1A—C2A—H2A | 120.9 | C4B—C5B—C6B | 119.4 (3) |
C2A—C3A—C4A | 120.9 (3) | C4B—C5B—H5B | 120.3 |
C2A—C3A—H3A | 119.6 | C6B—C5B—H5B | 120.3 |
C4A—C3A—H3A | 119.6 | C1B—C6B—C5B | 119.7 (3) |
C5A—C4A—C3A | 119.4 (3) | C1B—C6B—H6B | 120.2 |
C5A—C4A—H4A | 120.3 | C5B—C6B—H6B | 120.2 |
C3A—C4A—H4A | 120.3 | O1A—S1A—O2A | 113.28 (16) |
C4A—C5A—C6A | 120.5 (3) | O1A—S1A—O3A | 114.1 (2) |
C4A—C5A—H5A | 119.8 | O2A—S1A—O3A | 112.27 (15) |
C6A—C5A—H5A | 119.8 | O1A—S1A—O4A | 103.72 (14) |
C1A—C6A—C5A | 119.6 (3) | O2A—S1A—O4A | 107.62 (12) |
C1A—C6A—H6A | 120.2 | O3A—S1A—O4A | 104.85 (16) |
C5A—C6A—H6A | 120.2 | S1A—O4A—H4 | 109.5 |
C1B—N1B—H1 | 109.5 | O1B—S1B—O2B | 113.68 (16) |
C1B—N1B—H2 | 109.5 | O1B—S1B—O3B | 113.0 (2) |
H1—N1B—H2 | 109.5 | O2B—S1B—O3B | 111.55 (14) |
C1B—N1B—H3 | 109.5 | O1B—S1B—O4B | 103.86 (13) |
H1—N1B—H3 | 109.5 | O2B—S1B—O4B | 107.56 (12) |
H2—N1B—H3 | 109.5 | O3B—S1B—O4B | 106.47 (17) |
C2B—C1B—C6B | 121.2 (3) | S1B—O4B—H44 | 109.5 |
C6A—C1A—C2A—C3A | 0.9 (5) | C6B—C1B—C2B—C3B | −0.4 (4) |
N1A—C1A—C2A—C3A | −179.6 (3) | N1B—C1B—C2B—C3B | −178.8 (3) |
C1A—C2A—C3A—C4A | −0.7 (5) | C1B—C2B—C3B—C4B | 0.9 (4) |
C2A—C3A—C4A—C5A | 0.0 (6) | C2B—C3B—C4B—C5B | −1.6 (5) |
C3A—C4A—C5A—C6A | 0.4 (6) | C3B—C4B—C5B—C6B | 1.7 (6) |
C2A—C1A—C6A—C5A | −0.4 (5) | C2B—C1B—C6B—C5B | 0.5 (5) |
N1A—C1A—C6A—C5A | −180.0 (3) | N1B—C1B—C6B—C5B | 178.9 (3) |
C4A—C5A—C6A—C1A | −0.2 (5) | C4B—C5B—C6B—C1B | −1.1 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H11···O1Ai | 0.89 | 1.95 | 2.821 (2) | 167 |
N1B—H2···O3Aii | 0.89 | 2.05 | 2.867 (3) | 153 |
N1A—H33···O2Biii | 0.89 | 2.01 | 2.884 (3) | 169 |
N1B—H3···O1A | 0.89 | 2.58 | 3.069 (3) | 115 |
N1B—H3···O2A | 0.89 | 2.03 | 2.916 (3) | 175 |
N1A—H22···O3B | 0.89 | 1.95 | 2.817 (4) | 163 |
O4A—H4···O3B | 0.82 | 1.79 | 2.603 (4) | 175 |
O4B—H44···O3Ai | 0.82 | 1.84 | 2.635 (4) | 163 |
N1B—H1···O1Bii | 0.89 | 1.94 | 2.828 (3) | 175 |
Symmetry codes: (i) x−1/2, −y+1, z; (ii) −x+1, −y+1, z+1/2; (iii) −x+1/2, y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C6H8N+·HSO4− |
Mr | 191.20 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 293 |
a, b, c (Å) | 14.3201 (2), 9.0891 (3), 12.8771 (2) |
V (Å3) | 1676.04 (7) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.36 |
Crystal size (mm) | 0.2 × 0.15 × 0.1 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16963, 4641, 3108 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.117, 1.02 |
No. of reflections | 4641 |
No. of parameters | 219 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.35, −0.47 |
Absolute structure | Flack (1983), 2096 Friedel pairs |
Absolute structure parameter | 0.08 (9) |
Computer programs: KappaCCD Server Software (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-32 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX publication routines (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H11···O1Ai | 0.890 | 1.946 | 2.821 (2) | 167.38 |
N1B—H2···O3Aii | 0.890 | 2.046 | 2.867 (3) | 152.79 |
N1A—H33···O2Biii | 0.890 | 2.006 | 2.884 (3) | 168.60 |
N1B—H3···O1A | 0.890 | 2.583 | 3.069 (3) | 115.14 |
N1B—H3···O2A | 0.890 | 2.029 | 2.916 (3) | 174.49 |
N1A—H22···O3B | 0.890 | 1.953 | 2.817 (4) | 163.16 |
O4A—H4···O3B | 0.820 | 1.786 | 2.603 (4) | 174.56 |
O4B—H44···O3Ai | 0.820 | 1.841 | 2.635 (4) | 162.51 |
N1B—H1···O1Bii | 0.890 | 1.941 | 2.828 (3) | 174.68 |
Symmetry codes: (i) x−1/2, −y+1, z; (ii) −x+1, −y+1, z+1/2; (iii) −x+1/2, y, z+1/2. |
Acknowledgements
We wish to thank Dr M. Giorgi, Faculté des Sciences et Techniques de Saint Jérome, Marseille, France, for providing diffraction facilities and the Centre Universitaire de Khenchela for financial support.
References
Benali-Cherif, N., Boussekine, H., Boutobba, Z. & Dadda, N. (2009). Acta Cryst. E65, o2744. Web of Science CrossRef IUCr Journals Google Scholar
Benali-Cherif, N., Falek, W. & Direm, A. (2009). Acta Cryst. E65, o3058–o3059. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. (2001). Chem. Rev. 101, 4071–4097. Web of Science CrossRef PubMed CAS Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573. Web of Science CrossRef PubMed CAS Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p 507. New York: Oxford University Press. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413–422. Web of Science CSD CrossRef CAS Google Scholar
Messai, A., Direm, A., Benali-Cherif, N., Luneau, D. & Jeanneau, E. (2009). Acta Cryst. E65, o460. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Paixão, J. A., Matos Beja, A., Ramos Silva, M. & Martin-Gil, J. (2000). Acta Cryst. C56, 1132–1135. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rademeyer, M. (2004). Acta Cryst. E60, o958–o960. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o1800–o1803. CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76. Web of Science CrossRef CAS Google Scholar
Zimmerman, S. C. & Corbin, P. S. (2000). Struct. Bond. 96, 63–94. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The main purpose of this structural study was a determination of the arrangement of the cations and anions which are held together by two-dimensional hydrogen-bond networks.
Hydrogen bonding is one of the most versatile noncovalent forces in supramolecular chemistry and crystal engineering (Zimmerman & Corbin, 2000; Brunsveld et al., 2001; Desiraju, 2002). Therefore, in the past decades assessment of discrete hydrogen bonding patterns had received great attention (Steiner, 2002; Desiraju & Steiner, 1999) because of its widespread occurrence in biological systems.
The aim of this paper is to discuss hydrogen patterns assuring the connection between anilinium and hydrogensulfate entities and to establish their different graph-set motifs (Bernstein et al., 1995).
Bis(anilinium hydrogensulfate) is one of the hybrid compounds, rich in H-bonds (Benali-Cherif, Boussekine, et al., 2009; Messai et al., 2009; Benali-Cherif, Falek, et al., 2009), which could have potential importance in constructing sophisticated assemblies from discrete ionic or molecular building blocks due to the strength and the directionality of hydrogen bonds (Steiner et al. 2002, Jayaraman et al., 2002).
Recently, similar structures containing anilinium cations have been reported. Among examples, can be named the folowing ones: anilinium nitrate (Rademeyer, 2004), anilinium picrate (Smith et al., 2004), anilinium hydrogenphosphite and anilinium hydrogenoxalate hemihydrate(Paixão et al., 2000).
The structure of (I) may be described as formed by alternating sheets of cations and anions (Fig. 2) which are held together with four and five-centered N—H···O H-bonds to form C44(10) infinite chains running through the c direction. Moreover, strong O—H···O hydrogen bonds observed between bisulfate anions generate C22(8) chains in the a axis direction. The infinite chains resulting from anion-anion and anion-cation interactions can be described as zigzag layers parallel to the (ac) plane (Fig. 3). The crossing of these chains builds up different rings with R33(10) and R54(16) graph set motifs (Fig. 3) (Etter et al., 1990; Bernstein et al., 1995).