metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m310-m311

Poly[[(2,2′-bi­pyridine)­(μ3-2-sulfonatobenzoato)lead(II)] dihydrate]

aCollege of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
*Correspondence e-mail: lixinhua01@126.com

(Received 4 February 2010; accepted 11 February 2010; online 17 February 2010)

In the title compound, {[Pb(sbc)(bpy)]·2H2O}n [bpy is 2,2′-bipyridine (C10H8N2) and sbc is the 2-sulfonatobenzoate dianion (C7H4O5S)], the PbII ion is bonded to four O atoms including carboxyl­ate and sulfonate from three sbc dianions, and two N atoms from a chelating 2,2′-bipyridine ligand. The sbc ligand acts as a μ3-bridging ligand by one O atom of the sulfonate group and the two O atoms of the carboxyl­ate. Of these two last O atoms, one builds up a dinuclear framework arranged around an inversion center whereas the second one links each dinuclear unit, forming a chain extending along the b axis. These polymeric chains are linked through O—H⋯O hydrogen bonds involving the water mol­ecules, forming a layer parallel to (10[\overline{2}]).

Related literature

For general background to lead coordination modes, see: Bridgewater & Parkin (2000[Bridgewater, B. & Parkin, G. (2000). Inorg. Chem. Commun. 3, 534-536.]); Cecconi et al. (2003[Cecconi, F., Ghilardi, C. A., Midollini, S. & Orlandini, A. (2003). Inorg. Chem. Commun. 6, 546-548.]); Taheri & Morsali (2006[Taheri, S. & Morsali, A. (2006). J. Coord. Chem. 59, 363-369.]); Wang & Vittal (2003[Wang, X. B. & Vittal, J. J. (2003). Inorg. Chem. Commun. 6, 1074-1077.]); Yin & Yu (2007[Yin, Y.-B. & Yu, H.-X. (2007). Acta Cryst. E63, m2804.]); Foreman et al. (2000[Foreman, M. R. S. J., Gelbrich, T., Hursthouse, M. B. & Plater, M. J. (2000). Inorg. Chem. Commun. 3, 234-238.]). For coordination based on sbc ligands, see: Xiao (2006[Xiao, H.-P. (2006). Acta Cryst. E62, m1611-m1612.]); Xiao et al. (2005[Xiao, H.-P., Shi, Q. & Cheng, Y.-Q. (2005). Acta Cryst. E61, m907-m909.], 2008[Xiao, H. P., Wang, J. G., Morsali, A., Zhang, W. B. & Li, X. H. (2008). J. Coord. Chem. 61, 3703-3710.]); Ying et al. (2003[Ying, S. M., Mao, J. G., Yang, B. P. & Sun, Z. M. (2003). Inorg. Chem. Commun. 6, 1319-1322.]); Li et al. (2008[Li, X., Wang, C. Y. & Hu, H. M. (2008). Inorg. Chem. Commun. 11, 345-348.]); Shi et al. (2007[Shi, W. F., Zhang, L., Shafaei-Fallah, M. & Rothenberger, A. (2007). Z. Anorg. Allg. Chem. 633, 2431-2434.]). For information on sulfonate geometry, see: Onoda et al. (2001[Onoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem. 40, 516-521.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C7H4O5S)(C10H8N2)]·2H2O

  • Mr = 599.57

  • Monoclinic, P 21 /c

  • a = 15.3464 (11) Å

  • b = 6.9951 (5) Å

  • c = 17.2844 (12) Å

  • β = 96.629 (1)°

  • V = 1843.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.31 mm−1

  • T = 298 K

  • 0.50 × 0.21 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.11, Tmax = 0.26

  • 9382 measured reflections

  • 3318 independent reflections

  • 2944 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.058

  • S = 1.04

  • 3318 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O4i 0.85 1.97 2.808 (5) 168
O6—H6B⋯O7ii 0.85 1.90 2.752 (6) 178
O7—H7A⋯O4 0.85 1.95 2.791 (5) 169
O7—H7B⋯O6 0.85 1.89 2.722 (6) 167
Symmetry codes: (i) x, y+1, z; (ii) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Lead(II) is capable of exhibiting variable coordination mode forming a range of coordination polymers and polynuclear complexes geometry (Wang & Vittal, 2003; Cecconi et al., 2003; Bridgewater et al., 2000, Ying et al., 2003; Taheri & Morsali, 2006; Yin & Yu, 2007). The absence of crystal field stabilisation energy effects also allows the Pb(II) cations to adopt a range of different coordination geometries not restricted to octahedral, tetrahedral or square planar (Foreman et al., 2000). Sbc is an interesting ligand with both carboxylate and sulfonate acting as potential coordinating groups. Some metal-organic coordinations based on Sbc ligand have been reported (Li et al., 2008, Xiao et al., 2005, Xiao et al., 2006, Xiao et al., 2008, Shi et al., 2007). Thus, we have selected the Pb-sbc system to extend our research and we present here the crystal structure of the title compound, [Pb(sbc)(bpy)].2H2O (bpy is 2,2'-bipyridine and sbc is 2-sulfobenzenecarboxylate dianion), (I).

The Pb atom might be regarded as six or seven coordinates if the second carboxylate O atom is considered as weakly bonding to the metal as observed in the related compound (C34 H20 N2 O8 Pb2)n (Yin & Yu, 2007) (Fig. 1). The Pb1—O2(symmetry code: ), 3.045 \%A, is much longer than the 2.745 \%A reported in the related complex, but it is still shorter than the sum of the Van der Waals radii. The geometry around the metal might be described as highly distorted monocaped octahedron.

The sbc ligand acts as a µ3-bridging ligands by one O atom of the sulfone group, and the two O atoms of the carboxylate. Of these two last O atoms, one is building a dinuclear framework arranged around inversion center whereas the second one is linking each dinuclear unit to form a chain developping along the b axis.(Fig.2).

Interestingly, the water molecules are intercalated between the polymeric chains and link these chains through O-H···O hydrogen bonds to build up layers developping parallel to the (1 0 -2) plane (Table 1, Fig. 2).

The S-O distances within the sulfonate fall within the typical range observed for S-O bonds (Onoda et al., 2001). The similarity of the three S—O bond distances suggests that strong conjugation on sulfonate is predominant in (I).

Related literature top

For general background to lead coordination modes, see: Bridgewater & Parkin (2000); Cecconi et al. (2003); Taheri & Morsali (2006); Wang & Vittal (2003); Yin & Yu (2007); Foreman et al. (2000). For coordination based on sbc ligands, see: Xiao (2006); Xiao et al. (2005, 2008); Ying et al. (2003); Li et al. (2008); Shi et al. (2007). For information on sulfonate geometry, see: Onoda et al. (2001).

Experimental top

The title compound was synthesized by adding the DMF solution (10 ml) of 2,2'-bipyridine (0.03 g, 0.2 mmol) and 2,2'-dithiosalicylic acid (0.06 g, 0.2 mmol) dropwise to a stirred water solution (10 ml) of lead nitrate (0.07 g, 0.2 mmol) at 298 K temperature. Then the reaction mixture was filtered and the filtrate stood for about six weeks until the prism colorless crystals were obtained. The prism shaped crystals suitable for X-ray diffraction were collected by filtration, washed with water and ethanol and dried in air. The structure of (I) was determined by single crystal X-ray crystallography. Intensity data and unit-cell parameters for (I) were measured at 298 K on a Bruker Smart 1000 CCD diffractometer with graphite-monochromated Mo Kα radiation (λ=0.71073 Å) and a graphite monochromator using the ω-scan mode. All empirical absorption corrections were applied by using the SADABS program[Bruker, 2002]. The structure was solved by direct methods and refined on F2 by full-matrix leastsquares using the SHELXL-97 program package[Bruker, 2002].

Refinement top

The water H atoms were refined subject to the restraint O—H = 0.82 (5) Å. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93 Å with Uiso= 1.2Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of lead (II) ion in (I) with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. Water molecules and H atoms have been omitted for clarity. [Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z; (iii) x, y-1, z]
[Figure 2] Fig. 2. View showing the O-H···O bond network built up by the water molecules intercalated between the polymeric chains. H atoms not involved in hydrogen bondings have been omitted for clarity.
Poly[[(2,2'-bipyridine)(µ3-2-sulfonatobenzoato)lead(II)] dihydrate] top
Crystal data top
[Pb(C7H4O5S)(C10H8N2)]·2H2OF(000) = 1144
Mr = 599.57Dx = 2.161 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3318 reflections
a = 15.3464 (11) Åθ = 2.4–25.2°
b = 6.9951 (5) ŵ = 9.31 mm1
c = 17.2844 (12) ÅT = 298 K
β = 96.629 (1)°Prism, colorless
V = 1843.1 (2) Å30.50 × 0.21 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3318 independent reflections
Radiation source: fine-focus sealed tube2944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
600 frames, delta ω = 2 dgr scansθmax = 25.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1813
Tmin = 0.11, Tmax = 0.26k = 88
9382 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0286P)2]
where P = (Fo2 + 2Fc2)/3
3318 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Pb(C7H4O5S)(C10H8N2)]·2H2OV = 1843.1 (2) Å3
Mr = 599.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.3464 (11) ŵ = 9.31 mm1
b = 6.9951 (5) ÅT = 298 K
c = 17.2844 (12) Å0.50 × 0.21 × 0.15 mm
β = 96.629 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3318 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2944 reflections with I > 2σ(I)
Tmin = 0.11, Tmax = 0.26Rint = 0.029
9382 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.04Δρmax = 0.91 e Å3
3318 reflectionsΔρmin = 0.83 e Å3
253 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.402858 (9)0.234749 (19)0.017420 (8)0.03015 (7)
S10.25615 (7)0.17058 (17)0.11614 (6)0.0407 (3)
O10.43147 (15)0.1252 (4)0.00541 (15)0.0333 (6)
O20.42527 (16)0.4252 (4)0.04577 (16)0.0393 (7)
O30.3148 (2)0.3281 (5)0.12513 (18)0.0558 (8)
O40.1728 (2)0.1882 (5)0.16536 (18)0.0566 (8)
O50.29504 (18)0.0181 (4)0.12329 (15)0.0503 (8)
N10.4155 (2)0.1825 (5)0.12289 (17)0.0307 (7)
N20.2610 (2)0.2622 (4)0.0397 (2)0.0351 (8)
C10.4933 (2)0.1312 (5)0.1606 (2)0.0352 (9)
H10.54240.13270.13370.042*
C20.5031 (3)0.0765 (6)0.2376 (2)0.0443 (10)
H20.55760.03980.26220.053*
C30.4304 (3)0.0773 (6)0.2774 (2)0.0499 (11)
H30.43510.04000.32940.060*
C40.3511 (3)0.1333 (6)0.2399 (2)0.0476 (11)
H40.30180.13550.26650.057*
C50.3442 (3)0.1870 (5)0.1619 (2)0.0340 (9)
C60.2604 (3)0.2435 (5)0.1169 (3)0.0382 (11)
C70.1840 (4)0.2756 (6)0.1507 (4)0.0584 (15)
H70.18370.26370.20420.070*
C80.1089 (3)0.3251 (8)0.1042 (4)0.0723 (17)
H80.05720.34590.12620.087*
C90.1097 (3)0.3439 (7)0.0258 (4)0.0638 (15)
H90.05920.37760.00630.077*
C100.1878 (3)0.3116 (6)0.0047 (3)0.0500 (12)
H100.18920.32480.05810.060*
C110.3901 (3)0.2673 (5)0.0288 (2)0.0274 (9)
C120.2956 (3)0.2376 (4)0.0411 (3)0.0308 (9)
C130.2730 (3)0.2575 (5)0.1167 (3)0.0389 (11)
H130.31520.29490.15680.047*
C140.1877 (3)0.2215 (6)0.1319 (3)0.0491 (13)
H140.17310.23190.18250.059*
C150.1244 (3)0.1702 (6)0.0723 (3)0.0477 (11)
H150.06740.14550.08290.057*
C160.1451 (2)0.1554 (6)0.0030 (3)0.0412 (10)
H160.10190.12320.04310.049*
C170.2304 (2)0.1884 (5)0.0192 (2)0.0316 (8)
O60.0809 (3)0.4682 (6)0.1967 (3)0.1033 (15)
H6A0.11490.56210.18340.155*
H6B0.04200.50730.23240.155*
O70.0420 (2)0.0904 (6)0.1850 (2)0.0793 (11)
H7A0.08450.01270.18440.119*
H7B0.05940.20300.19380.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.02874 (11)0.03411 (11)0.02743 (11)0.00222 (5)0.00244 (7)0.00072 (6)
S10.0343 (5)0.0518 (7)0.0355 (6)0.0060 (5)0.0012 (5)0.0130 (5)
O10.0276 (13)0.0314 (15)0.0411 (15)0.0041 (11)0.0041 (12)0.0006 (12)
O20.0319 (14)0.0303 (16)0.0554 (18)0.0020 (11)0.0035 (13)0.0029 (13)
O30.0476 (18)0.063 (2)0.058 (2)0.0065 (16)0.0098 (16)0.0280 (18)
O40.0419 (18)0.078 (2)0.0463 (19)0.0079 (16)0.0092 (15)0.0141 (17)
O50.0535 (17)0.060 (2)0.0376 (17)0.0182 (15)0.0049 (14)0.0002 (14)
N10.0368 (18)0.0277 (17)0.0291 (17)0.0016 (14)0.0104 (14)0.0001 (14)
N20.0274 (18)0.030 (2)0.048 (2)0.0033 (12)0.0056 (17)0.0017 (13)
C10.041 (2)0.033 (2)0.032 (2)0.0011 (17)0.0041 (18)0.0015 (17)
C20.058 (3)0.033 (2)0.039 (3)0.0010 (19)0.008 (2)0.0034 (18)
C30.078 (3)0.040 (3)0.031 (2)0.006 (2)0.008 (2)0.0026 (18)
C40.066 (3)0.043 (3)0.039 (2)0.004 (2)0.026 (2)0.002 (2)
C50.041 (2)0.0252 (19)0.038 (2)0.0063 (17)0.0139 (19)0.0042 (17)
C60.040 (2)0.023 (2)0.054 (3)0.0020 (15)0.014 (2)0.0020 (16)
C70.050 (3)0.050 (3)0.082 (4)0.006 (2)0.036 (3)0.001 (2)
C80.046 (3)0.054 (3)0.123 (6)0.009 (2)0.036 (4)0.001 (4)
C90.035 (3)0.039 (3)0.116 (5)0.004 (2)0.004 (3)0.006 (3)
C100.036 (2)0.039 (2)0.073 (3)0.001 (2)0.004 (2)0.004 (2)
C110.025 (2)0.028 (2)0.029 (2)0.0016 (14)0.0022 (17)0.0058 (15)
C120.030 (2)0.020 (2)0.044 (3)0.0058 (13)0.0117 (19)0.0062 (15)
C130.043 (3)0.033 (3)0.041 (3)0.0034 (16)0.007 (2)0.0032 (16)
C140.054 (3)0.045 (3)0.054 (3)0.008 (2)0.031 (3)0.001 (2)
C150.034 (2)0.043 (3)0.069 (3)0.001 (2)0.021 (2)0.004 (2)
C160.025 (2)0.038 (2)0.061 (3)0.0005 (17)0.007 (2)0.004 (2)
C170.032 (2)0.0246 (19)0.039 (2)0.0004 (16)0.0069 (17)0.0022 (17)
O60.112 (3)0.067 (3)0.119 (4)0.020 (2)0.037 (3)0.005 (2)
O70.056 (2)0.075 (3)0.105 (3)0.0065 (18)0.002 (2)0.012 (2)
Geometric parameters (Å, º) top
Pb1—N12.438 (3)C5—C61.477 (6)
Pb1—N22.499 (4)C6—C71.387 (7)
Pb1—O12.579 (3)C7—C81.371 (8)
Pb1—O2i2.623 (3)C7—H70.9300
Pb1—O1ii2.640 (2)C8—C91.362 (7)
S1—O31.442 (3)C8—H80.9300
S1—O41.457 (3)C9—C101.382 (6)
S1—O51.460 (3)C9—H90.9300
S1—C171.770 (4)C10—H100.9300
O1—C111.270 (4)C11—C121.503 (5)
O1—Pb1ii2.640 (2)C12—C131.397 (7)
O2—C111.250 (4)C12—C171.402 (6)
O2—Pb1iii2.623 (3)C13—C141.389 (7)
N1—C11.341 (5)C13—H130.9300
N1—C51.350 (5)C14—C151.380 (7)
N2—C101.331 (6)C14—H140.9300
N2—C61.343 (6)C15—C161.379 (6)
C1—C21.377 (5)C15—H150.9300
C1—H10.9300C16—C171.388 (5)
C2—C31.376 (5)C16—H160.9300
C2—H20.9300O6—H6A0.8533
C3—C41.369 (6)O6—H6B0.8532
C3—H30.9300O7—H7A0.8484
C4—C51.392 (5)O7—H7B0.8510
C4—H40.9300
N1—Pb1—N265.91 (11)C4—C5—C6123.1 (4)
N1—Pb1—O173.07 (9)N2—C6—C7120.3 (5)
N2—Pb1—O198.94 (8)N2—C6—C5116.4 (4)
N1—Pb1—O2i74.35 (9)C7—C6—C5123.3 (5)
N2—Pb1—O2i81.04 (9)C8—C7—C6119.3 (6)
O1—Pb1—O2i144.08 (8)C8—C7—H7120.4
N1—Pb1—O1ii85.01 (9)C6—C7—H7120.4
N2—Pb1—O1ii150.00 (10)C9—C8—C7120.2 (5)
O1—Pb1—O1ii63.85 (9)C9—C8—H8119.9
O2i—Pb1—O1ii98.72 (7)C7—C8—H8119.9
O3—S1—O4112.87 (19)C8—C9—C10118.2 (5)
O3—S1—O5114.6 (2)C8—C9—H9120.9
O4—S1—O5111.53 (19)C10—C9—H9120.9
O3—S1—C17104.97 (19)N2—C10—C9122.2 (5)
O4—S1—C17105.67 (19)N2—C10—H10118.9
O5—S1—C17106.38 (17)C9—C10—H10118.9
C11—O1—Pb1136.9 (2)O2—C11—O1123.2 (4)
C11—O1—Pb1ii105.1 (2)O2—C11—C12119.1 (3)
Pb1—O1—Pb1ii116.15 (9)O1—C11—C12117.6 (3)
C11—O2—Pb1iii132.2 (2)C13—C12—C17119.1 (4)
C1—N1—C5119.4 (3)C13—C12—C11117.8 (4)
C1—N1—Pb1119.2 (2)C17—C12—C11123.2 (4)
C5—N1—Pb1121.1 (3)C14—C13—C12120.1 (5)
C10—N2—C6119.8 (4)C14—C13—H13119.9
C10—N2—Pb1120.6 (3)C12—C13—H13119.9
C6—N2—Pb1119.4 (3)C15—C14—C13120.2 (4)
N1—C1—C2122.4 (4)C15—C14—H14119.9
N1—C1—H1118.8C13—C14—H14119.9
C2—C1—H1118.8C16—C15—C14120.3 (4)
C3—C2—C1118.5 (4)C16—C15—H15119.8
C3—C2—H2120.7C14—C15—H15119.8
C1—C2—H2120.7C15—C16—C17120.2 (4)
C4—C3—C2119.5 (4)C15—C16—H16119.9
C4—C3—H3120.3C17—C16—H16119.9
C2—C3—H3120.3C16—C17—C12120.0 (4)
C3—C4—C5120.0 (4)C16—C17—S1119.8 (3)
C3—C4—H4120.0C12—C17—S1120.1 (3)
C5—C4—H4120.0H6A—O6—H6B107.6
N1—C5—C4120.1 (4)H7A—O7—H7B109.7
N1—C5—C6116.7 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O4i0.851.972.808 (5)168
O6—H6B···O7iv0.851.902.752 (6)178
O7—H7A···O40.851.952.791 (5)169
O7—H7B···O60.851.892.722 (6)167
Symmetry codes: (i) x, y+1, z; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Pb(C7H4O5S)(C10H8N2)]·2H2O
Mr599.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.3464 (11), 6.9951 (5), 17.2844 (12)
β (°) 96.629 (1)
V3)1843.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)9.31
Crystal size (mm)0.50 × 0.21 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.11, 0.26
No. of measured, independent and
observed [I > 2σ(I)] reflections
9382, 3318, 2944
Rint0.029
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.058, 1.04
No. of reflections3318
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.83

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O4i0.851.972.808 (5)167.5
O6—H6B···O7ii0.851.902.752 (6)177.8
O7—H7A···O40.851.952.791 (5)168.7
O7—H7B···O60.851.892.722 (6)167.0
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2.
 

Acknowledgements

We acknowledge financial support by the National Natural Science Foundation of China (grant No. 20871095).

References

First citationBridgewater, B. & Parkin, G. (2000). Inorg. Chem. Commun. 3, 534–536.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCecconi, F., Ghilardi, C. A., Midollini, S. & Orlandini, A. (2003). Inorg. Chem. Commun. 6, 546–548.  Web of Science CSD CrossRef CAS Google Scholar
First citationForeman, M. R. S. J., Gelbrich, T., Hursthouse, M. B. & Plater, M. J. (2000). Inorg. Chem. Commun. 3, 234–238.  Web of Science CrossRef CAS Google Scholar
First citationLi, X., Wang, C. Y. & Hu, H. M. (2008). Inorg. Chem. Commun. 11, 345–348.  Web of Science CrossRef CAS Google Scholar
First citationOnoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem. 40, 516–521.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, W. F., Zhang, L., Shafaei-Fallah, M. & Rothenberger, A. (2007). Z. Anorg. Allg. Chem. 633, 2431–2434.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaheri, S. & Morsali, A. (2006). J. Coord. Chem. 59, 363–369.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X. B. & Vittal, J. J. (2003). Inorg. Chem. Commun. 6, 1074–1077.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiao, H.-P. (2006). Acta Cryst. E62, m1611–m1612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, H.-P., Shi, Q. & Cheng, Y.-Q. (2005). Acta Cryst. E61, m907–m909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, H. P., Wang, J. G., Morsali, A., Zhang, W. B. & Li, X. H. (2008). J. Coord. Chem. 61, 3703–3710.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, Y.-B. & Yu, H.-X. (2007). Acta Cryst. E63, m2804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYing, S. M., Mao, J. G., Yang, B. P. & Sun, Z. M. (2003). Inorg. Chem. Commun. 6, 1319–1322.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m310-m311
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds