organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o700-o701

4-(3,3-Di­methyl­perhydro-1,3-oxa­zolo[3,4-a]pyridin-1-yl)-2,8-bis­­(tri­fluoro­meth­yl)quinoline

aCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, bCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 15 February 2010; accepted 19 February 2010; online 27 February 2010)

An L-shaped conformation is found in the title mol­ecule, C20H20F6N2O, the C—C—C—C torsion angle linking the two fused-ring systems being −92.80 (19)°. The oxazole ring adopts an envelope conformation [the N atom lies 0.579 (2) Å out of the plane defined by the remaining atoms], and the piperidine ring has a chair conformation. Supra­molecular chains are found in the crystal structure that are sustained by C—H⋯π and ππ [3.6089 (10) Å] inter­actions.

Related literature

For information on mefloquine and its derivatives, see: Maguire et al. (2006[Maguire, J. D., Krisin, Marwoto, H., Richie, T. L., Fryauff, D. J. & Baird, J. K. (2006). Clin. Infect. Dis. 42, 1067-1072.]); Croft & Herxheimer (2002[Croft, A. M. & Herxheimer, A. (2002). BMC Public Health. 2:6. Published online 2002 March 25. doi:10.1186/1471-2458-2-6.]); Lima et al. (2002[Lima, P. C., Avery, M. A., Tekwani, B. L., Alves, H. De M., Barreiro, E. J. & Fraga, C. A. M. (2002). Farmaco, 57, 825-832.]); Biot et al. (2000[Biot, C., Delhaes, L., Maciejewski, L. A., Mortuaire, M., Camus, D., Dive, D. & Brocard, J. S. (2000). Eur. J. Med. Chem. 35, 707-714.]); Roesner et al. (1981[Roesner, M., Brossi, A. & Silverton, J. V. (1981). Heterocycles, 15, 925-933.]); Kunin & Ellis (2007[Kunin, C. M. & Ellis, W. Y. (2007). ChemMedChem, 2, 1624-1630.]). For the synthesis of 1,3-oxazolidines, see: Bergmann et al. (1953[Bergmann, E. D., Gil-Av, E. & Pinchas, S. (1953). J. Am. Chem. Soc. 78, 358-361.]); Oh et al. (2000[Oh, H. S., Hahn, H.-G., Cheon, S. H. & Ha, D.-C. (2000). Tetrahedron Lett. 41, 5069-5072.]); Saba et al. (2007[Saba, S., Ciaccio, J. A., Espinal, J. & Aman, C. E. (2007). J. Chem. Educ. 84, 1011-1013.]); Page et al. (2007[Page, P. C. B., Buckley, B. R., Elsegood, M. R. J., Hayman, C. M., Heaney, H., Rassias, G. A., Talib, S. A. & Liddle, J. (2007). Tetrahedron, 63, 10991-10999.]); Kukharev et al. (2007[Kukharev, B. F., Stankevich, V. K., Klimenko, G. R. & Kukhareva, V. A. (2007). Russ. J. Org. Chem. 43, 966-969.]); Delgado et al. (1987[Delgado, A., Mauleon, D., Rosell, G., Salas, M. L. & Najar, J. (1987). Ann. Quim. 83, 90-95.]). For the biological activity of 1,3-oxazolidines, see: Moloney et al. (1998[Moloney, G. P., Craik, D. J., Iskander, M. N. & Nero, T. L. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 199-206.]); Andes et al. (2002[Andes, D., van Ogtrop, M. L., Peng, J. & Criag, W. A. (2002). Antimicrob. Agents Chemother. 46, 3484-3489.]); Kumar et al. (2009[Kumar, V., Mudgal, M. M., Rani, N., Jha, A., Jaggi, M., Singh, A. T., Sanna, V. K., Singh, P., Sharma, P. K., Irchhaiya, R. & Burman, A. C. (2009). J. Enzyme Inhib. Med. Chem. 24, 763-770.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20F6N2O

  • Mr = 418.38

  • Triclinic, [P \overline 1]

  • a = 8.4192 (3) Å

  • b = 9.1833 (4) Å

  • c = 12.4424 (4) Å

  • α = 87.912 (2)°

  • β = 86.666 (2)°

  • γ = 78.804 (2)°

  • V = 941.78 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 120 K

  • 0.65 × 0.30 × 0.25 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.643, Tmax = 0.746

  • 16907 measured reflections

  • 4275 independent reflections

  • 3107 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.141

  • S = 1.06

  • 4275 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15c⋯Cgi 0.98 2.87 3.781 (2) 155
Symmetry code: (i) x-1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Mefloquine, manufactured as the racemic erythro hydrochloride salt is a synthetic analogue of quinine used in the prevention and treatment for malaria in combination with other drugs (Maguire et al., 2006). However, despite its efficacy, this orally-administered drug possesses several important physical and psychological adverse side-effects, such as birth defects, anxiety, aggression, seizures, nightmares, neuropathy, insomnia, central nervous system problems, acute depression, urinary disorders, etc. (Croft & Herxheimer, 2002). Due to these effects, mefloquine analogues have been synthesized with the goals of increasing the efficacy and eliminating adverse side-effects (Lima et al., 2002; Biot et al., 2000; Roesner et al., 1981). Mefloquine derivatives are also undergoing tests against other diseases, for example, as anti-viral and anti-tuberculosis agents (Kunin & Ellis, 2007). In the quest for new derivatives, the title compound, 5-[2,8-bis(trifluoromethyl)quinolin-4-yl)-hexahydro-3H-oxazolo[3,4-a]pyridine-2-oxaindolizidine (I) has been obtained.

Oxazolidines are frequently prepared from 2-amino-1-hydroxyalkanes and carbonyl compounds (Bergmann et al., 1953; Oh et al., 2000; Saba et al., 2007; Page et al., 2007); in particular cases, azeotropic removal of water or the use of a catalyst is involved (Page et al., 2007). However, problems of stability of oxazolidines and formation of tautomeric mixtures of the oxazolidines and the corresponding imines can limit or complicate this synthetic route (Page et al., 2007). Alternative routes to hexahydro-3H-oxazolo[3,4-a]pyridine derivatives include the Hg(OAc)2 catalysed cyclization of 2-(vinyloxymethyl)piperidine (Kukharev et al., 2007) and use of 1-naphthalenyl 2-pyridinyl ketone (Delgado et al., 1987). 1,3-Oxazolidine derivatives, in general, have been shown to have useful biological activities (Moloney et al., 1998; Andes et al., 2002; Kumar et al., 2009). The title compound, (I), was isolated unexpectedly from a solution of mefloquine hydrochloride and 2-hydroxybenzoic acid in acetone, followed by initial by recrystallisation from isopropanol, and finally from EtOH.

The molecular structure of (I), Fig. 1, adopts an L-shaped conformation with the quinoline group being approximately orthogonal to the rest of the molecule; for example, the C2–C3–C12–C16 torsion angle is -92.80 (19) °. The five-membered oxazole ring adopts an envelope conformation with the N2 atom lying 0.579 (2) Å out of the plane defined by the remaining atoms. The piperidine ring adopts a chair conformation. The presence of C–H···π, Table 1, and ππ [ring centroid(C4–C9)···ring centroid(C4–C9)i distance = 3.6089 (10) Å for i: 1-x, 1-y, 2-z] interactions feature in the crystal packing. Thus, centrosymmetrically related molecules are connected via ππ interactions, and these are linked into a supramolecular chain via C–H···π contacts, Fig. 2.

Related literature top

For information on mefloquine and its derivatives, see: Maguire et al. (2006); Croft & Herxheimer (2002); Lima et al. (2002); Biot et al. (2000); Roesner et al. (1981); Kunin & Ellis (2007). For the synthesis of 1,3-oxazolidines, see: Bergmann et al. (1953); Oh et al. (2000); Saba et al. (2007); Page et al. (2007); Kukharev et al. (2007); Delgado et al. (1987). For the biological activity of 1,3-oxazolidines, see: Moloney et al. (1998); Andes et al. (2002); Kumar et al. (2009).

Experimental top

A mixture of racemic erythro mefloquinium chloride (1 mmol) and 2-hydroxybenzoic acid (1 mmol) in acetone (20 ml) was refluxed for 3 h. The reaction mixture was rotary evaporated and the residue was taken up in isopropanol. Two crops of crystals were collected on maintaining the solution at room temperature. From the second crop, on recrystallisation from EtOH, a small amount of the title compound was obtained, m.p. 424–426 K.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of a supramolecular chain in (I) aligned along the a axis. The C–H···π and ππ interactions are shown as brown and purple dashed lines, respectively. Colour code: F, cyan; O, red; N, blue; C, grey; and H, green.
4-(3,3-Dimethylperhydro-1,3-oxazolo[3,4-a]pyridin-1-yl)-2,8- bis(trifluoromethyl)quinoline top
Crystal data top
C20H20F6N2OZ = 2
Mr = 418.38F(000) = 432
Triclinic, P1Dx = 1.475 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4192 (3) ÅCell parameters from 12184 reflections
b = 9.1833 (4) Åθ = 2.9–27.5°
c = 12.4424 (4) ŵ = 0.13 mm1
α = 87.912 (2)°T = 120 K
β = 86.666 (2)°Block, colourless
γ = 78.804 (2)°0.65 × 0.30 × 0.25 mm
V = 941.78 (6) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
4275 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode3107 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.045
Detector resolution: 9.091 pixels mm-1θmax = 27.4°, θmin = 3.0°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1111
Tmin = 0.643, Tmax = 0.746l = 1616
16907 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.249P]
where P = (Fo2 + 2Fc2)/3
4275 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C20H20F6N2Oγ = 78.804 (2)°
Mr = 418.38V = 941.78 (6) Å3
Triclinic, P1Z = 2
a = 8.4192 (3) ÅMo Kα radiation
b = 9.1833 (4) ŵ = 0.13 mm1
c = 12.4424 (4) ÅT = 120 K
α = 87.912 (2)°0.65 × 0.30 × 0.25 mm
β = 86.666 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4275 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3107 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.746Rint = 0.045
16907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.06Δρmax = 0.30 e Å3
4275 reflectionsΔρmin = 0.36 e Å3
264 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.24470 (15)0.13631 (13)0.70186 (12)0.0465 (4)
F20.48941 (14)0.02882 (12)0.72734 (10)0.0376 (3)
F30.31274 (17)0.05404 (14)0.85902 (11)0.0489 (4)
F41.00086 (13)0.26530 (14)0.94688 (10)0.0398 (3)
F50.90320 (13)0.18513 (14)0.80980 (9)0.0369 (3)
F60.80523 (14)0.14596 (13)0.96979 (9)0.0357 (3)
O10.04978 (14)0.65337 (14)0.77211 (9)0.0225 (3)
N10.54732 (17)0.26383 (16)0.83292 (11)0.0209 (3)
N20.13591 (17)0.69425 (16)0.59985 (11)0.0208 (3)
C10.4030 (2)0.27072 (19)0.79573 (13)0.0205 (4)
C20.2882 (2)0.40134 (19)0.77803 (13)0.0208 (4)
H20.18660.39730.75010.025*
C30.3263 (2)0.53470 (19)0.80200 (13)0.0190 (4)
C40.4797 (2)0.53404 (19)0.84578 (13)0.0183 (4)
C50.5296 (2)0.6653 (2)0.87684 (13)0.0221 (4)
H50.45790.75850.87090.027*
C60.6799 (2)0.6584 (2)0.91518 (14)0.0248 (4)
H60.71140.74670.93600.030*
C70.7882 (2)0.5216 (2)0.92398 (14)0.0258 (4)
H70.89340.51880.94880.031*
C80.7437 (2)0.3925 (2)0.89724 (13)0.0222 (4)
C90.5868 (2)0.3955 (2)0.85806 (13)0.0195 (4)
C100.3631 (2)0.1221 (2)0.77122 (16)0.0273 (4)
C110.8617 (2)0.2472 (2)0.90593 (15)0.0280 (4)
C120.2119 (2)0.67903 (19)0.77676 (14)0.0200 (4)
H120.21500.75180.83410.024*
C130.0137 (2)0.7020 (2)0.66828 (14)0.0225 (4)
C140.1190 (2)0.8573 (2)0.67829 (16)0.0313 (5)
H14A0.20440.85550.73510.047*
H14B0.16850.88810.60970.047*
H14C0.05160.92770.69660.047*
C150.1106 (2)0.5903 (2)0.63459 (16)0.0301 (4)
H15A0.04190.49110.63430.045*
H15B0.14860.61690.56220.045*
H15C0.20400.59080.68540.045*
C160.2497 (2)0.7487 (2)0.66532 (13)0.0211 (4)
H160.21740.85910.66920.025*
C170.4194 (2)0.7103 (2)0.61295 (14)0.0248 (4)
H17A0.45410.60120.60940.030*
H17B0.49650.74880.65630.030*
C180.4196 (2)0.7800 (2)0.49901 (15)0.0290 (4)
H18A0.40130.88950.50370.035*
H18B0.52690.74630.46170.035*
C190.2881 (2)0.7372 (2)0.43406 (15)0.0289 (4)
H19A0.28250.79290.36430.035*
H19B0.31650.62990.41890.035*
C200.1239 (2)0.7705 (2)0.49433 (14)0.0251 (4)
H20A0.08960.87890.50350.030*
H20B0.04200.73590.45290.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0385 (7)0.0273 (7)0.0775 (10)0.0082 (5)0.0226 (7)0.0122 (6)
F20.0292 (6)0.0254 (6)0.0579 (8)0.0043 (5)0.0073 (5)0.0162 (6)
F30.0677 (9)0.0281 (7)0.0531 (8)0.0219 (6)0.0212 (7)0.0005 (6)
F40.0252 (6)0.0483 (8)0.0446 (7)0.0006 (5)0.0134 (5)0.0066 (6)
F50.0292 (6)0.0482 (8)0.0290 (6)0.0045 (5)0.0007 (5)0.0115 (5)
F60.0369 (7)0.0323 (7)0.0348 (6)0.0004 (5)0.0030 (5)0.0063 (5)
O10.0172 (6)0.0279 (7)0.0225 (6)0.0056 (5)0.0007 (5)0.0008 (5)
N10.0202 (7)0.0227 (8)0.0199 (7)0.0050 (6)0.0032 (6)0.0019 (6)
N20.0192 (7)0.0215 (8)0.0218 (7)0.0043 (6)0.0002 (6)0.0016 (6)
C10.0232 (9)0.0188 (9)0.0199 (8)0.0063 (7)0.0041 (7)0.0024 (7)
C20.0189 (8)0.0233 (9)0.0213 (9)0.0065 (7)0.0010 (7)0.0026 (7)
C30.0192 (8)0.0228 (9)0.0158 (8)0.0065 (7)0.0025 (6)0.0026 (7)
C40.0200 (8)0.0214 (9)0.0142 (8)0.0068 (7)0.0026 (6)0.0007 (7)
C50.0256 (9)0.0227 (9)0.0192 (8)0.0084 (7)0.0014 (7)0.0001 (7)
C60.0287 (10)0.0292 (10)0.0199 (9)0.0138 (8)0.0012 (7)0.0020 (7)
C70.0212 (9)0.0377 (11)0.0208 (9)0.0109 (8)0.0023 (7)0.0008 (8)
C80.0189 (8)0.0319 (10)0.0154 (8)0.0048 (7)0.0011 (6)0.0002 (7)
C90.0211 (8)0.0247 (9)0.0138 (8)0.0080 (7)0.0023 (6)0.0004 (7)
C100.0231 (9)0.0216 (9)0.0373 (11)0.0057 (7)0.0032 (8)0.0038 (8)
C110.0220 (9)0.0368 (11)0.0244 (10)0.0030 (8)0.0026 (7)0.0046 (8)
C120.0186 (8)0.0210 (9)0.0213 (9)0.0056 (7)0.0002 (6)0.0032 (7)
C130.0208 (9)0.0229 (9)0.0230 (9)0.0021 (7)0.0011 (7)0.0013 (7)
C140.0270 (10)0.0282 (11)0.0354 (11)0.0014 (8)0.0035 (8)0.0004 (8)
C150.0240 (10)0.0369 (11)0.0315 (10)0.0111 (8)0.0004 (8)0.0041 (9)
C160.0230 (9)0.0202 (9)0.0214 (9)0.0075 (7)0.0008 (7)0.0018 (7)
C170.0216 (9)0.0297 (10)0.0242 (9)0.0085 (8)0.0005 (7)0.0006 (8)
C180.0262 (10)0.0349 (11)0.0264 (10)0.0093 (8)0.0039 (7)0.0030 (8)
C190.0301 (10)0.0345 (11)0.0223 (9)0.0077 (8)0.0025 (7)0.0009 (8)
C200.0257 (9)0.0267 (10)0.0227 (9)0.0041 (8)0.0025 (7)0.0005 (7)
Geometric parameters (Å, º) top
F1—C101.341 (2)C7—H70.9500
F2—C101.333 (2)C8—C91.429 (2)
F3—C101.328 (2)C8—C111.506 (3)
F4—C111.346 (2)C12—C161.548 (2)
F5—C111.342 (2)C12—H121.0000
F6—C111.340 (2)C13—C151.513 (3)
O1—C121.434 (2)C13—C141.531 (3)
O1—C131.449 (2)C14—H14A0.9800
N1—C11.315 (2)C14—H14B0.9800
N1—C91.366 (2)C14—H14C0.9800
N2—C161.462 (2)C15—H15A0.9800
N2—C201.465 (2)C15—H15B0.9800
N2—C131.470 (2)C15—H15C0.9800
C1—C21.406 (2)C16—C171.518 (2)
C1—C101.513 (2)C16—H161.0000
C2—C31.372 (2)C17—C181.534 (3)
C2—H20.9500C17—H17A0.9900
C3—C41.429 (2)C17—H17B0.9900
C3—C121.514 (2)C18—C191.527 (3)
C4—C91.419 (2)C18—H18A0.9900
C4—C51.424 (2)C18—H18B0.9900
C5—C61.367 (3)C19—C201.516 (3)
C5—H50.9500C19—H19A0.9900
C6—C71.407 (3)C19—H19B0.9900
C6—H60.9500C20—H20A0.9900
C7—C81.368 (3)C20—H20B0.9900
C12—O1—C13110.26 (13)C16—C12—H12109.4
C1—N1—C9116.60 (15)O1—C13—N2101.73 (13)
C16—N2—C20111.29 (14)O1—C13—C15107.83 (15)
C16—N2—C13105.69 (13)N2—C13—C15110.94 (14)
C20—N2—C13117.78 (14)O1—C13—C14109.00 (14)
N1—C1—C2125.68 (16)N2—C13—C14115.09 (15)
N1—C1—C10114.78 (16)C15—C13—C14111.56 (15)
C2—C1—C10119.54 (15)C13—C14—H14A109.5
C3—C2—C1118.53 (16)C13—C14—H14B109.5
C3—C2—H2120.7H14A—C14—H14B109.5
C1—C2—H2120.7C13—C14—H14C109.5
C2—C3—C4118.39 (16)H14A—C14—H14C109.5
C2—C3—C12120.45 (15)H14B—C14—H14C109.5
C4—C3—C12121.08 (15)C13—C15—H15A109.5
C9—C4—C5118.85 (15)C13—C15—H15B109.5
C9—C4—C3117.96 (15)H15A—C15—H15B109.5
C5—C4—C3123.19 (16)C13—C15—H15C109.5
C6—C5—C4120.61 (17)H15A—C15—H15C109.5
C6—C5—H5119.7H15B—C15—H15C109.5
C4—C5—H5119.7N2—C16—C17109.60 (14)
C5—C6—C7120.52 (17)N2—C16—C12100.79 (13)
C5—C6—H6119.7C17—C16—C12119.71 (15)
C7—C6—H6119.7N2—C16—H16108.7
C8—C7—C6120.74 (16)C17—C16—H16108.7
C8—C7—H7119.6C12—C16—H16108.7
C6—C7—H7119.6C16—C17—C18109.14 (15)
C7—C8—C9120.17 (17)C16—C17—H17A109.9
C7—C8—C11120.07 (16)C18—C17—H17A109.9
C9—C8—C11119.74 (16)C16—C17—H17B109.9
N1—C9—C4122.79 (15)C18—C17—H17B109.9
N1—C9—C8118.15 (16)H17A—C17—H17B108.3
C4—C9—C8119.06 (16)C19—C18—C17111.21 (15)
F3—C10—F2106.77 (16)C19—C18—H18A109.4
F3—C10—F1106.58 (16)C17—C18—H18A109.4
F2—C10—F1106.43 (15)C19—C18—H18B109.4
F3—C10—C1112.06 (16)C17—C18—H18B109.4
F2—C10—C1112.82 (15)H18A—C18—H18B108.0
F1—C10—C1111.76 (16)C20—C19—C18111.32 (15)
F6—C11—F5106.96 (16)C20—C19—H19A109.4
F6—C11—F4106.30 (15)C18—C19—H19A109.4
F5—C11—F4106.15 (14)C20—C19—H19B109.4
F6—C11—C8113.30 (14)C18—C19—H19B109.4
F5—C11—C8112.29 (15)H19A—C19—H19B108.0
F4—C11—C8111.37 (16)N2—C20—C19108.88 (15)
O1—C12—C3109.96 (14)N2—C20—H20A109.9
O1—C12—C16104.86 (13)C19—C20—H20A109.9
C3—C12—C16113.55 (14)N2—C20—H20B109.9
O1—C12—H12109.4C19—C20—H20B109.9
C3—C12—H12109.4H20A—C20—H20B108.3
C9—N1—C1—C21.2 (3)C7—C8—C11—F5115.48 (18)
C9—N1—C1—C10178.76 (14)C9—C8—C11—F562.7 (2)
N1—C1—C2—C30.7 (3)C7—C8—C11—F43.4 (2)
C10—C1—C2—C3179.25 (16)C9—C8—C11—F4178.36 (15)
C1—C2—C3—C41.2 (2)C13—O1—C12—C3122.74 (14)
C1—C2—C3—C12175.52 (14)C13—O1—C12—C160.32 (17)
C2—C3—C4—C92.4 (2)C2—C3—C12—O124.3 (2)
C12—C3—C4—C9174.25 (14)C4—C3—C12—O1159.06 (14)
C2—C3—C4—C5177.91 (15)C2—C3—C12—C1692.80 (19)
C12—C3—C4—C55.4 (2)C4—C3—C12—C1683.81 (18)
C9—C4—C5—C61.7 (2)C12—O1—C13—N223.98 (16)
C3—C4—C5—C6177.97 (16)C12—O1—C13—C15140.73 (14)
C4—C5—C6—C70.4 (3)C12—O1—C13—C1498.00 (16)
C5—C6—C7—C81.8 (3)C16—N2—C13—O139.80 (16)
C6—C7—C8—C91.1 (3)C20—N2—C13—O1164.85 (14)
C6—C7—C8—C11179.30 (16)C16—N2—C13—C15154.28 (15)
C1—N1—C9—C40.2 (2)C20—N2—C13—C1580.67 (19)
C1—N1—C9—C8179.11 (15)C16—N2—C13—C1477.87 (18)
C5—C4—C9—N1178.31 (15)C20—N2—C13—C1447.2 (2)
C3—C4—C9—N12.0 (2)C20—N2—C16—C1764.79 (18)
C5—C4—C9—C82.4 (2)C13—N2—C16—C17166.23 (14)
C3—C4—C9—C8177.30 (14)C20—N2—C16—C12168.10 (13)
C7—C8—C9—N1179.65 (15)C13—N2—C16—C1239.12 (16)
C11—C8—C9—N12.1 (2)O1—C12—C16—N223.53 (16)
C7—C8—C9—C41.0 (2)C3—C12—C16—N296.54 (15)
C11—C8—C9—C4177.20 (14)O1—C12—C16—C17143.66 (15)
N1—C1—C10—F381.59 (19)C3—C12—C16—C1723.6 (2)
C2—C1—C10—F398.4 (2)N2—C16—C17—C1858.38 (19)
N1—C1—C10—F239.0 (2)C12—C16—C17—C18173.97 (15)
C2—C1—C10—F2141.05 (17)C16—C17—C18—C1952.9 (2)
N1—C1—C10—F1158.85 (15)C17—C18—C19—C2052.4 (2)
C2—C1—C10—F121.2 (2)C16—N2—C20—C1962.59 (18)
C7—C8—C11—F6123.21 (18)C13—N2—C20—C19175.18 (15)
C9—C8—C11—F658.6 (2)C18—C19—C20—N255.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15c···Cgi0.982.873.781 (2)155
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC20H20F6N2O
Mr418.38
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.4192 (3), 9.1833 (4), 12.4424 (4)
α, β, γ (°)87.912 (2), 86.666 (2), 78.804 (2)
V3)941.78 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.65 × 0.30 × 0.25
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.643, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
16907, 4275, 3107
Rint0.045
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.141, 1.06
No. of reflections4275
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.36

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15c···Cgi0.982.873.781 (2)155
Symmetry code: (i) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

References

First citationAndes, D., van Ogtrop, M. L., Peng, J. & Criag, W. A. (2002). Antimicrob. Agents Chemother. 46, 3484–3489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBergmann, E. D., Gil-Av, E. & Pinchas, S. (1953). J. Am. Chem. Soc. 78, 358–361.  CrossRef Web of Science Google Scholar
First citationBiot, C., Delhaes, L., Maciejewski, L. A., Mortuaire, M., Camus, D., Dive, D. & Brocard, J. S. (2000). Eur. J. Med. Chem. 35, 707–714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCroft, A. M. & Herxheimer, A. (2002). BMC Public Health. 2:6. Published online 2002 March 25. doi:10.1186/1471-2458-2-6.  Google Scholar
First citationDelgado, A., Mauleon, D., Rosell, G., Salas, M. L. & Najar, J. (1987). Ann. Quim. 83, 90–95.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKukharev, B. F., Stankevich, V. K., Klimenko, G. R. & Kukhareva, V. A. (2007). Russ. J. Org. Chem. 43, 966–969.  Web of Science CrossRef CAS Google Scholar
First citationKumar, V., Mudgal, M. M., Rani, N., Jha, A., Jaggi, M., Singh, A. T., Sanna, V. K., Singh, P., Sharma, P. K., Irchhaiya, R. & Burman, A. C. (2009). J. Enzyme Inhib. Med. Chem. 24, 763–770.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKunin, C. M. & Ellis, W. Y. (2007). ChemMedChem, 2, 1624–1630.  Web of Science PubMed Google Scholar
First citationLima, P. C., Avery, M. A., Tekwani, B. L., Alves, H. De M., Barreiro, E. J. & Fraga, C. A. M. (2002). Farmaco, 57, 825–832.  Google Scholar
First citationMaguire, J. D., Krisin, Marwoto, H., Richie, T. L., Fryauff, D. J. & Baird, J. K. (2006). Clin. Infect. Dis. 42, 1067–1072.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoloney, G. P., Craik, D. J., Iskander, M. N. & Nero, T. L. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 199–206.  CrossRef Google Scholar
First citationOh, H. S., Hahn, H.-G., Cheon, S. H. & Ha, D.-C. (2000). Tetrahedron Lett. 41, 5069–5072.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPage, P. C. B., Buckley, B. R., Elsegood, M. R. J., Hayman, C. M., Heaney, H., Rassias, G. A., Talib, S. A. & Liddle, J. (2007). Tetrahedron, 63, 10991–10999.  Web of Science CSD CrossRef Google Scholar
First citationRoesner, M., Brossi, A. & Silverton, J. V. (1981). Heterocycles, 15, 925–933.  CAS Google Scholar
First citationSaba, S., Ciaccio, J. A., Espinal, J. & Aman, C. E. (2007). J. Chem. Educ. 84, 1011–1013.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o700-o701
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds