metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m332-m333

{2,2′-[3-Aza­pentane-1,5-diylbis(nitrilo­methyl­­idyne)]dipyrrol-1-yl}(4-methyl­pyridine)cobalt(III) tetra­phenyl­borate

aDepartment of Chemistry, Isfahan University of Technology, Isfahan 84156 83111, Iran, and bFaculty of Chemistry, Vienna University of Technology, Getreidemarkt 9/164SC, A 1060 Vienna, Austria
*Correspondence e-mail: smeghdad@cc.iut.ac.ir

(Received 29 January 2010; accepted 15 February 2010; online 24 February 2010)

The title compound, [Co(C14H17N5)(C6H7N)](C24H20B) or [Co{(pyrrole)2dien}(4-Mepy)]BPh4 where (pyrrole)2dien is 2,2′-[(3-aza­pentane-1,5-diylbis(nitrilo­methyl­idyne)]dipyrrole and 4-Mepy is 4-methyl­pyridine, contains a penta­dentate (pyrrole)2dien ligand furnishing an N5 set, such that two of the pyrrole N atoms and two of the dien N atoms occupy the equatorial positions while one of the imine N atoms of the (pyrrole)2dien ligand occupies the axial position. The 4-methyl­pyridine ligand occupies an axial position trans to one of the imine N atoms of the penta­dentate ligand. In the observed conformation of the penta­dentate ligand, the pyrrole rings attain asymmetrical positions owing to the structural demands. The geometry of the resulting CoN6 coordination can be described as distorted octa­hedral.

Related literature

For general background to the applications of transition metal–Schiff base complexes, see: Nishinaga & Tomita (1980[Nishinaga, A. & Tomita, H. (1980). J. Mol. Catal. 7, 179-199.]); Speiser & Stahl (1995[Speiser, B. & Stahl, H. (1995). Angew. Chem. Int. Ed. 34, 1086-1089.]); Miodragović et al. (2006[Miodragović, D. U., Bogdanović, G. A., Miodragović, Z. M., Radulović, M. D., Novaković, S. B., Kaluderović, G. N. & Kozlowski, H. (2006). J. Inorg. Biochem. 100, 1568-1574.]); Amirnasr et al. (2006[Amirnasr, M., Schenk, K. J., Meghdadi, S. & Morshedi, M. (2006). Polyhedron, 25, 671-677.]); Morshedi et al. (2006[Morshedi, M., Meghdadi, S. & Schenk, K. J. (2006). Acta Cryst. C62, m87-m89.]); Meghdadi et al. (2007[Meghdadi, S., Daran, J.-C., Amirnasr, M. & Morshedi, M. (2007). Acta Cryst. E63, m982-m984.], 2008[Meghdadi, S., Schenk, K. J., Amirnasr, M. & Fadaee, F. (2008). Acta Cryst. E64, m479-m480.]); Park et al. (1998[Park, S., Mathur, V. K. & Planalp, R. P. (1998). Polyhedron, 17, 325-330.]); Mishra et al. (2008[Mishra, A., Kaushik, N. K., Verma, A. K. & Gupta, R. (2008). Eur. J. Med. Chem. 43, 2189-2196.]). For the synthesis of the ligand, see: Kwiatkowski et al. (1993[Kwiatkowski, E., Kwiatkowski, M., Olechnowicz, A. & Bandoli, G. (1993). J. Crystallogr. Spectrosc. Res. 23, 423-429.]). For related structures, see: Meghdadi et al. (2007[Meghdadi, S., Daran, J.-C., Amirnasr, M. & Morshedi, M. (2007). Acta Cryst. E63, m982-m984.], 2008[Meghdadi, S., Schenk, K. J., Amirnasr, M. & Fadaee, F. (2008). Acta Cryst. E64, m479-m480.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C14H17N5)(C6H7N)](C24H20B)

  • Mr = 726.59

  • Monoclinic, P 21 /n

  • a = 11.0332 (16) Å

  • b = 19.559 (3) Å

  • c = 17.138 (3) Å

  • β = 92.164 (2)°

  • V = 3695.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 100 K

  • 0.52 × 0.46 × 0.35 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.71, Tmax = 0.84

  • 66110 measured reflections

  • 10797 independent reflections

  • 8767 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.07

  • 10797 reflections

  • 474 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL .

Supporting information


Comment top

Transition metal Schiff-base complexes have been extensively studied due to their applications, e.g., their ability to reversibly bind oxygen, and their use in catalysis for oxygenation and oxidation reactions of organic compounds (Nishinaga et al. 1980; Speiser et al., 1995; Park et al., 1998). Among these metal complexes, cobalt(III) Schiff base complexes with two amines in axial positions have attracted considerable interest due to their ability as antimicrobial agents (Miodragović et al., 2006; Mishra et al., 2008). Transition metal complexes with pentadentate ligands show interesting structural features and have also been playing an important role in the development of coordination chemistry (Amirnasr et al., 2006; Morshedi et al., 2006; Meghdadi et al., 2007; Meghdadi et al., 2008) . In this context, we herein report the synthesis and structure of the title compound, [Co{(pyrrole)2dien}(4-Mepy)]BPh4, (I), and make a brief comparison with reported structures.

The environment surrounding CoIII in (I) is distorted octahedral (Fig. 1), in which the three N atoms of the Schiff base ligand are arranged in facial positions. The geometric parameters are listed below in the supplementary materials. The two chelate bite angles (81.38 (5)°, 82.26 (5)°) formed by the two imine-N and the secondary amine-N of the Schiff base are similar. The five-membered chelate rings formed by the pyrrole-N and the imine-N atoms have almost identical bite angles (N1—Co1—N2 82.11 (5)°; N4—Co1—N5 82.22 (5)°). The three trans angles, (N2—Co1—N5 170.28 (5)°; N4—Co1—N6 170.80 (5)°, N1—Co1—N3 161.96 (5)°) deviate significantly from ideal. The Co—N(pyrrole), Co—N(imine), Co—N(secondary amine) and CoN-(4-methylpyridine) bond lengths are comparable with the bond lengths observed in related Co(III) complexes (Meghdadi et al., 2008). The conformation adopted by the (pyrrole)2dien in (I) is different from that of (Me-sal)2dpt in [Co{(Me-sal)2dpt}(py)]PF6 (Meghdadi et al., 2007). While the three donor N atoms of (Me-sal)2dpt occupy three meridional sites and the two phenolate-O atoms are trans to each other, the three N atoms of (pyrrole)2dien ligand are arranged in facial positions and the two pyrrole-N atoms are cis. This is presumably due to the structural demands imparted by (pyrrole)2dien Schiff base ligand which has forced the [Co{(pyrrole)2dien}(4-Mepy)]+ to attain such a twisted structure.

Related literature top

For general background to the applications of transition metal–Schiff base complexes, see: Nishinaga et al. (1980); Speiser et al. (1995); Miodragović et al. (2006); Amirnasr et al. (2006); Morshedi et al. (2006); Meghdadi et al. (2007, 2008); Park et al. (1998); Mishra et al. (2008). For the synthesis of the ligand, see: Kwiatkowski et al. (1993). For related structures, see: Meghdadi et al. (2007, 2008).

Experimental top

The ligand was synthesized according to the literature (Kwiatkowski et al., 1993). To a stirring solution of Co(CH3COO)2.4H2O (0.249 g, 1 mmol) in absolute ethanol (50 ml) was added an equimolar amount of ligand (0.256 g, 1 mmol). The pink solution turned brown immediately upon the formation of Co(III) complex. To this solution was added dropwise 7.5 mmol of the 4-methylpyridine. The reaction mixture was stirred for about 4 h and then filtered off. To the brown filtrate was added NaBPh4 (0.342 g, 1 mmol). The solution was left undisturbed for three days. The brown microcrystalline product was filtered off and washed with cold methanol. Brown crystals of the compound suitable for X-ray crystallography were obtained by diffusion of diethyl ether in to the acetone solution of the product.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95Å (aromatic), 0.99Å (methylene) and 0.98Å (methyl) with Uiso(H) = 1.2 Ueq(aromatic, methylene) or Uiso(H) = 1.5 Ueq(methyl). The N(3) bonded hydrogen H(3n) was freely refined.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT and XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of [Co{(pyrrole)2dien}(4-Mepy)]+ , with the atom labeling scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms omitted for clarity.
{2,2'-[3-Azapentane-1,5-diylbis(nitrilomethylidyne)]dipyrrol-1-yl}(4- methylpyridine)cobalt(III) tetraphenylborate top
Crystal data top
[Co(C14H17N5)(C6H7N)](C24H20B)F(000) = 1528
Mr = 726.59Dx = 1.306 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7791 reflections
a = 11.0332 (16) Åθ = 2.4–30.0°
b = 19.559 (3) ŵ = 0.51 mm1
c = 17.138 (3) ÅT = 100 K
β = 92.164 (2)°Prism, brown
V = 3695.7 (9) Å30.52 × 0.46 × 0.35 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
10797 independent reflections
Radiation source: normal-focus sealed tube8767 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
\ and ω scansθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1515
Tmin = 0.71, Tmax = 0.84k = 2727
66110 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0519P)2 + 1.7914P]
where P = (Fo2 + 2Fc2)/3
10797 reflections(Δ/σ)max = 0.002
474 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Co(C14H17N5)(C6H7N)](C24H20B)V = 3695.7 (9) Å3
Mr = 726.59Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.0332 (16) ŵ = 0.51 mm1
b = 19.559 (3) ÅT = 100 K
c = 17.138 (3) Å0.52 × 0.46 × 0.35 mm
β = 92.164 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
10797 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
8767 reflections with I > 2σ(I)
Tmin = 0.71, Tmax = 0.84Rint = 0.036
66110 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.57 e Å3
10797 reflectionsΔρmin = 0.22 e Å3
474 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.270495 (16)0.246611 (9)0.511104 (10)0.01323 (5)
N10.29289 (11)0.26519 (6)0.61977 (7)0.0168 (2)
N20.35020 (11)0.16303 (6)0.54069 (7)0.0169 (2)
N30.25046 (11)0.19607 (6)0.40752 (7)0.0168 (2)
H3N0.2513 (16)0.2203 (10)0.3655 (11)0.021 (4)*
N40.11170 (11)0.21273 (6)0.52448 (7)0.0174 (2)
N50.18479 (10)0.33239 (6)0.49985 (7)0.0168 (2)
N60.42291 (10)0.28990 (6)0.48320 (7)0.0149 (2)
C10.26993 (15)0.31506 (8)0.67082 (9)0.0243 (3)
H10.23250.35750.65800.029*
C20.30967 (17)0.29492 (9)0.74592 (10)0.0324 (4)
H20.30450.32120.79230.039*
C30.35806 (16)0.22953 (9)0.74040 (9)0.0281 (3)
H30.39210.20250.78170.034*
C40.34628 (13)0.21183 (7)0.66153 (8)0.0190 (3)
C50.37794 (13)0.15587 (7)0.61457 (8)0.0192 (3)
H50.41650.11610.63530.023*
C60.37524 (14)0.11217 (7)0.48109 (9)0.0208 (3)
H6A0.31900.07290.48450.025*
H6B0.45950.09520.48760.025*
C70.35670 (14)0.14869 (7)0.40325 (8)0.0204 (3)
H7A0.43050.17500.39140.024*
H7B0.34170.11480.36110.024*
C80.13076 (14)0.15881 (8)0.40369 (9)0.0218 (3)
H8A0.14040.11410.37750.026*
H8B0.07010.18590.37290.026*
C90.08666 (14)0.14765 (7)0.48620 (9)0.0216 (3)
H9A0.00110.13710.48520.026*
H9B0.13180.11000.51280.026*
C100.02770 (13)0.25895 (7)0.53121 (9)0.0199 (3)
H100.05500.24760.53790.024*
C110.06867 (13)0.32712 (7)0.52786 (9)0.0192 (3)
C120.02430 (14)0.39236 (8)0.54421 (9)0.0240 (3)
H120.05280.40340.56360.029*
C130.11611 (15)0.43788 (8)0.52628 (10)0.0259 (3)
H130.11330.48620.53110.031*
C140.21353 (14)0.39927 (7)0.49984 (9)0.0209 (3)
H140.28860.41760.48420.025*
C150.43211 (13)0.31823 (7)0.41192 (8)0.0182 (3)
H150.36290.31780.37730.022*
C160.53711 (13)0.34777 (7)0.38701 (8)0.0206 (3)
H160.53960.36660.33600.025*
C170.63943 (13)0.34989 (8)0.43680 (9)0.0208 (3)
C180.62879 (13)0.32259 (8)0.51101 (9)0.0206 (3)
H180.69580.32420.54750.025*
C190.52091 (12)0.29305 (7)0.53198 (8)0.0177 (3)
H190.51590.27430.58290.021*
C200.75545 (15)0.38114 (10)0.41104 (11)0.0336 (4)
H20A0.76030.37650.35430.050*
H20B0.82440.35760.43680.050*
H20C0.75740.42970.42520.050*
B10.79035 (13)0.10736 (8)0.68052 (9)0.0149 (3)
C210.66500 (12)0.07260 (7)0.71036 (8)0.0168 (2)
C220.62423 (14)0.08440 (8)0.78607 (9)0.0240 (3)
H220.66630.11680.81830.029*
C230.52496 (15)0.05059 (9)0.81561 (10)0.0292 (3)
H230.50060.06010.86710.035*
C240.46146 (14)0.00298 (9)0.76998 (11)0.0292 (4)
H240.39430.02080.79010.035*
C250.49725 (13)0.00932 (8)0.69501 (10)0.0251 (3)
H250.45380.04130.66300.030*
C260.59709 (13)0.02504 (7)0.66600 (9)0.0195 (3)
H260.61980.01580.61410.023*
C270.79551 (13)0.18974 (7)0.70191 (8)0.0169 (3)
C280.90322 (14)0.22802 (8)0.70670 (8)0.0207 (3)
H280.97850.20440.70610.025*
C290.90444 (16)0.29928 (8)0.71231 (9)0.0256 (3)
H290.97960.32310.71470.031*
C300.79626 (17)0.33553 (8)0.71446 (9)0.0278 (3)
H300.79660.38410.71680.033*
C310.68804 (16)0.29965 (8)0.71308 (9)0.0256 (3)
H310.61340.32350.71610.031*
C320.68832 (14)0.22831 (8)0.70729 (8)0.0208 (3)
H320.61290.20480.70700.025*
C330.79120 (11)0.10059 (7)0.58466 (8)0.0148 (2)
C340.73321 (13)0.14887 (7)0.53542 (8)0.0198 (3)
H340.69760.18790.55830.024*
C350.72561 (14)0.14192 (8)0.45425 (9)0.0230 (3)
H350.68560.17590.42310.028*
C360.77648 (13)0.08540 (8)0.41903 (8)0.0204 (3)
H360.77140.08020.36390.025*
C370.83468 (13)0.03682 (7)0.46558 (8)0.0190 (3)
H370.87040.00190.44220.023*
C380.84137 (12)0.04421 (7)0.54657 (8)0.0167 (2)
H380.88130.00990.57710.020*
C390.90644 (12)0.06510 (7)0.71932 (8)0.0167 (2)
C401.02475 (13)0.07448 (7)0.69319 (8)0.0191 (3)
H401.03670.10590.65190.023*
C411.12499 (13)0.03983 (8)0.72513 (9)0.0231 (3)
H411.20340.04850.70630.028*
C421.11045 (15)0.00742 (8)0.78447 (11)0.0289 (3)
H421.17840.03140.80650.035*
C430.99522 (16)0.01911 (8)0.81106 (11)0.0302 (4)
H430.98380.05170.85120.036*
C440.89578 (14)0.01675 (8)0.77911 (9)0.0230 (3)
H440.81780.00810.79860.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01395 (9)0.01203 (9)0.01370 (9)0.00031 (6)0.00058 (6)0.00048 (6)
N10.0174 (5)0.0172 (5)0.0158 (5)0.0008 (4)0.0009 (4)0.0002 (4)
N20.0189 (5)0.0131 (5)0.0187 (6)0.0015 (4)0.0020 (4)0.0001 (4)
N30.0184 (5)0.0158 (5)0.0164 (5)0.0007 (4)0.0005 (4)0.0001 (4)
N40.0172 (5)0.0167 (5)0.0185 (6)0.0028 (4)0.0022 (4)0.0008 (4)
N50.0156 (5)0.0159 (5)0.0187 (6)0.0016 (4)0.0004 (4)0.0014 (4)
N60.0146 (5)0.0142 (5)0.0157 (5)0.0006 (4)0.0002 (4)0.0011 (4)
C10.0293 (8)0.0226 (7)0.0210 (7)0.0034 (6)0.0018 (6)0.0043 (6)
C20.0451 (10)0.0344 (9)0.0177 (7)0.0057 (7)0.0008 (7)0.0061 (6)
C30.0343 (9)0.0332 (8)0.0167 (7)0.0035 (7)0.0012 (6)0.0030 (6)
C40.0197 (6)0.0201 (6)0.0173 (6)0.0004 (5)0.0007 (5)0.0032 (5)
C50.0194 (6)0.0171 (6)0.0210 (7)0.0013 (5)0.0016 (5)0.0056 (5)
C60.0248 (7)0.0143 (6)0.0235 (7)0.0035 (5)0.0030 (5)0.0014 (5)
C70.0240 (7)0.0179 (6)0.0194 (7)0.0035 (5)0.0030 (5)0.0030 (5)
C80.0240 (7)0.0205 (6)0.0208 (7)0.0063 (5)0.0013 (5)0.0029 (5)
C90.0226 (7)0.0177 (6)0.0246 (7)0.0060 (5)0.0018 (5)0.0003 (5)
C100.0155 (6)0.0252 (7)0.0190 (6)0.0004 (5)0.0019 (5)0.0005 (5)
C110.0157 (6)0.0218 (7)0.0203 (7)0.0034 (5)0.0004 (5)0.0005 (5)
C120.0221 (7)0.0244 (7)0.0255 (7)0.0083 (6)0.0003 (6)0.0013 (6)
C130.0296 (8)0.0172 (6)0.0305 (8)0.0071 (6)0.0023 (6)0.0013 (6)
C140.0225 (7)0.0161 (6)0.0240 (7)0.0016 (5)0.0010 (5)0.0018 (5)
C150.0180 (6)0.0192 (6)0.0172 (6)0.0014 (5)0.0028 (5)0.0035 (5)
C160.0207 (7)0.0227 (7)0.0182 (7)0.0035 (5)0.0004 (5)0.0052 (5)
C170.0176 (6)0.0223 (7)0.0224 (7)0.0029 (5)0.0008 (5)0.0024 (5)
C180.0162 (6)0.0243 (7)0.0208 (7)0.0011 (5)0.0044 (5)0.0022 (5)
C190.0180 (6)0.0188 (6)0.0160 (6)0.0002 (5)0.0015 (5)0.0016 (5)
C200.0207 (7)0.0480 (10)0.0320 (9)0.0113 (7)0.0003 (6)0.0091 (8)
B10.0138 (6)0.0163 (6)0.0146 (7)0.0003 (5)0.0007 (5)0.0004 (5)
C210.0142 (6)0.0181 (6)0.0182 (6)0.0031 (5)0.0009 (5)0.0025 (5)
C220.0208 (7)0.0314 (8)0.0199 (7)0.0002 (6)0.0025 (5)0.0002 (6)
C230.0219 (7)0.0401 (9)0.0261 (8)0.0028 (6)0.0087 (6)0.0058 (7)
C240.0154 (7)0.0309 (8)0.0419 (10)0.0010 (6)0.0082 (6)0.0116 (7)
C250.0162 (6)0.0187 (6)0.0403 (9)0.0001 (5)0.0010 (6)0.0016 (6)
C260.0174 (6)0.0166 (6)0.0247 (7)0.0013 (5)0.0026 (5)0.0003 (5)
C270.0204 (6)0.0187 (6)0.0115 (6)0.0015 (5)0.0006 (5)0.0001 (5)
C280.0236 (7)0.0205 (6)0.0179 (6)0.0011 (5)0.0012 (5)0.0003 (5)
C290.0352 (8)0.0212 (7)0.0204 (7)0.0071 (6)0.0008 (6)0.0006 (5)
C300.0485 (10)0.0171 (7)0.0174 (7)0.0023 (6)0.0028 (6)0.0008 (5)
C310.0353 (8)0.0242 (7)0.0168 (7)0.0110 (6)0.0039 (6)0.0033 (5)
C320.0236 (7)0.0226 (7)0.0160 (6)0.0040 (5)0.0030 (5)0.0027 (5)
C330.0126 (5)0.0170 (6)0.0150 (6)0.0024 (4)0.0006 (4)0.0005 (5)
C340.0211 (6)0.0210 (6)0.0171 (6)0.0035 (5)0.0000 (5)0.0006 (5)
C350.0260 (7)0.0255 (7)0.0172 (7)0.0035 (6)0.0024 (5)0.0022 (5)
C360.0231 (7)0.0236 (7)0.0146 (6)0.0040 (5)0.0011 (5)0.0013 (5)
C370.0220 (7)0.0169 (6)0.0184 (6)0.0040 (5)0.0029 (5)0.0028 (5)
C380.0182 (6)0.0152 (6)0.0166 (6)0.0024 (5)0.0007 (5)0.0002 (5)
C390.0167 (6)0.0169 (6)0.0165 (6)0.0005 (5)0.0009 (5)0.0030 (5)
C400.0185 (6)0.0229 (6)0.0158 (6)0.0016 (5)0.0008 (5)0.0042 (5)
C410.0171 (6)0.0262 (7)0.0260 (7)0.0042 (5)0.0002 (5)0.0083 (6)
C420.0239 (7)0.0239 (7)0.0381 (9)0.0074 (6)0.0083 (6)0.0011 (6)
C430.0297 (8)0.0225 (7)0.0379 (9)0.0008 (6)0.0063 (7)0.0104 (7)
C440.0201 (7)0.0202 (7)0.0284 (8)0.0010 (5)0.0027 (6)0.0045 (6)
Geometric parameters (Å, º) top
Co1—N41.8952 (12)C19—H190.9500
Co1—N11.9043 (12)C20—H20A0.9800
Co1—N21.9156 (12)C20—H20B0.9800
Co1—N51.9320 (12)C20—H20C0.9800
Co1—N61.9581 (12)B1—C211.640 (2)
Co1—N32.0367 (12)B1—C391.644 (2)
N1—C11.3408 (18)B1—C331.649 (2)
N1—C41.3845 (18)B1—C271.653 (2)
N2—C51.2990 (19)C21—C261.401 (2)
N2—C61.4595 (18)C21—C221.408 (2)
N3—C71.4982 (18)C22—C231.391 (2)
N3—C81.5077 (18)C22—H220.9500
N3—H3N0.86 (2)C23—C241.389 (3)
N4—C101.3030 (18)C23—H230.9500
N4—C91.4537 (18)C24—C251.379 (2)
N5—C141.3460 (18)C24—H240.9500
N5—C111.3888 (18)C25—C261.398 (2)
N6—C191.3429 (17)C25—H250.9500
N6—C151.3488 (17)C26—H260.9500
C1—C21.400 (2)C27—C281.404 (2)
C1—H10.9500C27—C321.409 (2)
C2—C31.391 (2)C28—C291.397 (2)
C2—H20.9500C28—H280.9500
C3—C41.397 (2)C29—C301.390 (2)
C3—H30.9500C29—H290.9500
C4—C51.410 (2)C30—C311.384 (2)
C5—H50.9500C30—H300.9500
C6—C71.520 (2)C31—C321.399 (2)
C6—H6A0.9900C31—H310.9500
C6—H6B0.9900C32—H320.9500
C7—H7A0.9900C33—C341.4044 (19)
C7—H7B0.9900C33—C381.4055 (18)
C8—C91.528 (2)C34—C351.397 (2)
C8—H8A0.9900C34—H340.9500
C8—H8B0.9900C35—C361.388 (2)
C9—H9A0.9900C35—H350.9500
C9—H9B0.9900C36—C371.383 (2)
C10—C111.410 (2)C36—H360.9500
C10—H100.9500C37—C381.3948 (19)
C11—C121.399 (2)C37—H370.9500
C12—C131.392 (2)C38—H380.9500
C12—H120.9500C39—C441.403 (2)
C13—C141.403 (2)C39—C401.4079 (19)
C13—H130.9500C40—C411.392 (2)
C14—H140.9500C40—H400.9500
C15—C161.3768 (19)C41—C421.388 (2)
C15—H150.9500C41—H410.9500
C16—C171.390 (2)C42—C431.386 (2)
C16—H160.9500C42—H420.9500
C17—C181.388 (2)C43—C441.397 (2)
C17—C201.500 (2)C43—H430.9500
C18—C191.383 (2)C44—H440.9500
C18—H180.9500
N4—Co1—N192.00 (5)C17—C16—H16120.1
N4—Co1—N294.98 (5)C18—C17—C16117.14 (13)
N1—Co1—N282.11 (5)C18—C17—C20121.94 (14)
N4—Co1—N582.22 (5)C16—C17—C20120.92 (14)
N1—Co1—N588.67 (5)C19—C18—C17120.15 (13)
N2—Co1—N5170.28 (5)C19—C18—H18119.9
N4—Co1—N6170.80 (5)C17—C18—H18119.9
N1—Co1—N694.32 (5)N6—C19—C18122.55 (13)
N2—Co1—N692.51 (5)N6—C19—H19118.7
N5—Co1—N691.24 (5)C18—C19—H19118.7
N4—Co1—N382.26 (5)C17—C20—H20A109.5
N1—Co1—N3161.96 (5)C17—C20—H20B109.5
N2—Co1—N381.38 (5)H20A—C20—H20B109.5
N5—Co1—N3107.33 (5)C17—C20—H20C109.5
N6—Co1—N393.61 (5)H20A—C20—H20C109.5
C1—N1—C4107.35 (12)H20B—C20—H20C109.5
C1—N1—Co1139.14 (11)C21—B1—C39108.60 (11)
C4—N1—Co1113.49 (9)C21—B1—C33108.30 (11)
C5—N2—C6124.39 (12)C39—B1—C33109.21 (11)
C5—N2—Co1116.03 (10)C21—B1—C27110.93 (11)
C6—N2—Co1119.57 (9)C39—B1—C27112.38 (11)
C7—N3—C8112.61 (11)C33—B1—C27107.33 (11)
C7—N3—Co1106.46 (9)C26—C21—C22115.21 (13)
C8—N3—Co1109.79 (9)C26—C21—B1123.11 (12)
C7—N3—H3N105.5 (12)C22—C21—B1121.45 (13)
C8—N3—H3N105.4 (12)C23—C22—C21122.73 (15)
Co1—N3—H3N117.2 (13)C23—C22—H22118.6
C10—N4—C9121.58 (13)C21—C22—H22118.6
C10—N4—Co1115.59 (10)C24—C23—C22120.09 (15)
C9—N4—Co1114.36 (9)C24—C23—H23120.0
C14—N5—C11107.02 (12)C22—C23—H23120.0
C14—N5—Co1136.85 (10)C25—C24—C23119.04 (14)
C11—N5—Co1110.82 (9)C25—C24—H24120.5
C19—N6—C15117.30 (12)C23—C24—H24120.5
C19—N6—Co1123.13 (9)C24—C25—C26120.30 (15)
C15—N6—Co1119.57 (9)C24—C25—H25119.8
N1—C1—C2109.56 (14)C26—C25—H25119.8
N1—C1—H1125.2C25—C26—C21122.61 (14)
C2—C1—H1125.2C25—C26—H26118.7
C3—C2—C1107.70 (14)C21—C26—H26118.7
C3—C2—H2126.2C28—C27—C32114.92 (13)
C1—C2—H2126.2C28—C27—B1123.68 (12)
C2—C3—C4105.77 (14)C32—C27—B1120.97 (12)
C2—C3—H3127.1C29—C28—C27122.81 (14)
C4—C3—H3127.1C29—C28—H28118.6
N1—C4—C3109.61 (13)C27—C28—H28118.6
N1—C4—C5113.57 (13)C30—C29—C28120.31 (15)
C3—C4—C5136.77 (14)C30—C29—H29119.8
N2—C5—C4114.73 (13)C28—C29—H29119.8
N2—C5—H5122.6C31—C30—C29118.81 (14)
C4—C5—H5122.6C31—C30—H30120.6
N2—C6—C7105.73 (11)C29—C30—H30120.6
N2—C6—H6A110.6C30—C31—C32120.17 (15)
C7—C6—H6A110.6C30—C31—H31119.9
N2—C6—H6B110.6C32—C31—H31119.9
C7—C6—H6B110.6C31—C32—C27122.88 (15)
H6A—C6—H6B108.7C31—C32—H32118.6
N3—C7—C6109.11 (11)C27—C32—H32118.6
N3—C7—H7A109.9C34—C33—C38115.27 (12)
C6—C7—H7A109.9C34—C33—B1121.68 (12)
N3—C7—H7B109.9C38—C33—B1122.88 (12)
C6—C7—H7B109.9C35—C34—C33122.80 (13)
H7A—C7—H7B108.3C35—C34—H34118.6
N3—C8—C9109.74 (12)C33—C34—H34118.6
N3—C8—H8A109.7C36—C35—C34120.02 (14)
C9—C8—H8A109.7C36—C35—H35120.0
N3—C8—H8B109.7C34—C35—H35120.0
C9—C8—H8B109.7C37—C36—C35118.88 (13)
H8A—C8—H8B108.2C37—C36—H36120.6
N4—C9—C8103.34 (11)C35—C36—H36120.6
N4—C9—H9A111.1C36—C37—C38120.58 (13)
C8—C9—H9A111.1C36—C37—H37119.7
N4—C9—H9B111.1C38—C37—H37119.7
C8—C9—H9B111.1C37—C38—C33122.45 (13)
H9A—C9—H9B109.1C37—C38—H38118.8
N4—C10—C11114.98 (13)C33—C38—H38118.8
N4—C10—H10122.5C44—C39—C40115.12 (13)
C11—C10—H10122.5C44—C39—B1123.30 (12)
N5—C11—C12109.62 (13)C40—C39—B1121.57 (12)
N5—C11—C10112.69 (12)C41—C40—C39122.96 (14)
C12—C11—C10137.68 (14)C41—C40—H40118.5
C13—C12—C11106.03 (13)C39—C40—H40118.5
C13—C12—H12127.0C42—C41—C40120.02 (14)
C11—C12—H12127.0C42—C41—H41120.0
C12—C13—C14107.46 (13)C40—C41—H41120.0
C12—C13—H13126.3C43—C42—C41118.93 (14)
C14—C13—H13126.3C43—C42—H42120.5
N5—C14—C13109.86 (13)C41—C42—H42120.5
N5—C14—H14125.1C42—C43—C44120.34 (15)
C13—C14—H14125.1C42—C43—H43119.8
N6—C15—C16123.10 (13)C44—C43—H43119.8
N6—C15—H15118.4C43—C44—C39122.60 (14)
C16—C15—H15118.4C43—C44—H44118.7
C15—C16—C17119.72 (13)C39—C44—H44118.7
C15—C16—H16120.1
N4—Co1—N1—C185.68 (16)C14—N5—C11—C120.99 (17)
N2—Co1—N1—C1179.57 (17)Co1—N5—C11—C12159.84 (10)
N5—Co1—N1—C13.51 (16)C14—N5—C11—C10179.68 (13)
N6—Co1—N1—C187.63 (16)Co1—N5—C11—C1020.82 (15)
N3—Co1—N1—C1156.52 (16)N4—C10—C11—N514.25 (19)
N4—Co1—N1—C492.32 (10)N4—C10—C11—C12166.68 (17)
N2—Co1—N1—C42.43 (10)N5—C11—C12—C130.50 (17)
N5—Co1—N1—C4174.49 (10)C10—C11—C12—C13179.59 (18)
N6—Co1—N1—C494.37 (10)C11—C12—C13—C140.16 (18)
N3—Co1—N1—C421.5 (2)C11—N5—C14—C131.09 (17)
N4—Co1—N2—C589.44 (11)Co1—N5—C14—C13151.55 (12)
N1—Co1—N2—C51.90 (10)C12—C13—C14—N50.79 (18)
N6—Co1—N2—C595.92 (11)C19—N6—C15—C162.0 (2)
N3—Co1—N2—C5170.81 (11)Co1—N6—C15—C16177.98 (11)
N4—Co1—N2—C690.25 (11)N6—C15—C16—C170.8 (2)
N1—Co1—N2—C6178.42 (11)C15—C16—C17—C181.2 (2)
N6—Co1—N2—C684.40 (11)C15—C16—C17—C20179.41 (15)
N3—Co1—N2—C68.88 (10)C16—C17—C18—C191.9 (2)
N4—Co1—N3—C7125.83 (9)C20—C17—C18—C19178.75 (15)
N1—Co1—N3—C753.5 (2)C15—N6—C19—C181.3 (2)
N2—Co1—N3—C729.56 (9)Co1—N6—C19—C18178.70 (11)
N5—Co1—N3—C7154.86 (9)C17—C18—C19—N60.7 (2)
N6—Co1—N3—C762.43 (9)C39—B1—C21—C2697.53 (15)
N4—Co1—N3—C83.66 (9)C33—B1—C21—C2620.96 (17)
N1—Co1—N3—C868.66 (19)C27—B1—C21—C26138.50 (13)
N2—Co1—N3—C892.61 (10)C39—B1—C21—C2276.73 (16)
N5—Co1—N3—C882.97 (10)C33—B1—C21—C22164.78 (13)
N6—Co1—N3—C8175.40 (9)C27—B1—C21—C2247.24 (17)
N1—Co1—N4—C1079.29 (11)C26—C21—C22—C231.0 (2)
N2—Co1—N4—C10161.54 (11)B1—C21—C22—C23173.64 (14)
N5—Co1—N4—C109.10 (11)C21—C22—C23—C240.1 (2)
N3—Co1—N4—C10117.88 (11)C22—C23—C24—C250.9 (2)
N1—Co1—N4—C9132.03 (10)C23—C24—C25—C260.9 (2)
N2—Co1—N4—C949.77 (10)C24—C25—C26—C210.2 (2)
N5—Co1—N4—C9139.59 (10)C22—C21—C26—C251.1 (2)
N3—Co1—N4—C930.80 (10)B1—C21—C26—C25173.48 (13)
N4—Co1—N5—C14166.04 (16)C21—B1—C27—C28159.16 (13)
N1—Co1—N5—C1473.84 (15)C39—B1—C27—C2837.37 (18)
N6—Co1—N5—C1420.45 (15)C33—B1—C27—C2882.71 (15)
N3—Co1—N5—C14114.62 (15)C21—B1—C27—C3228.74 (17)
N4—Co1—N5—C1116.33 (10)C39—B1—C27—C32150.53 (13)
N1—Co1—N5—C1175.87 (10)C33—B1—C27—C3289.39 (14)
N6—Co1—N5—C11170.16 (10)C32—C27—C28—C293.2 (2)
N3—Co1—N5—C1195.66 (10)B1—C27—C28—C29169.37 (13)
N1—Co1—N6—C1928.99 (11)C27—C28—C29—C300.9 (2)
N2—Co1—N6—C1953.28 (11)C28—C29—C30—C311.7 (2)
N5—Co1—N6—C19117.75 (11)C29—C30—C31—C321.9 (2)
N3—Co1—N6—C19134.79 (11)C30—C31—C32—C270.6 (2)
N1—Co1—N6—C15151.02 (11)C28—C27—C32—C313.0 (2)
N2—Co1—N6—C15126.70 (11)B1—C27—C32—C31169.73 (13)
N5—Co1—N6—C1562.27 (11)C21—B1—C33—C3485.08 (15)
N3—Co1—N6—C1545.19 (11)C39—B1—C33—C34156.82 (12)
C4—N1—C1—C20.81 (18)C27—B1—C33—C3434.75 (16)
Co1—N1—C1—C2178.89 (13)C21—B1—C33—C3890.05 (14)
N1—C1—C2—C30.6 (2)C39—B1—C33—C3828.05 (17)
C1—C2—C3—C40.1 (2)C27—B1—C33—C38150.13 (12)
C1—N1—C4—C30.77 (17)C38—C33—C34—C350.1 (2)
Co1—N1—C4—C3179.40 (11)B1—C33—C34—C35175.60 (13)
C1—N1—C4—C5178.76 (13)C33—C34—C35—C360.1 (2)
Co1—N1—C4—C52.61 (15)C34—C35—C36—C370.3 (2)
C2—C3—C4—N10.43 (19)C35—C36—C37—C380.5 (2)
C2—C3—C4—C5177.73 (18)C36—C37—C38—C330.5 (2)
C6—N2—C5—C4179.39 (13)C34—C33—C38—C370.32 (19)
Co1—N2—C5—C40.94 (16)B1—C33—C38—C37175.74 (12)
N1—C4—C5—N21.10 (19)C21—B1—C39—C4411.12 (18)
C3—C4—C5—N2178.34 (17)C33—B1—C39—C44129.03 (14)
C5—N2—C6—C7166.34 (13)C27—B1—C39—C44111.99 (15)
Co1—N2—C6—C714.00 (15)C21—B1—C39—C40167.74 (12)
C8—N3—C7—C674.96 (14)C33—B1—C39—C4049.83 (16)
Co1—N3—C7—C645.40 (13)C27—B1—C39—C4069.15 (16)
N2—C6—C7—N338.32 (15)C44—C39—C40—C411.5 (2)
C7—N3—C8—C996.87 (14)B1—C39—C40—C41179.59 (13)
Co1—N3—C8—C921.57 (14)C39—C40—C41—C421.3 (2)
C10—N4—C9—C897.92 (15)C40—C41—C42—C430.1 (2)
Co1—N4—C9—C848.69 (13)C41—C42—C43—C440.7 (3)
N3—C8—C9—N442.79 (15)C42—C43—C44—C390.5 (3)
C9—N4—C10—C11146.56 (13)C40—C39—C44—C430.6 (2)
Co1—N4—C10—C110.32 (17)B1—C39—C44—C43179.51 (14)

Experimental details

Crystal data
Chemical formula[Co(C14H17N5)(C6H7N)](C24H20B)
Mr726.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.0332 (16), 19.559 (3), 17.138 (3)
β (°) 92.164 (2)
V3)3695.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.52 × 0.46 × 0.35
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.71, 0.84
No. of measured, independent and
observed [I > 2σ(I)] reflections
66110, 10797, 8767
Rint0.036
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.07
No. of reflections10797
No. of parameters474
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.22

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT and XPREP (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Partial support of this work by the Isfahan University of Technology Research Council is gratefully acknowledged.

References

First citationAmirnasr, M., Schenk, K. J., Meghdadi, S. & Morshedi, M. (2006). Polyhedron, 25, 671–677.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKwiatkowski, E., Kwiatkowski, M., Olechnowicz, A. & Bandoli, G. (1993). J. Crystallogr. Spectrosc. Res. 23, 423–429.  CSD CrossRef Web of Science Google Scholar
First citationMeghdadi, S., Daran, J.-C., Amirnasr, M. & Morshedi, M. (2007). Acta Cryst. E63, m982–m984.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeghdadi, S., Schenk, K. J., Amirnasr, M. & Fadaee, F. (2008). Acta Cryst. E64, m479–m480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiodragović, D. U., Bogdanović, G. A., Miodragović, Z. M., Radulović, M. D., Novaković, S. B., Kaluderović, G. N. & Kozlowski, H. (2006). J. Inorg. Biochem. 100, 1568–1574.  Web of Science PubMed Google Scholar
First citationMishra, A., Kaushik, N. K., Verma, A. K. & Gupta, R. (2008). Eur. J. Med. Chem. 43, 2189–2196.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMorshedi, M., Meghdadi, S. & Schenk, K. J. (2006). Acta Cryst. C62, m87–m89.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNishinaga, A. & Tomita, H. (1980). J. Mol. Catal. 7, 179–199.  CrossRef CAS Google Scholar
First citationPark, S., Mathur, V. K. & Planalp, R. P. (1998). Polyhedron, 17, 325–330.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpeiser, B. & Stahl, H. (1995). Angew. Chem. Int. Ed. 34, 1086–1089.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m332-m333
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds