organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Propyl 3,3-di­bromo-2-hy­droxy­pyrrolidine-1-carboxyl­ate

aDepartment of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721, USA, and bSouthwest Center for Drug Discovery and Development, College of Pharmacy, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
*Correspondence e-mail: gsnichol@email.arizona.edu

(Received 29 January 2010; accepted 8 February 2010; online 13 February 2010)

The title compound, C8H13Br2NO3, crystallizes as a non-merohedral twin with twin law −0.6 0 0.4/0 − 1 0 /1.6 0 0.6, and the structure has a refined twin domain ratio of 0.546 (5). The structure shows a compact conformation, with the ester unit roughly coplanar with a mean plane fitted through the non-H atoms of the pyrrolidine ring [dihedral angle = 8.23 (9)°]. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate an R22(12) motif.

Related literature

For details of the synthesis, see: Magnus et al. (1994[Magnus, P., Hulme, C. & Weber, W. (1994). J. Am. Chem. Soc. 116, 4501-4502.]); Salamant & Hulme (2006[Salamant, W. & Hulme, C. (2006). Tetrahedron Lett. 47, 605-609.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H13Br2NO3

  • Mr = 331.01

  • Monoclinic, P 21 /n

  • a = 10.1061 (5) Å

  • b = 5.9914 (3) Å

  • c = 18.5496 (9) Å

  • β = 95.880 (2)°

  • V = 1117.26 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.24 mm−1

  • T = 100 K

  • 0.44 × 0.16 × 0.11 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 1996[Sheldrick, G. M. (1996). TWINABS. University of Göttingen, Germany.]) Tmin = 0.144, Tmax = 0.514

  • 34994 measured reflections

  • 9572 independent reflections

  • 7956 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.082

  • S = 1.03

  • 9572 reflections

  • 138 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.41 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.83 (3) 1.92 (3) 2.7479 (16) 176 (3)
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and CELL_NOW (Sheldrick, 2004[Sheldrick, G. M. (2004). CELL_NOW. University of Göttingen, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

We are working to develop new synthetic methodology by application of hypervalent iodine reagents (oxidation state III) in conjunction with bromotrimethylsilane (TMSBr). Specifically, iodosobenzene (Magnus et al., 1994) or iodobenzenediacetate in the presence of TMSBr promotes controlled formation of an oxidized product in one pot, derived from cyclic amides. The transformation represents an α, β, β oxidative process, and the yield of the product, (I), was optimized by varying reaction parameters (Salamant & Hulme, 2006). The structure of this molecule generated from one simple microwave-assisted protocol was confirmed by X-ray crystallography.

The molecular structure of (I) is shown in Fig. 1. Molecular dimensions are unexceptional and the compound has a compact conformation; as evidenced by the torsion angle C2—N—C5—O2 = 0.1 (2)° the ester moiety is essentially co-planar with the pyrrolidine ring. Furthermore the angle between a least-squares plane fitted through all non-hydrogen atoms of the pyrrolidine ring (r.m.s. deviation = 0.1666 Å) and the ester moiety (r.m.s. deviation = 0.0226 Å) is 8.23 (9)°. The pyrrolidine ring adopts an envelope conformation with a Cremer–Pople puckering parameter Q of 0.4053 (15) Å (Cremer & Pople, 1975). The compound forms a hydrogen-bonded dimer by means of an R22(12) motif (Fig. 2; Bernstein et al., 1995) although there is no further hydrogen bonding in the crystal structure.

Related literature top

For details of the synthesis, see: Magnus et al. (1994); Salamant & Hulme (2006). For puckering parameters, see Cremer & Pople (1975). For hydrogen-bonding motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of isopropyloxypyrrolidine (0.050 g, 0.318 mmol) in anhydrous dichloromethane (1 ml) was added iodobenzene diacetate (0.410 g, 1.272 mmol). Bromotrimethylsilane (0.330 ml, 2.540 mmol) was added dropwise and the mixture irradiated with a Biotage InitiatorTM for 20 min at 120°C. The red-brown solution was then dissolved in EtOAc (25 ml) and quenched with 1M Na2S2O3 (2 × 10 ml). The organic layer was washed with 1M NaHCO3 (2 × 20 ml), saturated Na2CO3 (20 ml), brine solution (20 ml), and dried (MgSO4). The solvent was evaporated in vacuo and purified by column chromatography (CHCl3) to afford the α,β,β product (0.068 g, 0.207 mmol, 65%) as a white solid. MS (+ESI) m/z 354 [M+Na]+

Refinement top

The crystal used was a two-component non-merohedral twin. The two components of the diffraction pattern were easily separated using CELL_NOW (Sheldrick, 2004) with twin law -0.6 0 0.4/0 -1 0 /1.6 0 0.6 and the structure has a refined twin scale factor of 0.546 (5). H atoms were identified from a difference Fourier map. The O—H H atom was freely refined with O—H = 0.83 (3) Å. C—H atoms were refined with Uiso(H) = 1.5Ueq(C) (methyl) Uiso(H) = 1.5Ueq(C) (all others) with constrained C—H distances in the range 0.98–1 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007) and CELL_NOW (Sheldrick, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with anisotropic displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. An a-axis packing plot of (I). Blue dotted lines indicate hydrogen bonds; red dotted lines indicate hydrogen bond continuation.
2-Propyl 3,3-dibromo-2-hydroxypyrrolidine-1-carboxylate top
Crystal data top
C8H13Br2NO3F(000) = 648
Mr = 331.01Dx = 1.968 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4995 reflections
a = 10.1061 (5) Åθ = 2.2–36.3°
b = 5.9914 (3) ŵ = 7.24 mm1
c = 18.5496 (9) ÅT = 100 K
β = 95.880 (2)°Rod, colourless
V = 1117.26 (10) Å30.44 × 0.16 × 0.11 mm
Z = 4
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
9572 independent reflections
Radiation source: fine-focus sealed tube with Miracol optics7956 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 36.4°, θmin = 2.2°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 1996)
h = 1616
Tmin = 0.144, Tmax = 0.514k = 09
34994 measured reflectionsl = 030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.041P)2 + 0.6397P]
where P = (Fo2 + 2Fc2)/3
9572 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 1.41 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
C8H13Br2NO3V = 1117.26 (10) Å3
Mr = 331.01Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.1061 (5) ŵ = 7.24 mm1
b = 5.9914 (3) ÅT = 100 K
c = 18.5496 (9) Å0.44 × 0.16 × 0.11 mm
β = 95.880 (2)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
9572 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 1996)
7956 reflections with I > 2σ(I)
Tmin = 0.144, Tmax = 0.514Rint = 0.042
34994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.41 e Å3
9572 reflectionsΔρmin = 0.77 e Å3
138 parameters
Special details top

Experimental. 1H- NMR (300 MHz, CDCl3) δ ppm 1.26 (d, J = 6.0 Hz, 6H), 2.78 (m, 1H), 3.00 (m, 1H), 3.55 (m, 2H), 4.65 (s, 1H), 5.00 (m, 1H), 5.66 (d, J = 18.6 Hz, 1H)

13 C-NMR (75 MHz, CDCl3) δ ppm 22.6, 43.4, 44.6, 64.9, 70.2, 77.9, 155.3

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.276925 (16)0.10387 (3)0.190848 (8)0.01807 (4)
Br20.113078 (15)0.17803 (3)0.039208 (9)0.01933 (4)
O10.39288 (12)0.2381 (2)0.01016 (6)0.01668 (19)
H1O0.371 (3)0.120 (5)0.0310 (15)0.029 (7)*
O20.68184 (12)0.16332 (19)0.07343 (7)0.0190 (2)
O30.69480 (10)0.47225 (18)0.14461 (6)0.01432 (18)
N0.49624 (12)0.3442 (2)0.10291 (7)0.0134 (2)
C10.27415 (14)0.2599 (2)0.09769 (7)0.0137 (2)
C20.40238 (14)0.1940 (2)0.06403 (7)0.0125 (2)
H20.42650.03450.07450.015*
C30.43486 (14)0.5339 (2)0.13709 (8)0.0153 (2)
H3A0.47160.67760.12190.018*
H3B0.44790.52300.19060.018*
C40.28818 (15)0.5100 (2)0.10886 (8)0.0156 (2)
H4A0.22970.56440.14480.019*
H4B0.26730.59190.06280.019*
C50.62874 (14)0.3155 (2)0.10427 (8)0.0137 (2)
C60.84008 (14)0.4710 (2)0.14715 (8)0.0146 (2)
H60.862 (2)0.423 (4)0.1000 (12)0.014 (5)*
C70.88361 (16)0.7097 (2)0.16218 (9)0.0185 (3)
H7A0.83990.80760.12470.028*
H7B0.98030.72060.16190.028*
H7C0.85880.75530.20970.028*
C80.89639 (17)0.3118 (3)0.20548 (10)0.0223 (3)
H8A0.99360.30900.20690.033*
H8B0.86100.16170.19490.033*
H8C0.87110.36130.25250.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02072 (7)0.02068 (7)0.01338 (6)0.00119 (5)0.00450 (5)0.00190 (5)
Br20.01232 (6)0.02662 (8)0.01853 (7)0.00274 (5)0.00098 (5)0.00543 (5)
O10.0195 (5)0.0195 (5)0.0112 (4)0.0029 (4)0.0021 (4)0.0022 (4)
O20.0149 (5)0.0183 (5)0.0239 (5)0.0008 (4)0.0017 (4)0.0089 (4)
O30.0113 (4)0.0153 (4)0.0160 (4)0.0003 (3)0.0004 (3)0.0044 (4)
N0.0116 (5)0.0136 (5)0.0150 (5)0.0012 (4)0.0007 (4)0.0046 (4)
C10.0126 (5)0.0162 (5)0.0119 (5)0.0013 (4)0.0003 (4)0.0009 (4)
C20.0120 (5)0.0142 (5)0.0113 (5)0.0017 (4)0.0016 (4)0.0021 (4)
C30.0142 (6)0.0137 (5)0.0179 (6)0.0002 (4)0.0018 (5)0.0047 (5)
C40.0148 (6)0.0145 (6)0.0173 (6)0.0018 (4)0.0010 (5)0.0021 (5)
C50.0127 (5)0.0149 (5)0.0132 (5)0.0000 (4)0.0004 (4)0.0014 (4)
C60.0106 (5)0.0160 (5)0.0170 (6)0.0002 (4)0.0009 (4)0.0011 (5)
C70.0160 (6)0.0165 (6)0.0226 (7)0.0032 (5)0.0006 (5)0.0003 (5)
C80.0187 (7)0.0180 (6)0.0286 (8)0.0002 (5)0.0052 (6)0.0022 (6)
Geometric parameters (Å, º) top
Br1—C11.9624 (14)C3—H3B0.990
Br2—C11.9250 (14)C3—C41.527 (2)
O1—H1O0.83 (3)C4—H4A0.990
O1—C21.3949 (17)C4—H4B0.990
O2—C51.2286 (18)C6—H60.97 (2)
O3—C51.3360 (17)C6—C71.513 (2)
O3—C61.4641 (18)C6—C81.510 (2)
N—C21.4457 (18)C7—H7A0.980
N—C31.4695 (19)C7—H7B0.980
N—C51.3478 (19)C7—H7C0.980
C1—C21.546 (2)C8—H8A0.980
C1—C41.517 (2)C8—H8B0.980
C2—H21.000C8—H8C0.980
C3—H3A0.990
H1O—O1—C2106.6 (19)C1—C4—H4B111.3
C5—O3—C6117.15 (11)C3—C4—H4A111.3
C2—N—C3114.36 (12)C3—C4—H4B111.3
C2—N—C5121.99 (12)H4A—C4—H4B109.2
C3—N—C5123.58 (12)O2—C5—O3124.43 (13)
Br1—C1—Br2108.05 (7)O2—C5—N124.50 (13)
Br1—C1—C2107.27 (9)O3—C5—N111.06 (12)
Br1—C1—C4110.95 (9)O3—C6—H6107.0 (13)
Br2—C1—C2113.74 (9)O3—C6—C7105.83 (12)
Br2—C1—C4112.98 (10)O3—C6—C8109.23 (12)
C2—C1—C4103.71 (12)H6—C6—C7111.1 (13)
O1—C2—N110.45 (12)H6—C6—C8110.8 (13)
O1—C2—C1111.97 (11)C7—C6—C8112.58 (13)
O1—C2—H2111.3C6—C7—H7A109.5
N—C2—C199.99 (11)C6—C7—H7B109.5
N—C2—H2111.3C6—C7—H7C109.5
C1—C2—H2111.3H7A—C7—H7B109.5
N—C3—H3A111.3H7A—C7—H7C109.5
N—C3—H3B111.3H7B—C7—H7C109.5
N—C3—C4102.54 (11)C6—C8—H8A109.5
H3A—C3—H3B109.2C6—C8—H8B109.5
H3A—C3—C4111.3C6—C8—H8C109.5
H3B—C3—C4111.3H8A—C8—H8B109.5
C1—C4—C3102.32 (11)H8A—C8—H8C109.5
C1—C4—H4A111.3H8B—C8—H8C109.5
C3—N—C2—O199.81 (14)Br1—C1—C4—C373.49 (12)
C3—N—C2—C118.30 (15)Br2—C1—C4—C3165.00 (10)
C5—N—C2—O177.31 (17)C2—C1—C4—C341.39 (13)
C5—N—C2—C1164.59 (13)N—C3—C4—C129.33 (14)
Br1—C1—C2—O1161.81 (9)C6—O3—C5—O25.0 (2)
Br1—C1—C2—N81.21 (11)C6—O3—C5—N176.05 (12)
Br2—C1—C2—O142.39 (14)C2—N—C5—O20.1 (2)
Br2—C1—C2—N159.37 (9)C2—N—C5—O3178.85 (12)
C4—C1—C2—O180.72 (13)C3—N—C5—O2176.76 (14)
C4—C1—C2—N36.26 (13)C3—N—C5—O34.3 (2)
C2—N—C3—C46.68 (16)C5—O3—C6—C7152.87 (13)
C5—N—C3—C4170.38 (13)C5—O3—C6—C885.69 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.83 (3)1.92 (3)2.7479 (16)176 (3)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H13Br2NO3
Mr331.01
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.1061 (5), 5.9914 (3), 18.5496 (9)
β (°) 95.880 (2)
V3)1117.26 (10)
Z4
Radiation typeMo Kα
µ (mm1)7.24
Crystal size (mm)0.44 × 0.16 × 0.11
Data collection
DiffractometerBruker Kappa APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(TWINABS; Sheldrick, 1996)
Tmin, Tmax0.144, 0.514
No. of measured, independent and
observed [I > 2σ(I)] reflections
34994, 9572, 7956
Rint0.042
(sin θ/λ)max1)0.835
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.03
No. of reflections9572
No. of parameters138
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.41, 0.77

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007) and CELL_NOW (Sheldrick, 2004), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.83 (3)1.92 (3)2.7479 (16)176 (3)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The diffractometer was purchased with funding from NSF grant No. CHE-0741837.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMagnus, P., Hulme, C. & Weber, W. (1994). J. Am. Chem. Soc. 116, 4501–4502.  CSD CrossRef CAS Web of Science Google Scholar
First citationSalamant, W. & Hulme, C. (2006). Tetrahedron Lett. 47, 605–609.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2004). CELL_NOW. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds