organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Bipyridin-1-ium 3-nitro­benzene­sulfonate

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 6 January 2010; accepted 1 February 2010; online 6 February 2010)

In the title compound, C10H9N2+·C6H4NO5S, the dihedral angle between the aromatic rings of the cation is 9.42 (7)°. In the crystal, the anions and cations are linked by C—H⋯O and N—H⋯O hydrogen bonds, generating R21(5) and R44(14) rings, respectively. These hydrogen bonds also provide packing along [110].

Related literature

For 2,2′-bipyridinium, see: Grummt et al. (2004[Grummt, U. W. & Erhardt, S. (2004). J. Mol. Struct. (THEOCHEM), 685, 133-137.]); Branowska et al. (2005[Branowska, D., Rykowski, A. & Wysocki, W. (2005). Tetrahedron Lett. 46, 6223-6226.]); Zhang et al. (2007[Zhang, D., Telo, J. P., Liao, C., Hightower, S. E. & Clennan, E. L. (2007). J. Phys. Chem. A, 111, 13567-13574.]); Kavitha et al. (2006[Kavitha, S. J., Panchanatheswaran, K., Low, J. N., Ferguson, G. & Glidewell, C. (2006). Acta Cryst. C62, o165-o169.]). For aromatic sulfonates, see: Sharma et al. (2004[Sharma, R. J., Bala, R., Sharma, R., Raczyńska, J. & Rychlewska, U. (2004). J. Mol. Struct. 738, 247-252.]); Vembu et al. (2009[Vembu, N. & Fronczek, F. R. (2009). J. Chem. Crystallogr. 39, 515-518.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N2+·C6H4NO5S

  • Mr = 359.36

  • Triclinic, [P \overline 1]

  • a = 5.9527 (3) Å

  • b = 7.4674 (3) Å

  • c = 17.8800 (7) Å

  • α = 79.085 (3)°

  • β = 89.121 (4)°

  • γ = 87.939 (3)°

  • V = 779.87 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.60 × 0.51 × 0.38 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32, Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.859, Tmax = 0.935

  • 17821 measured reflections

  • 3069 independent reflections

  • 2997 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.05

  • 3069 reflections

  • 230 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O4i 0.93 2.55 3.1426 (19) 122
C2—H2⋯O4i 0.93 2.55 3.142 (2) 122
C4—H4⋯O5ii 0.93 2.45 3.3089 (19) 153
N1—H1A⋯O3 0.88 (2) 1.95 (2) 2.7096 (16) 142.9 (18)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y+1, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In this study, we have examined the title compound obtained by synthesize of the meta-nitro benzene sulfonic acid sodium salt and the bipyridine. The 2,2'-bipyridine and its fused analogues are exhibit important application in coordination and supramolecular chemistry (Grummt et al., 2004; Branowska et al., 2005; Zhang et al., 2007; Kavitha et al., 2006) while aromatic sulfonates draw attention because of their industrial applications as surfactants, dyes, fuel and lubricant detergents (Sharma et al., 2004; Vembu et al., 2009).

The asymmetric unit of the title compound contains protonated 2,2'-bipyridin-1-ium cation and deprotonated m-nitrobenzenesulfonate anion. A perspective unit of the asymmetric unit is presented in Fig. 1. In the asymmetric unit, the mean planes of the anionic (except O atoms bounded S atom) and cationic moieties oriented to each other with 6.88 (5)°. However, the protonated and deprotonated rings of bipyridinium oriented to the aromatic ring of anionic moiety with 9.16 (5)° and 4.79 (5)°, respectively. The two pyridine rings forming bipyridinium moiety are slightly twisted by 9.42 (7)°.

For the bipyridinium cation, the N—C bond distances are in the range 1.331 (2) Å-1.3446 (18)Å and, as expected, the protonated part of the bipyridinium has slightly different bond lengths and angles than non-protonated part. The C1—N1—C5 angle [123.75 (13)°] is larger than the C6—N2—C10 angle [117.10 (14)°].

The S—O bond distances for m-nitrobenzenesulfonate are in the range 1.4370 (13) Å-1.4466 (13) Å, while the adjacent O—S—O angles are in the range 112.77 (8)–113.72 (8)°. The nitro group is slightly deviated from planarity with the dihedral angle of 2.98 (16)° between the benzene and nitro moieties.

The anionic and cationic moieties are linked by C—H···O and N—H···O type hydrogen bonds. In the structure, the nitrobenzene sulfonate anion acts as donor while bipyridinium cation acts as acceptor. The C1—H1···O4i and C2—H2···O4i interactions constitute a bifurcated acceptor bonds generating R21(5) rings in graph-set notation (Bernstein et al., 1995). It is also found that the R44(14) ring motives are generated by the N1—H1A···O3 and C1—H1···O4i hydrogen bonds (Fig. 2). These adjacent rings are provide packing along to the direction [110]. Furthermore, the intra-molecular N1—H1A···N2 hydrogen bonds generate S(5) ring motives (Fig. 1). Geometric details of hydrogen bonds are given in Table 1.

Related literature top

For 2,2'-bipyridinium, see: Grummt et al. (2004); Branowska et al. (2005); Zhang et al. (2007); Kavitha et al. (2006). For aromatic sulfonates, see: Sharma et al. (2004); Vembu et al. (2009). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

1.944 g Mn-BSA (3 mmol) was dissolved in 10 ml of water and a solution of bipyridine (0.937 g, 6 mmol) in 3 ml e thanol was added into the solution. After stirring for 10 minutes, the solution was left for crystallization and a precipitate of Mn(OH)2 was obtained and resolved again with the addition of 2 ml concentrate HCI into the mixture. Two different forms of crystals, one has a yellow colour while other is colurless, were grown after one day. The crystals were washed with slightly acidic water to separate from each other. The yellow one was resolved whereas the colourless one was not within the acidic solution. Transparent square-shaped crystals of X-ray quality were dried in vacuo.

Refinement top

The H atom bonded to N atom was located in Fourier map and refined isotropically. Other H atoms were placed in calculated positions, with C—H = 0.93 Å, and refined in riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability. Hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. Partial packing part of the crystal structure of the title compound showing the formation of R21(5) and R44(14) rings running through the direction [110] generated by C—H···O and N—H..O type hydrogen bonds. Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 + x, 1 + y, z.
2,2'-Bipyridin-1-ium 3-nitrobenzenesulfonate top
Crystal data top
C10H9N2+·C6H4NO5SZ = 2
Mr = 359.36F(000) = 372
Triclinic, P1Dx = 1.529 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9527 (3) ÅCell parameters from 3236 reflections
b = 7.4674 (3) Åθ = 2.3–28.1°
c = 17.8800 (7) ŵ = 0.24 mm1
α = 79.085 (3)°T = 296 K
β = 89.121 (4)°Prism, colourless
γ = 87.939 (3)°0.60 × 0.51 × 0.38 mm
V = 779.87 (6) Å3
Data collection top
Stoe IPDS II
diffractometer
3069 independent reflections
Radiation source: fine-focus sealed tube2997 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.042
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.3°
rotation method scansh = 77
Absorption correction: integration
(X-RED32, Stoe & Cie, 2002)
k = 99
Tmin = 0.859, Tmax = 0.935l = 2222
17821 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.2343P]
where P = (Fo2 + 2Fc2)/3
3069 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C10H9N2+·C6H4NO5Sγ = 87.939 (3)°
Mr = 359.36V = 779.87 (6) Å3
Triclinic, P1Z = 2
a = 5.9527 (3) ÅMo Kα radiation
b = 7.4674 (3) ŵ = 0.24 mm1
c = 17.8800 (7) ÅT = 296 K
α = 79.085 (3)°0.60 × 0.51 × 0.38 mm
β = 89.121 (4)°
Data collection top
Stoe IPDS II
diffractometer
3069 independent reflections
Absorption correction: integration
(X-RED32, Stoe & Cie, 2002)
2997 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.935Rint = 0.042
17821 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.18 e Å3
3069 reflectionsΔρmin = 0.39 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9249 (3)0.6631 (2)0.55700 (9)0.0472 (3)
H10.79630.61450.54100.057*
C21.0720 (3)0.7523 (2)0.50459 (9)0.0518 (4)
H21.04530.76520.45270.062*
C31.2602 (3)0.8224 (2)0.53019 (10)0.0551 (4)
H31.36330.88150.49530.066*
C41.2977 (3)0.8059 (2)0.60717 (9)0.0495 (4)
H41.42350.85630.62410.059*
C51.1473 (2)0.71416 (19)0.65879 (8)0.0393 (3)
C61.1649 (2)0.68668 (19)0.74248 (8)0.0399 (3)
C71.3558 (3)0.7287 (2)0.77801 (9)0.0475 (4)
H71.48200.77110.74970.057*
C81.3540 (3)0.7062 (2)0.85644 (10)0.0534 (4)
H81.47850.73540.88200.064*
C91.1657 (3)0.6399 (2)0.89627 (9)0.0554 (4)
H91.16010.62440.94910.066*
C100.9862 (3)0.5970 (2)0.85640 (9)0.0532 (4)
H100.86110.54900.88380.064*
C110.2858 (2)0.1898 (2)0.87745 (8)0.0416 (3)
C120.4108 (2)0.24262 (19)0.81181 (8)0.0383 (3)
H120.55120.29240.81350.046*
C130.3213 (2)0.21927 (18)0.74351 (8)0.0362 (3)
C140.1093 (2)0.1485 (2)0.74167 (9)0.0416 (3)
H140.04840.13530.69550.050*
C150.0112 (2)0.0977 (2)0.80866 (10)0.0475 (4)
H150.15270.04970.80720.057*
C160.0758 (3)0.1174 (2)0.87731 (9)0.0476 (4)
H160.00470.08280.92240.057*
N10.9666 (2)0.64630 (17)0.63119 (7)0.0415 (3)
N20.9811 (2)0.62032 (18)0.78077 (7)0.0467 (3)
N30.3810 (3)0.2146 (2)0.94976 (7)0.0536 (3)
O10.5688 (2)0.2735 (2)0.94961 (8)0.0795 (5)
O20.2667 (3)0.1770 (3)1.00732 (8)0.0897 (5)
O30.6150 (2)0.42572 (17)0.66965 (7)0.0617 (3)
O40.3309 (2)0.3147 (2)0.59711 (7)0.0657 (4)
O50.62591 (19)0.11015 (17)0.65774 (7)0.0547 (3)
S10.48694 (6)0.27252 (5)0.659004 (19)0.04088 (12)
H1A0.875 (3)0.581 (3)0.6636 (12)0.062 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0479 (8)0.0537 (9)0.0416 (8)0.0113 (7)0.0061 (6)0.0109 (6)
C20.0611 (10)0.0582 (9)0.0368 (8)0.0129 (8)0.0020 (7)0.0086 (7)
C30.0602 (10)0.0616 (10)0.0444 (9)0.0224 (8)0.0095 (7)0.0093 (7)
C40.0476 (8)0.0567 (9)0.0473 (8)0.0203 (7)0.0024 (7)0.0145 (7)
C50.0392 (7)0.0404 (7)0.0405 (7)0.0068 (6)0.0010 (6)0.0123 (6)
C60.0417 (7)0.0395 (7)0.0406 (7)0.0033 (6)0.0011 (6)0.0121 (6)
C70.0434 (8)0.0533 (9)0.0489 (9)0.0038 (7)0.0046 (7)0.0166 (7)
C80.0551 (9)0.0565 (9)0.0522 (9)0.0040 (7)0.0161 (7)0.0191 (7)
C90.0696 (11)0.0583 (10)0.0394 (8)0.0060 (8)0.0064 (8)0.0130 (7)
C100.0582 (10)0.0587 (10)0.0422 (8)0.0048 (8)0.0049 (7)0.0085 (7)
C110.0433 (7)0.0448 (8)0.0365 (7)0.0007 (6)0.0016 (6)0.0077 (6)
C120.0339 (7)0.0437 (7)0.0381 (7)0.0040 (6)0.0000 (5)0.0089 (6)
C130.0337 (6)0.0380 (7)0.0367 (7)0.0052 (5)0.0001 (5)0.0060 (5)
C140.0347 (7)0.0449 (8)0.0461 (8)0.0053 (6)0.0030 (6)0.0096 (6)
C150.0332 (7)0.0481 (8)0.0604 (10)0.0075 (6)0.0055 (6)0.0080 (7)
C160.0436 (8)0.0489 (8)0.0486 (8)0.0032 (6)0.0121 (7)0.0055 (7)
N10.0404 (6)0.0464 (7)0.0389 (6)0.0118 (5)0.0005 (5)0.0087 (5)
N20.0470 (7)0.0523 (7)0.0417 (7)0.0082 (6)0.0016 (5)0.0103 (5)
N30.0599 (9)0.0650 (9)0.0364 (7)0.0018 (7)0.0023 (6)0.0109 (6)
O10.0639 (8)0.1318 (14)0.0470 (7)0.0203 (9)0.0070 (6)0.0242 (8)
O20.1000 (11)0.1333 (14)0.0388 (7)0.0341 (10)0.0193 (7)0.0201 (8)
O30.0661 (7)0.0675 (8)0.0542 (7)0.0363 (6)0.0115 (6)0.0130 (6)
O40.0549 (7)0.1012 (10)0.0376 (6)0.0137 (7)0.0108 (5)0.0014 (6)
O50.0484 (6)0.0670 (7)0.0517 (7)0.0053 (5)0.0090 (5)0.0189 (5)
S10.03790 (19)0.0538 (2)0.03193 (18)0.01426 (15)0.00014 (13)0.00822 (14)
Geometric parameters (Å, º) top
C1—N11.335 (2)C10—H100.9300
C1—C21.367 (2)C11—C161.380 (2)
C1—H10.9300C11—C121.381 (2)
C2—C31.373 (2)C11—N31.466 (2)
C2—H20.9300C12—C131.383 (2)
C3—C41.379 (2)C12—H120.9300
C3—H30.9300C13—C141.3891 (19)
C4—C51.379 (2)C13—S11.7798 (14)
C4—H40.9300C14—C151.383 (2)
C5—N11.3446 (18)C14—H140.9300
C5—C61.476 (2)C15—C161.375 (2)
C6—N21.3413 (19)C15—H150.9300
C6—C71.384 (2)C16—H160.9300
C7—C81.380 (2)N1—H1A0.88 (2)
C7—H70.9300N3—O11.2153 (19)
C8—C91.375 (3)N3—O21.2180 (19)
C8—H80.9300O3—S11.4406 (12)
C9—C101.374 (2)O4—S11.4371 (12)
C9—H90.9300O5—S11.4466 (12)
C10—N21.331 (2)
N1—C1—C2119.67 (14)C16—C11—N3119.28 (13)
N1—C1—H1120.2C12—C11—N3117.98 (13)
C2—C1—H1120.2C11—C12—C13118.09 (13)
C1—C2—C3118.59 (15)C11—C12—H12121.0
C1—C2—H2120.7C13—C12—H12121.0
C3—C2—H2120.7C12—C13—C14120.33 (13)
C2—C3—C4120.66 (15)C12—C13—S1118.88 (10)
C2—C3—H3119.7C14—C13—S1120.75 (11)
C4—C3—H3119.7C15—C14—C13119.86 (14)
C5—C4—C3119.53 (14)C15—C14—H14120.1
C5—C4—H4120.2C13—C14—H14120.1
C3—C4—H4120.2C16—C15—C14120.79 (14)
N1—C5—C4117.78 (14)C16—C15—H15119.6
N1—C5—C6116.68 (13)C14—C15—H15119.6
C4—C5—C6125.53 (13)C15—C16—C11118.18 (14)
N2—C6—C7123.11 (14)C15—C16—H16120.9
N2—C6—C5114.67 (13)C11—C16—H16120.9
C7—C6—C5122.21 (14)C1—N1—C5123.75 (13)
C8—C7—C6118.32 (15)C1—N1—H1A117.7 (13)
C8—C7—H7120.8C5—N1—H1A118.4 (13)
C6—C7—H7120.8C10—N2—C6117.10 (14)
C9—C8—C7119.08 (15)O1—N3—O2122.94 (16)
C9—C8—H8120.5O1—N3—C11118.79 (13)
C7—C8—H8120.5O2—N3—C11118.26 (15)
C10—C9—C8118.62 (15)O4—S1—O3113.69 (8)
C10—C9—H9120.7O4—S1—O5113.72 (8)
C8—C9—H9120.7O3—S1—O5112.77 (8)
N2—C10—C9123.73 (16)O4—S1—C13106.14 (7)
N2—C10—H10118.1O3—S1—C13104.51 (7)
C9—C10—H10118.1O5—S1—C13104.90 (7)
C16—C11—C12122.74 (14)
N1—C1—C2—C30.0 (3)C13—C14—C15—C160.4 (2)
C1—C2—C3—C41.1 (3)C14—C15—C16—C110.3 (2)
C2—C3—C4—C51.6 (3)C12—C11—C16—C150.1 (2)
C3—C4—C5—N11.0 (2)N3—C11—C16—C15179.13 (14)
C3—C4—C5—C6179.67 (15)C2—C1—N1—C50.6 (2)
N1—C5—C6—N29.30 (19)C4—C5—N1—C10.1 (2)
C4—C5—C6—N2169.42 (15)C6—C5—N1—C1178.68 (14)
N1—C5—C6—C7171.48 (14)C9—C10—N2—C61.2 (3)
C4—C5—C6—C79.8 (2)C7—C6—N2—C100.8 (2)
N2—C6—C7—C82.0 (2)C5—C6—N2—C10178.46 (13)
C5—C6—C7—C8177.20 (14)C16—C11—N3—O1177.87 (16)
C6—C7—C8—C91.3 (2)C12—C11—N3—O12.9 (2)
C7—C8—C9—C100.5 (3)C16—C11—N3—O22.9 (2)
C8—C9—C10—N21.8 (3)C12—C11—N3—O2176.31 (16)
C16—C11—C12—C130.8 (2)C12—C13—S1—O4154.95 (12)
N3—C11—C12—C13179.98 (13)C14—C13—S1—O427.62 (14)
C11—C12—C13—C141.5 (2)C12—C13—S1—O334.49 (13)
C11—C12—C13—S1175.98 (11)C14—C13—S1—O3148.08 (12)
C12—C13—C14—C151.3 (2)C12—C13—S1—O584.36 (12)
S1—C13—C14—C15176.12 (11)C14—C13—S1—O593.07 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.932.553.1426 (19)122
C2—H2···O4i0.932.553.142 (2)122
C4—H4···O5ii0.932.453.3089 (19)153
N1—H1A···O30.88 (2)1.95 (2)2.7096 (16)142.9 (18)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H9N2+·C6H4NO5S
Mr359.36
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.9527 (3), 7.4674 (3), 17.8800 (7)
α, β, γ (°)79.085 (3), 89.121 (4), 87.939 (3)
V3)779.87 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.60 × 0.51 × 0.38
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32, Stoe & Cie, 2002)
Tmin, Tmax0.859, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
17821, 3069, 2997
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.05
No. of reflections3069
No. of parameters230
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.39

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.932.553.1426 (19)122
C2—H2···O4i0.932.553.142 (2)122
C4—H4···O5ii0.932.453.3089 (19)153
N1—H1A···O30.88 (2)1.95 (2)2.7096 (16)142.9 (18)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

The authors wish to acknowledge the Faculty of Arts and Sciences of Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Grant of Ondokuz Mayıs University).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBranowska, D., Rykowski, A. & Wysocki, W. (2005). Tetrahedron Lett. 46, 6223–6226.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGrummt, U. W. & Erhardt, S. (2004). J. Mol. Struct. (THEOCHEM), 685, 133–137.  Web of Science CrossRef CAS Google Scholar
First citationKavitha, S. J., Panchanatheswaran, K., Low, J. N., Ferguson, G. & Glidewell, C. (2006). Acta Cryst. C62, o165–o169.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSharma, R. J., Bala, R., Sharma, R., Raczyńska, J. & Rychlewska, U. (2004). J. Mol. Struct. 738, 247–252.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVembu, N. & Fronczek, F. R. (2009). J. Chem. Crystallogr. 39, 515–518.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, D., Telo, J. P., Liao, C., Hightower, S. E. & Clennan, E. L. (2007). J. Phys. Chem. A, 111, 13567–13574.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds