metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m325-m326

Hexa­kis­(aceto­nitrile-κN)ruthenium(II) bis­­(hexa­bromo­carbadodeca­borate) aceto­nitrile solvate

aDepartment of Chemistry, Ithaca College, 953 Danby Road, Ithaca, NY 14850, USA, and bX-Ray Diffraction Facility, 167 Spencer T. Olin Laboratory, Cornell University, Ithaca, NY 14850, USA
*Correspondence e-mail: alarsen@ithaca.edu

(Received 15 January 2010; accepted 16 February 2010; online 24 February 2010)

The title compound, [Ru(NCCH3)6](CH6B11Br6)2·CH3CN, consists of the 'naked' ruthenium(II) cation surrounded by six acetonitrile mol­ecules, each coordinated via the nitro­gen atoms in a linear or nearly-linear fashion in a typical octa­hedral over-all arrangement. The cation is balanced by the two hexa-bromo­carborane cage anionic fragments [CB11H6Br6]. Weak C—H⋯Br and B—H⋯Br inter­actions link neighboring anions.

Related literature

For related literature pertaining to ruthenium and ruthenium derivative structures, see: Bergman & Chang (1987[Bergman, R. G. & Chang, J. (1987). J. Am. Chem. Soc. 109, 4298-4304.]); Burns & Hubbard (1994[Burns, R. M. & Hubbard, J. L. (1994). J. Am. Chem. Soc. 116, 9514-9520.]); Stasko et al. (2002[Stasko, D., Hoffmann, S. P., Kim, K.-C., Fackler, N. L. P., Larsen, A. S., Drovetskaya, T., Tham, F. S., Reed, C. A., Rickard, C. E. F. & Boyd, P. D. W. (2002). J. Am. Chem. Soc. 124, 13869-13876.]); Brookhart et al. (1992[Brookhart, M., Grant, B. & Volpe, A. F. Jr (1992). Organometallics, 11, 3920-3922.]). For related ruthenium structures, see: Pearsal et al. (2007[Pearsal, M., Gembicky, M., Dominiak, P., Larsen, A. & Coppens, P. (2007). Acta Cryst. E63, m2596.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C2H3N)6](CH6B11Br6)2·C2H3N

  • Mr = 1621.30

  • Orthorhombic, P n a 21

  • a = 21.332 (2) Å

  • b = 11.7577 (10) Å

  • c = 20.2620 (17) Å

  • V = 5082.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.77 mm−1

  • T = 173 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker CCD-1000 area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.245, Tmax = 0.442

  • 36328 measured reflections

  • 13481 independent reflections

  • 10985 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.062

  • S = 0.97

  • 13481 reflections

  • 531 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.73 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 6319 Friedel pairs

  • Flack parameter: 0.000 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
B10—H10⋯Br8i 1.12 2.85 3.612 (5) 125
C1AA—H1A⋯Br4ii 1.12 2.77 3.547 (5) 126
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Electrophilic complexes with the [Cp*Ru(NO)] core are reactive towards small molecular nucleophiles. In the presence of labile neutral ligands or weakly coordinating anions, such as trifluoromethanesulfonate, these complexes exhibit pro-catalytic reactivity with unsaturated hydrocarbons and alcohols (Burns and Hubbard, 1994; Pearsal et al., 2007). The present study's goal is introduction of the non-coordinating carborane cage anions of the [CB11H12] family in order to increase the reactivity of the ruthenium catalytic center (Stasko et al., 2002). The synthetic route to the desired complexes includes protonation of the dialkyl starting material with the solvated proton salt of the weakly-coordinating anion (similar to Brookhart, et al., 1992). This process eventually results in stripping all the ligands off the ruthenium center to give the title compound comprised of the 'naked' hexa-acetonitrile ruthenium cationic fragment balanced by two hexa-bromo-carborane anionic fragments. The catalytic activity of this complex is currently under investigation.

Related literature top

For related literature pertaining to ruthenium and ruthenium derivative structures, see: Bergman & Chang (1987); Burns & Hubbard (1994); Stasko et al. (2002); Brookhart et al. (1992). For related ruthenium structures, see: Pearsal et al. (2007).

Experimental top

The compound was obtained by a prolonged exposure of the Cp*Ru(NO)(CH3)2 complex to an excess of carborane-based protonating agent [(C2H5OC2H5)2 H]+ [CB11H6Br6]- in acetonitrile.

All synthetic procedures were carried out in inert atmosphere and in anhydrous solvents. The protonating agent [(C2H5OC2H5)2 H]+ [CB11H6Br6]- and starting ruthenium complex Cp*Ru(NO)(CH3)2 were synthesized according to the reported procedures (Stasko et al., 2002; Bergman & Chang,1987).

20 mg (0.065 mmol) of Cp*Ru(NO)(CH3)2 were dissolved in 10 ml of CH3CN and the solution was added to 200 mg of solid [(C2H5OC2H5)2 H]+ [CB11H6Br6]- (0.265 mmol). Vigorous evolution of a gas (methane) was observed. The color of the solution gradually changed from dark red to dark purple-red. Initial product of the reaction, [Cp*Ru(NO)(CH3)(NCCH3)] [CB11H6Br6], formed via a mono-protonation process and loss of one methane molecule from the starting material, was observed spectroscopically (by 1H NMR) in the aliquot of the reaction mixture taken after 4 hrs. The red crystals of the [Ru(NCCH3)6]] [CB11H6Br6]2 were grown from the reaction mixture in acetonitrile at ambient temperature under nitrogen by slow evaporation over a period of 3 weeks.

Refinement top

All H-atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.2 or 1.5 times Ueq(bearing atom).

All H-atoms were placed in idealized locations with C—H distances of 0.981 Å for methyl carbons, and B—H and other C—H distances of 1.212 Å and refined as riding with thermal displacement coefficients Uiso(H) set to 1.5 times Ueq(bearing C atom) for the methyl atoms and 1.2 times Ueq(bearing atom) otherwise.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I)with atom numbering scheme. The thermal ellipsoids are shown at 50% probability level.
Hexakis(acetonitrile-κN)ruthenium(II) bis(hexabromocarbadodecaborate) acetonitrile solvate top
Crystal data top
[Ru(C2H3N)6](CH6B11Br6)2·C2H3NF(000) = 3008
Mr = 1621.30Dx = 2.119 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 999 reflections
a = 21.332 (2) Åθ = 1.9–29.3°
b = 11.7577 (10) ŵ = 9.77 mm1
c = 20.2620 (17) ÅT = 173 K
V = 5082.1 (8) Å3Block, red
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker CCD-1000 area-detector
diffractometer
13481 independent reflections
Radiation source: fine-focus sealed tube10985 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
0.30° ω and 0.4 ° ϕ scansθmax = 29.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2928
Tmin = 0.245, Tmax = 0.442k = 1615
36328 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.002P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
13481 reflectionsΔρmax = 0.83 e Å3
531 parametersΔρmin = 0.73 e Å3
1 restraintAbsolute structure: Flack (1983), 6319 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.000 (5)
Crystal data top
[Ru(C2H3N)6](CH6B11Br6)2·C2H3NV = 5082.1 (8) Å3
Mr = 1621.30Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 21.332 (2) ŵ = 9.77 mm1
b = 11.7577 (10) ÅT = 173 K
c = 20.2620 (17) Å0.20 × 0.15 × 0.10 mm
Data collection top
Bruker CCD-1000 area-detector
diffractometer
13481 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
10985 reflections with I > 2σ(I)
Tmin = 0.245, Tmax = 0.442Rint = 0.042
36328 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.062Δρmax = 0.83 e Å3
S = 0.97Δρmin = 0.73 e Å3
13481 reflectionsAbsolute structure: Flack (1983), 6319 Friedel pairs
531 parametersAbsolute structure parameter: 0.000 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.399141 (18)0.77943 (3)0.705666 (18)0.02190 (8)
N10.3418 (2)0.8915 (3)0.75141 (19)0.0252 (9)
N20.3486 (2)0.6518 (3)0.74612 (18)0.0232 (9)
N30.4578 (2)0.7767 (3)0.7844 (2)0.0289 (9)
N40.4530 (2)0.6611 (3)0.66043 (19)0.0245 (9)
N50.4493 (2)0.9056 (3)0.66337 (19)0.0261 (9)
N60.34097 (19)0.7832 (3)0.62615 (19)0.0229 (8)
C10.3052 (3)0.9451 (4)0.7782 (2)0.0264 (11)
C20.2595 (3)1.0150 (4)0.8113 (3)0.0371 (13)
H2C0.28021.06030.84550.056*
H2B0.22760.96630.83170.056*
H2A0.23951.06590.77930.056*
C30.3216 (2)0.5780 (4)0.7671 (2)0.0271 (11)
C40.2864 (3)0.4804 (4)0.7934 (3)0.0355 (13)
H4C0.31270.43900.82500.053*
H4A0.27470.42970.75700.053*
H4B0.24850.50760.81560.053*
C50.4903 (2)0.7721 (4)0.8281 (2)0.0256 (10)
C60.5326 (3)0.7672 (4)0.8846 (2)0.0354 (12)
H6B0.57560.78210.86990.053*
H6A0.53040.69150.90470.053*
H6C0.52020.82460.91710.053*
C70.4787 (2)0.5888 (4)0.6358 (2)0.0261 (10)
C80.5105 (3)0.4935 (4)0.6042 (3)0.0370 (13)
H8C0.53550.45240.63700.055*
H8B0.53820.52220.56930.055*
H8A0.47940.44200.58490.055*
C90.4757 (2)0.9733 (4)0.6354 (3)0.0299 (11)
C100.5104 (3)1.0596 (4)0.5984 (3)0.0435 (15)
H10B0.48371.12640.59170.065*
H10A0.52291.02850.55550.065*
H10C0.54791.08170.62330.065*
C110.3105 (2)0.7833 (4)0.5804 (2)0.0256 (11)
C120.2710 (3)0.7818 (4)0.5225 (2)0.0324 (12)
H12A0.25390.70520.51630.049*
H12B0.29580.80320.48380.049*
H12C0.23650.83600.52820.049*
Br10.09098 (2)0.22557 (4)0.51235 (3)0.02750 (11)
Br20.17891 (3)0.50024 (3)0.48909 (2)0.02850 (11)
Br30.32771 (2)0.48584 (3)0.59669 (2)0.02548 (10)
Br40.33173 (3)0.19992 (4)0.68133 (3)0.03209 (12)
Br50.18567 (3)0.03424 (4)0.63167 (3)0.03231 (12)
Br60.17687 (2)0.35779 (4)0.65791 (2)0.02565 (10)
C0AA0.2963 (2)0.1822 (4)0.4613 (2)0.0220 (10)
H0A0.32210.14380.41860.026*
B10.1813 (2)0.2282 (4)0.5161 (3)0.0195 (10)
B20.2239 (2)0.3581 (4)0.5052 (2)0.0191 (10)
B30.2923 (2)0.3521 (4)0.5546 (2)0.0180 (10)
B40.2940 (2)0.2181 (4)0.5941 (3)0.0197 (10)
B50.2248 (3)0.1416 (4)0.5710 (2)0.0188 (10)
B60.2212 (2)0.2911 (4)0.5838 (2)0.0147 (10)
B70.2284 (3)0.2502 (4)0.4441 (3)0.0229 (12)
H70.20770.25980.39370.028*
B80.2965 (3)0.3270 (4)0.4675 (3)0.0233 (11)
H80.32040.38690.43270.028*
B90.3402 (3)0.2401 (4)0.5234 (3)0.0225 (11)
H90.39260.24330.52500.027*
B100.2980 (3)0.1107 (4)0.5337 (3)0.0232 (11)
H100.32320.02830.54220.028*
B110.2287 (3)0.1170 (4)0.4860 (3)0.0218 (11)
H110.20800.03890.46300.026*
Br70.32987 (2)0.77287 (4)0.33363 (2)0.02870 (11)
Br80.42000 (3)0.93866 (4)0.46079 (3)0.03373 (12)
Br90.56818 (3)0.76830 (4)0.50431 (3)0.03494 (12)
Br100.56984 (2)0.50141 (4)0.39952 (3)0.02875 (11)
Br110.42319 (3)0.49971 (4)0.29036 (3)0.03068 (11)
Br120.41484 (2)0.61228 (4)0.46759 (2)0.02423 (10)
C1AA0.5353 (3)0.8272 (4)0.2853 (2)0.0291 (11)
H1A0.56100.87420.24550.035*
B130.4202 (3)0.7666 (4)0.3357 (3)0.0220 (11)
B140.4631 (3)0.8445 (4)0.3960 (3)0.0246 (12)
B150.5318 (3)0.7669 (4)0.4164 (3)0.0235 (11)
B160.5325 (3)0.6418 (4)0.3670 (2)0.0195 (11)
B170.4641 (3)0.6413 (4)0.3173 (2)0.0212 (11)
B180.4606 (2)0.6923 (4)0.4001 (2)0.0170 (10)
B190.4671 (3)0.8845 (4)0.3124 (3)0.0263 (12)
H190.44580.96540.29370.032*
B200.5362 (3)0.8849 (5)0.3618 (3)0.0286 (13)
H200.56070.96580.37560.034*
B210.5796 (3)0.7595 (4)0.3441 (3)0.0277 (13)
H210.63210.75780.34620.033*
B220.5369 (3)0.6817 (4)0.2831 (3)0.0252 (12)
H220.56150.62880.24520.030*
B230.4681 (3)0.7597 (5)0.2636 (3)0.0277 (13)
H230.44790.75840.21260.033*
N1S0.6665 (3)0.8100 (6)0.7904 (3)0.083 (2)
C1S0.6582 (4)0.8053 (6)0.7357 (4)0.063 (2)
C2S0.6476 (6)0.8005 (6)0.6695 (4)0.126 (5)
H2SC0.67780.84950.64660.189*
H2SB0.60500.82660.66000.189*
H2SA0.65260.72200.65420.189*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0257 (2)0.01802 (17)0.02196 (19)0.00100 (15)0.00163 (16)0.00001 (15)
N10.032 (3)0.0193 (18)0.024 (2)0.0028 (17)0.0022 (19)0.0000 (16)
N20.030 (2)0.0195 (18)0.019 (2)0.0012 (16)0.0004 (17)0.0005 (16)
N30.033 (3)0.0214 (19)0.033 (2)0.0021 (18)0.002 (2)0.0021 (18)
N40.030 (2)0.0212 (19)0.022 (2)0.0006 (17)0.0014 (18)0.0010 (16)
N50.031 (2)0.0239 (19)0.024 (2)0.0030 (17)0.0016 (19)0.0023 (17)
N60.028 (2)0.0170 (18)0.023 (2)0.0010 (15)0.0021 (18)0.0010 (16)
C10.036 (3)0.021 (2)0.021 (3)0.002 (2)0.004 (2)0.0048 (19)
C20.039 (4)0.046 (3)0.026 (3)0.010 (3)0.005 (2)0.001 (2)
C30.028 (3)0.031 (3)0.022 (3)0.002 (2)0.006 (2)0.004 (2)
C40.044 (4)0.029 (3)0.034 (3)0.015 (2)0.006 (3)0.005 (2)
C50.026 (3)0.024 (2)0.026 (3)0.005 (2)0.004 (2)0.002 (2)
C60.033 (3)0.044 (3)0.029 (3)0.011 (2)0.005 (2)0.004 (2)
C70.026 (3)0.028 (2)0.024 (3)0.007 (2)0.006 (2)0.003 (2)
C80.036 (3)0.037 (3)0.037 (3)0.014 (2)0.003 (3)0.004 (2)
C90.030 (3)0.028 (2)0.031 (3)0.008 (2)0.002 (2)0.007 (2)
C100.057 (4)0.042 (3)0.032 (3)0.023 (3)0.008 (3)0.002 (3)
C110.032 (3)0.019 (2)0.026 (3)0.0016 (19)0.005 (2)0.0027 (19)
C120.037 (3)0.027 (2)0.033 (3)0.001 (2)0.008 (2)0.004 (2)
Br10.0190 (2)0.0286 (2)0.0349 (3)0.00053 (19)0.0065 (2)0.0091 (2)
Br20.0357 (3)0.0201 (2)0.0297 (3)0.00673 (19)0.0053 (2)0.00434 (19)
Br30.0292 (3)0.0224 (2)0.0248 (2)0.01019 (18)0.0001 (2)0.00055 (19)
Br40.0332 (3)0.0362 (3)0.0269 (3)0.0033 (2)0.0145 (2)0.0097 (2)
Br50.0342 (3)0.0264 (2)0.0362 (3)0.0099 (2)0.0006 (2)0.0116 (2)
Br60.0253 (3)0.0345 (2)0.0171 (2)0.0024 (2)0.0058 (2)0.00666 (19)
C0AA0.026 (3)0.024 (2)0.017 (2)0.0020 (19)0.002 (2)0.0049 (18)
B10.017 (2)0.018 (2)0.023 (3)0.001 (2)0.002 (2)0.005 (2)
B20.018 (3)0.024 (2)0.015 (3)0.0007 (19)0.000 (2)0.001 (2)
B30.017 (3)0.019 (2)0.019 (3)0.0014 (19)0.002 (2)0.0022 (19)
B40.017 (2)0.017 (2)0.025 (3)0.0018 (19)0.002 (2)0.001 (2)
B50.019 (3)0.018 (2)0.020 (3)0.001 (2)0.003 (2)0.0040 (19)
B60.019 (3)0.015 (2)0.010 (2)0.0009 (18)0.0012 (18)0.0004 (18)
B70.025 (3)0.026 (3)0.018 (3)0.001 (2)0.003 (2)0.0032 (19)
B80.025 (3)0.026 (3)0.019 (3)0.004 (2)0.000 (2)0.000 (2)
B90.023 (3)0.024 (3)0.021 (3)0.004 (2)0.002 (2)0.000 (2)
B100.023 (3)0.020 (2)0.027 (3)0.003 (2)0.001 (2)0.000 (2)
B110.021 (3)0.020 (2)0.025 (3)0.001 (2)0.000 (2)0.006 (2)
Br70.0210 (3)0.0375 (3)0.0276 (3)0.0067 (2)0.0004 (2)0.0066 (2)
Br80.0399 (3)0.0236 (2)0.0376 (3)0.0011 (2)0.0123 (2)0.0059 (2)
Br90.0384 (3)0.0375 (3)0.0290 (3)0.0131 (2)0.0098 (2)0.0016 (2)
Br100.0275 (3)0.0234 (2)0.0353 (3)0.0061 (2)0.0020 (2)0.00958 (19)
Br110.0340 (3)0.0301 (2)0.0279 (3)0.0008 (2)0.0059 (2)0.0072 (2)
Br120.0267 (3)0.0265 (2)0.0195 (2)0.00456 (18)0.0039 (2)0.00747 (18)
C1AA0.030 (3)0.029 (2)0.028 (3)0.006 (2)0.008 (2)0.014 (2)
B130.024 (3)0.030 (3)0.012 (2)0.003 (2)0.004 (2)0.004 (2)
B140.030 (3)0.017 (2)0.027 (3)0.002 (2)0.007 (2)0.002 (2)
B150.026 (3)0.022 (2)0.023 (3)0.003 (2)0.001 (2)0.007 (2)
B160.022 (3)0.023 (3)0.013 (2)0.004 (2)0.002 (2)0.011 (2)
B170.021 (3)0.025 (3)0.017 (3)0.005 (2)0.000 (2)0.003 (2)
B180.017 (3)0.021 (2)0.013 (2)0.0002 (19)0.002 (2)0.0072 (19)
B190.024 (3)0.024 (3)0.032 (3)0.005 (2)0.007 (2)0.017 (2)
B200.026 (3)0.024 (3)0.036 (3)0.006 (2)0.009 (3)0.002 (2)
B210.019 (3)0.030 (3)0.035 (3)0.002 (2)0.007 (2)0.010 (2)
B220.029 (3)0.029 (3)0.018 (3)0.006 (2)0.007 (2)0.008 (2)
B230.025 (3)0.036 (3)0.022 (3)0.008 (2)0.007 (2)0.013 (2)
N1S0.069 (5)0.136 (6)0.044 (4)0.032 (4)0.001 (3)0.016 (4)
C1S0.067 (5)0.067 (5)0.053 (5)0.000 (4)0.000 (4)0.016 (4)
C2S0.236 (15)0.059 (5)0.083 (7)0.032 (7)0.043 (8)0.017 (5)
Geometric parameters (Å, º) top
Ru1—N52.020 (4)B4—B61.785 (7)
Ru1—N22.021 (4)B4—B51.790 (7)
Ru1—N12.022 (4)B5—B111.750 (7)
Ru1—N42.024 (4)B5—B101.773 (7)
Ru1—N32.028 (4)B5—B61.777 (6)
Ru1—N62.034 (4)B7—B81.776 (8)
N1—C11.142 (6)B7—B111.780 (7)
N2—C31.126 (6)B7—H71.1200
N3—C51.127 (6)B8—B91.786 (7)
N4—C71.127 (6)B8—H81.1200
N5—C91.126 (6)B9—B101.781 (7)
N6—C111.132 (6)B9—H91.1200
C1—C21.441 (7)B10—B111.768 (8)
C2—H2C0.9800B10—H101.1200
C2—H2B0.9800B11—H111.1200
C2—H2A0.9800Br7—B131.928 (6)
C3—C41.470 (7)Br8—B141.948 (5)
C4—H4C0.9800Br9—B151.944 (5)
C4—H4A0.9800Br10—B161.947 (5)
C4—H4B0.9800Br11—B171.958 (5)
C5—C61.457 (7)Br12—B181.926 (5)
C6—H6B0.9800C1AA—B201.694 (7)
C6—H6A0.9800C1AA—B191.695 (7)
C6—H6C0.9800C1AA—B231.696 (8)
C7—C81.459 (7)C1AA—B221.712 (7)
C8—H8C0.9800C1AA—B211.717 (7)
C8—H8B0.9800C1AA—H1A1.1200
C8—H8A0.9800B13—B191.774 (7)
C9—C101.463 (7)B13—B141.780 (8)
C10—H10B0.9800B13—B171.785 (7)
C10—H10A0.9800B13—B231.787 (8)
C10—H10C0.9800B13—B181.791 (7)
C11—C121.445 (7)B14—B191.759 (7)
C12—H12A0.9800B14—B201.773 (8)
C12—H12B0.9800B14—B151.776 (8)
C12—H12C0.9800B14—B181.792 (6)
Br1—B11.929 (5)B15—B201.776 (7)
Br2—B21.955 (5)B15—B161.778 (7)
Br3—B31.943 (5)B15—B181.784 (7)
Br4—B41.954 (5)B15—B211.786 (8)
Br5—B51.950 (5)B16—B221.767 (7)
Br6—B61.940 (5)B16—B211.772 (7)
C0AA—B71.690 (7)B16—B171.773 (7)
C0AA—B101.693 (7)B16—B181.776 (7)
C0AA—B81.707 (7)B17—B221.765 (8)
C0AA—B111.707 (7)B17—B231.770 (7)
C0AA—B91.710 (7)B17—B181.782 (7)
C0AA—H0A1.1200B19—B231.770 (8)
B1—B111.761 (7)B19—B201.782 (8)
B1—B51.770 (7)B19—H191.1200
B1—B61.776 (7)B20—B211.778 (8)
B1—B71.789 (7)B20—H201.1200
B1—B21.790 (7)B21—B221.788 (8)
B2—B81.765 (7)B21—H211.1200
B2—B31.770 (7)B22—B231.774 (8)
B2—B71.774 (7)B22—H221.1200
B2—B61.779 (7)B23—H231.1200
B3—B41.767 (7)N1S—C1S1.124 (9)
B3—B61.779 (7)C1S—C2S1.361 (10)
B3—B91.782 (7)C2S—H2SC0.9800
B3—B81.790 (7)C2S—H2SB0.9800
B4—B91.759 (7)C2S—H2SA0.9800
B4—B101.760 (7)
N5—Ru1—N2178.82 (15)B4—B10—B11108.0 (4)
N5—Ru1—N192.08 (16)C0AA—B10—B5104.4 (4)
N2—Ru1—N188.58 (15)B4—B10—B560.9 (3)
N5—Ru1—N490.67 (15)B11—B10—B559.2 (3)
N2—Ru1—N488.65 (15)C0AA—B10—B958.9 (3)
N1—Ru1—N4177.05 (16)B4—B10—B959.5 (3)
N5—Ru1—N391.08 (16)B11—B10—B9108.8 (4)
N2—Ru1—N389.88 (16)B5—B10—B9108.6 (4)
N1—Ru1—N391.28 (16)C0AA—B10—H10125.0
N4—Ru1—N389.73 (16)B4—B10—H10122.5
N5—Ru1—N688.36 (15)B11—B10—H10121.4
N2—Ru1—N690.68 (15)B5—B10—H10122.3
N1—Ru1—N688.86 (16)B9—B10—H10121.0
N4—Ru1—N690.16 (15)C0AA—B11—B5104.8 (4)
N3—Ru1—N6179.43 (17)C0AA—B11—B1104.7 (3)
C1—N1—Ru1172.6 (4)B5—B11—B160.6 (3)
C3—N2—Ru1177.4 (4)C0AA—B11—B1058.3 (3)
C5—N3—Ru1178.2 (4)B5—B11—B1060.5 (3)
C7—N4—Ru1173.9 (4)B1—B11—B10108.8 (4)
C9—N5—Ru1174.9 (4)C0AA—B11—B757.9 (3)
C11—N6—Ru1177.2 (4)B5—B11—B7108.8 (3)
N1—C1—C2178.8 (5)B1—B11—B760.7 (3)
C1—C2—H2C109.5B10—B11—B7107.5 (4)
C1—C2—H2B109.5C0AA—B11—H11125.4
H2C—C2—H2B109.5B5—B11—H11121.7
C1—C2—H2A109.5B1—B11—H11121.7
H2C—C2—H2A109.5B10—B11—H11121.5
H2B—C2—H2A109.5B7—B11—H11121.5
N2—C3—C4178.9 (5)B20—C1AA—B1963.5 (3)
C3—C4—H4C109.5B20—C1AA—B23115.8 (4)
C3—C4—H4A109.5B19—C1AA—B2362.9 (3)
H4C—C4—H4A109.5B20—C1AA—B22115.1 (4)
C3—C4—H4B109.5B19—C1AA—B22115.0 (4)
H4C—C4—H4B109.5B23—C1AA—B2262.8 (3)
H4A—C4—H4B109.5B20—C1AA—B2162.8 (3)
N3—C5—C6179.6 (6)B19—C1AA—B21115.5 (4)
C5—C6—H6B109.5B23—C1AA—B21115.4 (4)
C5—C6—H6A109.5B22—C1AA—B2162.8 (3)
H6B—C6—H6A109.5B20—C1AA—H1A117.1
C5—C6—H6C109.5B19—C1AA—H1A117.2
H6B—C6—H6C109.5B23—C1AA—H1A117.2
H6A—C6—H6C109.5B22—C1AA—H1A117.8
N4—C7—C8178.6 (5)B21—C1AA—H1A117.3
C7—C8—H8C109.5B19—B13—B1459.4 (3)
C7—C8—H8B109.5B19—B13—B17107.0 (4)
H8C—C8—H8B109.5B14—B13—B17107.3 (4)
C7—C8—H8A109.5B19—B13—B2359.6 (3)
H8C—C8—H8A109.5B14—B13—B23106.9 (4)
H8B—C8—H8A109.5B17—B13—B2359.4 (3)
N5—C9—C10179.0 (6)B19—B13—B18107.6 (4)
C9—C10—H10B109.5B14—B13—B1860.2 (3)
C9—C10—H10A109.5B17—B13—B1859.8 (3)
H10B—C10—H10A109.5B23—B13—B18107.4 (4)
C9—C10—H10C109.5B19—B13—Br7121.9 (3)
H10B—C10—H10C109.5B14—B13—Br7120.6 (3)
H10A—C10—H10C109.5B17—B13—Br7123.5 (3)
N6—C11—C12179.0 (5)B23—B13—Br7123.8 (4)
C11—C12—H12A109.5B18—B13—Br7121.1 (3)
C11—C12—H12B109.5B19—B14—B2060.6 (3)
H12A—C12—H12B109.5B19—B14—B15108.7 (4)
C11—C12—H12C109.5B20—B14—B1560.1 (3)
H12A—C12—H12C109.5B19—B14—B1360.2 (3)
H12B—C12—H12C109.5B20—B14—B13108.8 (4)
B7—C0AA—B10115.6 (4)B15—B14—B13108.6 (3)
B7—C0AA—B863.0 (3)B19—B14—B18108.2 (4)
B10—C0AA—B8115.5 (3)B20—B14—B18108.1 (4)
B7—C0AA—B1163.2 (3)B15—B14—B1860.0 (3)
B10—C0AA—B1162.7 (3)B13—B14—B1860.2 (3)
B8—C0AA—B11115.4 (4)B19—B14—Br8121.4 (3)
B7—C0AA—B9115.6 (3)B20—B14—Br8121.8 (3)
B10—C0AA—B963.1 (3)B15—B14—Br8121.6 (4)
B8—C0AA—B963.0 (3)B13—B14—Br8120.9 (4)
B11—C0AA—B9115.2 (4)B18—B14—Br8121.5 (3)
B7—C0AA—H0A117.0B14—B15—B2059.9 (3)
B10—C0AA—H0A117.3B14—B15—B16107.6 (4)
B8—C0AA—H0A117.3B20—B15—B16107.2 (4)
B11—C0AA—H0A117.5B14—B15—B1860.5 (3)
B9—C0AA—H0A117.3B20—B15—B18108.3 (4)
B11—B1—B559.4 (3)B16—B15—B1859.8 (3)
B11—B1—B6107.6 (4)B14—B15—B21107.8 (4)
B5—B1—B660.2 (3)B20—B15—B2159.9 (3)
B11—B1—B760.2 (3)B16—B15—B2159.6 (3)
B5—B1—B7107.6 (4)B18—B15—B21108.1 (4)
B6—B1—B7107.5 (3)B14—B15—Br9122.6 (3)
B11—B1—B2107.4 (4)B20—B15—Br9122.8 (3)
B5—B1—B2107.6 (4)B16—B15—Br9121.2 (3)
B6—B1—B259.8 (3)B18—B15—Br9120.9 (3)
B7—B1—B259.4 (3)B21—B15—Br9121.6 (4)
B11—B1—Br1123.2 (3)B22—B16—B2160.7 (3)
B5—B1—Br1122.6 (3)B22—B16—B1759.8 (3)
B6—B1—Br1121.0 (3)B21—B16—B17108.7 (4)
B7—B1—Br1122.1 (3)B22—B16—B18108.6 (4)
B2—B1—Br1121.0 (3)B21—B16—B18109.1 (4)
B8—B2—B360.8 (3)B17—B16—B1860.3 (3)
B8—B2—B760.2 (3)B22—B16—B15108.8 (3)
B3—B2—B7108.7 (4)B21—B16—B1560.4 (3)
B8—B2—B6108.9 (4)B17—B16—B15108.3 (4)
B3—B2—B660.2 (3)B18—B16—B1560.3 (3)
B7—B2—B6108.0 (3)B22—B16—Br10121.9 (3)
B8—B2—B1108.8 (3)B21—B16—Br10121.3 (3)
B3—B2—B1108.3 (3)B17—B16—Br10121.7 (3)
B7—B2—B160.2 (3)B18—B16—Br10120.6 (3)
B6—B2—B159.7 (3)B15—B16—Br10121.0 (3)
B8—B2—Br2122.4 (3)B22—B17—B2360.3 (3)
B3—B2—Br2122.2 (3)B22—B17—B1659.9 (3)
B7—B2—Br2121.5 (3)B23—B17—B16107.9 (4)
B6—B2—Br2120.8 (3)B22—B17—B18108.4 (4)
B1—B2—Br2120.1 (3)B23—B17—B18108.5 (4)
B4—B3—B2108.0 (4)B16—B17—B1859.9 (3)
B4—B3—B660.5 (3)B22—B17—B13108.8 (4)
B2—B3—B660.2 (3)B23—B17—B1360.3 (3)
B4—B3—B959.4 (3)B16—B17—B13108.1 (4)
B2—B3—B9107.6 (4)B18—B17—B1360.3 (3)
B6—B3—B9108.0 (3)B22—B17—Br11120.7 (3)
B4—B3—B8107.4 (3)B23—B17—Br11121.2 (3)
B2—B3—B859.4 (3)B16—B17—Br11121.9 (3)
B6—B3—B8107.8 (4)B18—B17—Br11122.0 (3)
B9—B3—B860.0 (3)B13—B17—Br11121.7 (4)
B4—B3—Br3120.9 (3)B16—B18—B1759.8 (3)
B2—B3—Br3122.5 (3)B16—B18—B1559.9 (3)
B6—B3—Br3120.8 (3)B17—B18—B15107.7 (4)
B9—B3—Br3122.0 (3)B16—B18—B13107.7 (3)
B8—B3—Br3123.1 (3)B17—B18—B1359.9 (3)
B9—B4—B1060.8 (3)B15—B18—B13107.7 (3)
B9—B4—B360.7 (3)B16—B18—B14106.9 (4)
B10—B4—B3109.0 (4)B17—B18—B14106.9 (3)
B9—B4—B6108.8 (3)B15—B18—B1459.6 (3)
B10—B4—B6107.9 (4)B13—B18—B1459.5 (3)
B3—B4—B660.1 (3)B16—B18—Br12122.8 (3)
B9—B4—B5108.9 (4)B17—B18—Br12121.6 (3)
B10—B4—B559.9 (3)B15—B18—Br12122.7 (3)
B3—B4—B5108.2 (4)B13—B18—Br12120.7 (3)
B6—B4—B559.6 (3)B14—B18—Br12122.4 (3)
B9—B4—Br4121.5 (3)C1AA—B19—B14104.4 (4)
B10—B4—Br4122.0 (3)C1AA—B19—B2358.6 (3)
B3—B4—Br4121.1 (3)B14—B19—B23108.5 (4)
B6—B4—Br4121.1 (3)C1AA—B19—B13105.1 (4)
B5—B4—Br4121.4 (3)B14—B19—B1360.5 (3)
B11—B5—B160.0 (3)B23—B19—B1360.6 (3)
B11—B5—B1060.3 (3)C1AA—B19—B2058.2 (3)
B1—B5—B10108.2 (4)B14—B19—B2060.1 (3)
B11—B5—B6108.0 (3)B23—B19—B20107.9 (4)
B1—B5—B660.1 (3)B13—B19—B20108.6 (4)
B10—B5—B6107.7 (4)C1AA—B19—H19125.1
B11—B5—B4107.5 (4)B14—B19—H19122.2
B1—B5—B4107.9 (3)B23—B19—H19121.3
B10—B5—B459.2 (3)B13—B19—H19121.7
B6—B5—B460.1 (3)B20—B19—H19121.5
B11—B5—Br5122.3 (3)C1AA—B20—B14103.9 (4)
B1—B5—Br5123.0 (3)C1AA—B20—B15104.8 (4)
B10—B5—Br5120.8 (3)B14—B20—B1560.1 (3)
B6—B5—Br5122.0 (3)C1AA—B20—B2159.2 (3)
B4—B5—Br5120.9 (3)B14—B20—B21108.4 (4)
B1—B6—B559.8 (3)B15—B20—B2160.4 (3)
B1—B6—B260.5 (3)C1AA—B20—B1958.3 (3)
B5—B6—B2107.8 (3)B14—B20—B1959.3 (3)
B1—B6—B3108.6 (3)B15—B20—B19107.6 (4)
B5—B6—B3108.2 (3)B21—B20—B19108.3 (4)
B2—B6—B359.7 (3)C1AA—B20—H20125.0
B1—B6—B4107.8 (3)B14—B20—H20122.8
B5—B6—B460.3 (3)B15—B20—H20122.3
B2—B6—B4106.8 (3)B21—B20—H20120.8
B3—B6—B459.4 (3)B19—B20—H20121.8
B1—B6—Br6122.2 (3)C1AA—B21—B16103.4 (4)
B5—B6—Br6122.3 (3)C1AA—B21—B2057.9 (3)
B2—B6—Br6122.0 (3)B16—B21—B20107.4 (4)
B3—B6—Br6120.7 (3)C1AA—B21—B15103.4 (4)
B4—B6—Br6121.9 (3)B16—B21—B1560.0 (3)
C0AA—B7—B2104.0 (4)B20—B21—B1559.8 (3)
C0AA—B7—B859.0 (3)C1AA—B21—B2258.4 (3)
B2—B7—B859.6 (3)B16—B21—B2259.5 (3)
C0AA—B7—B1158.9 (3)B20—B21—B22107.4 (4)
B2—B7—B11107.3 (3)B15—B21—B22107.5 (4)
B8—B7—B11108.5 (4)C1AA—B21—H21125.7
C0AA—B7—B1104.2 (4)B16—B21—H21122.8
B2—B7—B160.3 (3)B20—B21—H21121.8
B8—B7—B1108.4 (4)B15—B21—H21122.7
B11—B7—B159.1 (3)B22—B21—H21121.8
C0AA—B7—H7125.0C1AA—B22—B17104.0 (4)
B2—B7—H7122.8C1AA—B22—B16103.9 (4)
B8—B7—H7121.0B17—B22—B1660.3 (3)
B11—B7—H7121.7C1AA—B22—B2358.2 (3)
B1—B7—H7122.5B17—B22—B2360.0 (3)
C0AA—B8—B2103.7 (4)B16—B22—B23108.0 (4)
C0AA—B8—B758.0 (3)C1AA—B22—B2158.7 (3)
B2—B8—B760.1 (3)B17—B22—B21108.3 (4)
C0AA—B8—B958.6 (3)B16—B22—B2159.8 (3)
B2—B8—B9107.6 (4)B23—B22—B21108.1 (4)
B7—B8—B9107.8 (4)C1AA—B22—H22125.5
C0AA—B8—B3103.8 (3)B17—B22—H22122.3
B2—B8—B359.7 (3)B16—B22—H22122.6
B7—B8—B3107.8 (4)B23—B22—H22121.5
B9—B8—B359.8 (3)B21—B22—H22121.2
C0AA—B8—H8125.6C1AA—B23—B1958.5 (3)
B2—B8—H8122.7C1AA—B23—B17104.4 (4)
B7—B8—H8121.5B19—B23—B17107.9 (4)
B9—B8—H8121.5C1AA—B23—B2259.1 (3)
B3—B8—H8122.7B19—B23—B22108.3 (4)
C0AA—B9—B4103.5 (4)B17—B23—B2259.7 (3)
C0AA—B9—B1058.0 (3)C1AA—B23—B13104.5 (4)
B4—B9—B1059.7 (3)B19—B23—B1359.8 (3)
C0AA—B9—B3103.9 (4)B17—B23—B1360.2 (3)
B4—B9—B359.9 (3)B22—B23—B13108.3 (4)
B10—B9—B3107.4 (4)C1AA—B23—H23124.9
C0AA—B9—B858.4 (3)B19—B23—H23121.5
B4—B9—B8107.9 (4)B17—B23—H23122.6
B10—B9—B8107.5 (4)B22—B23—H23121.2
B3—B9—B860.2 (3)B13—B23—H23122.3
C0AA—B9—H9125.6N1S—C1S—C2S179.4 (10)
B4—B9—H9122.7C1S—C2S—H2SC109.5
B10—B9—H9122.0C1S—C2S—H2SB109.5
B3—B9—H9122.5H2SC—C2S—H2SB109.5
B8—B9—H9121.4C1S—C2S—H2SA109.5
C0AA—B10—B4104.2 (3)H2SC—C2S—H2SA109.5
C0AA—B10—B1159.1 (3)H2SB—C2S—H2SA109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
B10—H10···Br8i1.122.853.612 (5)125
C1AA—H1A···Br4ii1.122.773.547 (5)126
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Ru(C2H3N)6](CH6B11Br6)2·C2H3N
Mr1621.30
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)21.332 (2), 11.7577 (10), 20.2620 (17)
V3)5082.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)9.77
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker CCD-1000 area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.245, 0.442
No. of measured, independent and
observed [I > 2σ(I)] reflections
36328, 13481, 10985
Rint0.042
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.062, 0.97
No. of reflections13481
No. of parameters531
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.73
Absolute structureFlack (1983), 6319 Friedel pairs
Absolute structure parameter0.000 (5)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
B10—H10···Br8i1.122.853.612 (5)125.3
C1AA—H1A···Br4ii1.122.773.547 (5)125.9
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z1/2.
 

Acknowledgements

We thank the National Science Foundation for financial support. Support of this research via the PRF 44692.01-GB award by the American Chemical Society and the Cottrell College Award CC6755 from Research Corporation is gratefully acknowledged. We are grateful to Dr Ilia A. Guzei (University of Wisconsin, Madison) for his help in the preparation of this submission.

References

First citationBergman, R. G. & Chang, J. (1987). J. Am. Chem. Soc. 109, 4298–4304.  CrossRef Web of Science Google Scholar
First citationBrookhart, M., Grant, B. & Volpe, A. F. Jr (1992). Organometallics, 11, 3920–3922.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurns, R. M. & Hubbard, J. L. (1994). J. Am. Chem. Soc. 116, 9514–9520.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPearsal, M., Gembicky, M., Dominiak, P., Larsen, A. & Coppens, P. (2007). Acta Cryst. E63, m2596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStasko, D., Hoffmann, S. P., Kim, K.-C., Fackler, N. L. P., Larsen, A. S., Drovetskaya, T., Tham, F. S., Reed, C. A., Rickard, C. E. F. & Boyd, P. D. W. (2002). J. Am. Chem. Soc. 124, 13869–13876.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m325-m326
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds