inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages i22-i23

Dipotassium zinc tetra­iodate(V) dihydrate

aInstitute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Praha 8, Czech Republic, and bDepartment of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Praha 2, Czech Republic
*Correspondence e-mail: fabry@fzu.cz

(Received 1 February 2010; accepted 14 February 2010; online 20 February 2010)

The title compound, K2Zn(IO3)4·2H2O, contains two symmetry-independent K and I atoms. These atoms, as well as the Zn atom, are coordinated by shared O atoms and, moreover, the Zn atom is coordinated by two water mol­ecules in trans positions. The K, Zn and water O atoms atoms are situated in special positions on twofold symmetry axes. The hydrogen atoms are involved in strong O—H⋯O hydrogen bonds and O—H⋯I inter­actions also occur. The crystals of the title compound are, in general, twinned, but the sample used for this experiment was free of twinning.

Related literature

Single crystals of KIO3 grown from aqueous solution develop as domained crystals of poor quality but the quality of the crystals obtained can be affected by additional reagents such as HIO3, see: Hamid (1974[Hamid, S. A. (1974). J. Cryst. Growth, 22, 331-332.]); Lü & Zhang (1987[Lü, M. & Zhang, K. (1987). Sci. Sin. A30, 45-52.]). For related structures, see Vinogradov et al. (1979[Vinogradov, E. E., Karataeva, I. M. & Lepeshkov, I. N. (1979). Zh. Neorg. Khim. 24, 223-227.]); Maneva & Rabadjieva (1994[Maneva, M. & Rabadjieva, D. (1994). Thermochim. Acta, 231, 267-275.]); Juncheng et al. (2000[Juncheng, H., Hongwen, W., Mingfei, X., Tianzhi, W., Yun, Y. & Songsheng, Q. (2000). Thermochim. Acta, 345, 135-139.]); Lepeshkov et al. (1977[Lepeshkov, I. N., Vinogradov, E. E. & Karataeva, I. M. (1977). Zh. Neorg. Khim. 22, 2277-2281.]); Lucas (1984[Lucas, B. W. (1984). Acta Cryst. C40, 1989-1992.]). For hydrogen bonding, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, p. 13. New York: Oxford University Press Inc.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the PDF-2 Powder Diffraction Database, see: ICDD (2000[ICDD (2000). The Powder Diffraction Database. International Centre for Diffraction Data, Newtown Square, Pennsylvania, USA.]) and for the Inorganic Crystal Structure Database, see: ICSD (2009[ICSD (2009). Inorganic Crystal Structure Database. FIZ-Karlsruhe, Germany, and the National Institute of Standards and Technology (NIST), USA.]). For the extinction correction, see: Becker & Coppens (1974[Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.]).

Experimental

Crystal data
  • K2Zn(IO3)4·2H2O

  • Mr = 879.2

  • Monoclinic, C 2

  • a = 13.8044 (3) Å

  • b = 7.7285 (2) Å

  • c = 8.2860 (2) Å

  • β = 126.5726 (13)°

  • V = 709.95 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.08 mm−1

  • T = 295 K

  • 0.17 × 0.12 × 0.05 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: gaussian (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.241, Tmax = 0.581

  • 11909 measured reflections

  • 1639 independent reflections

  • 1595 reflections with I > 3σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.055

  • S = 1.72

  • 1639 reflections

  • 105 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.61 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 761 Friedel pairs

  • Flack parameter: −0.01 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H1O7⋯O4i 0.85 (9) 1.88 (10) 2.672 (6) 155 (5)
O7—H1O7ii⋯O4iii 0.85 (9) 1.88 (10) 2.672 (6) 155 (5)
O8—H1O8⋯O3ii 0.845 (16) 1.837 (16) 2.610 (4) 151 (4)
O8—H1O8⋯I1ii 0.845 (16) 2.96 (3) 3.4119 (10) 116 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (ii) -x+1, y, -z+1; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]) and HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: COLLECT and HKL DENZO and SCALEPACK; data reduction: COLLECT and HKL DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). Jana2006. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.]); molecular graphics: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Motivation for the present structure determination was growth of single crystals of KIO3 that develop as domained crystals of poor quality from the water solution only (Hamid, 1974; Lü & Zhang, 1987). However, quality of the obtained crystals can be affected by additional reagents, such as HIO3 (Hamid, 1974; Lü & Zhang, 1987). The matter of interest was to find a suitable solution with other additives from which good-quality crystals of KIO3 can be obtained.

In this case, the title structure has been grown as it is given in the preparative section.

The compound of the same chemical composition has already been synthesized (Maneva & Rabadjieva, 1994; Juncheng et al., 2000; Vinogradov et al., 1979) along with similar compounds with different central atoms instead of Zn: According to the powder diffraction experiments, Ni and Co analogoues are isostructural to Zn (Maneva & Rabadjieva, 1994). (However, the powder diffractograms have been given only for the Ni and Co compounds in the latter reference.) Juncheng et al. (2000) investigated thermodynamic properties of K2ME(IO3)4.2H2O where ME=Mg, Ni and Zn. Lepeshkov et al. (1977) studied the systems Zn(IO3)2 - KIO3 - H2O as well as Co(IO3)2 - KIO3 - H2O at 50°C. The d values of K2Zn(IO3)4.2H2O obtained from the powder diffraction experiment by Lepeshkov et al. (1977) - see also ICDD Card 31-1135, PDF-2 database, ICDD (2000) - fairly correspond to the intensive peaks, that have been calculated from the title structure (Spek, 2009). However, Lepeshkov et al. (1977) did not give any details about the conditions of the powder diffraction experiment. Lepeshkov et al. (1977) have shown that infrared spectra as well as thermal and differential thermal gravimetric analyses (TGA and DTA) of K2Zn(IO3)4.2H2O and K2Co(IO3)4.2H2O are similar. The latter authors concluded from the infrared spectra that water molecules as well as four iodates are involved in the coordination sphere of the respective central atoms Zn and Co. Vinogradov et al. (1979) further studied systems of ME(IO3)2 - KIO3 - H2O, where ME=Co, Mn and Zn. The latter authors confirmed and extended the former findings (Lepeshkov et al., 1977) that the central metal atoms (Co, Mn and Zn) are situated in an octahedron formed by the oxygens stemming from four [IO3]- and two H2O molecules.

However, the Inorganic Crystal Structure Database (ICSD, 2009) does not contain any structure of the composition given above. Nevertheless, the findings by Lepeshkov et al. (1977) as well as by Vinogradov et al. (1979) have been confirmed and precised in the present article: The environment of Zn in the title structure is formed by two pairs of symmetry independent iodate groups as well as two independent coordinated water molecules in trans positions.

There are several points of interest regarding the title structure. The primitive unit cell (p index) of the title structure can be obtained by the transformation from the centred C cell (C index) [ap,bp,cp]=[//0 -1 0//1/2 -1/2 0//1/2 -1/2 1//][aC,bC,cC]. ([ap,bp,cp] and [aC,bC,cC] are the column matrices while //0 -1 0//1/2 -1/2 0//1/2 -1/2 1// are the first, the second and the third row, respectively, of the 3×3 matrix.) The transformed unit cell parameters are equal to 7.7285 (2), 7.9103 (1), 7.9421 (3) Å, 63.0265 (25), 60.8856 (9), 60.7574 (13)°; V=354.978 (18) Å3.

Taking the metric of the unit cell into consideration there is no wonder that twinning has been observed in the title structure, either in the polarization microscope and by preliminary diffraction measurements of several samples that have shown rather broad peaks. However, it seems that the twinning is less severe in the title structure than in KIO3. The single-domained crystals can be easily obtained mechanically. Observation of the crystals in the microscope did not show ferroelastic switching of the domains.

The volume of the primitive unit cell as well as lengths of the primitive unit cell axes of the title structure are comparable to those of KIO3 that easily forms twins: 7.7436 (4), 7.7183 (4), 7.7328 (5) Å, 108.986 (4), 109.449 (4), 109.209 (5)°; V=359.11Å3 - Lucas (1984).

In the title structure, the I atoms are surrounded by a highly distorted oxygen environment, each I is bonded to three oxygens that are substantially closer. In the case of I1 the other three oxygens including the former ones form a distorted octahedron around I1 (Fig. 4) while in the case of I2 there are four more distant oxygens completing the coordination of the latter atom (Fig. 5). The environments of the iodines (Figs. 4 and 5) are rather similar to that in KIO3 where are also 3 oxygens substantially closer to the central I atom with respect to the remaining three. Especially the coordination of I1 resembles that of I in KIO3 where I is coordinated in a distorted octahedron (Lucas, 1984).

There are two strong hydrogen O—H···O bonds in the structure (Desiraju & Steiner, 1999) - see Tab. 1, Fig. 1. Moreover, there is also O-H···I interaction present in the structure (Tab. 1). Lepeshkov et al. (1977) report that dehydration takes place at 210°C, i.e. at quite a high temperature. Various sections from the title structure are depicted in Figs 1-5.

Related literature top

Single crystals of KIO3 grown from aqueous solution develop as domained crystals of poor quality but the quality of the crystals obtained can be affected by additional reagents such as HIO3, see: Hamid (1974); Lü & Zhang (1987). For related structures, see Vinogradov et al. (1979); Maneva & Rabadjieva (1994); Juncheng et al. (2000); Lepeshkov et al. (1977); Lucas (1984). For hydrogen bonding, see: Desiraju & Steiner (1999). For a description of the Cambridge Structural Database, see: Allen (2002). For the PDF-2 Powder Diffraction Database, see: ICDD (2000) and for the Inorganic Crystal Structure Database, see: ICSD (2009). For the extinction correction, see: Becker & Coppens (1974).

Experimental top

The title structure has been prepared by adding to 0.93 g of dissolved KIO3 in 20 ml of water of 0.4 g of KCl and 0.364 g of ZnCl2. The solution was heated up to 60 °C while adding water to 300 ml. A very fine precipitate has developed that did not dissolve completely. Fragile prism-like colourless crystals with length of several tenths of mm have developed in the course of three months. The crystals were twinned by a domain boundary perpendicular to the longer axis of the prism. The crystals that served for the measurement could be easily separated mechanically. However, these parts in some cases were not single-domained crystals. There seem to be other domain states as indicated measurement of several samples.

Refinement top

The water hydrogens have been detected in the difference electron density maps. It should be noted that they were observed with difficulties since close to O7 and O8 there have been other higher maxima situated precisely on the two-fold axis. The restraints were taken from the search in the Cambridge Structural Database (Allen, 2002). The search in the Database referred to the O—H distances and the angle H—O—H of the coordinated water molecules on Zn. The Database provided 1000 hits. The restrained values were: Zn—O—H = 125.50 (1)° and O—H = 0.845 (1) Å. The used constraints: Uiso(H)=1.5UeqO. Moreover, because of the space group C2 the y-coordinate of I1 has been fixed.

Computing details top

Data collection: COLLECT (Nonius, 2000) and HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); cell refinement: COLLECT (Nonius, 2000) and HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: COLLECT (Nonius, 2000) and HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: Spek (2009); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. View of the environment of Zn atoms (Spek, 2009) with omission of the K atoms. The displacement ellipsoids are shown at the 50% probability level. The hydrogen bonds are indicated by the dashed lines. The arrows depict two-fold axes. Symmetry code: (i) -x + 1/2, y + 1/2, -z + 1; (ii) -x + 1, y, -z + 1; (iii) -x + 3/2, y + 1/2, -z + 1.
[Figure 2] Fig. 2. View of of the environment of K1 atom (Spek, 2009). The displacement ellipsoids are shown at the 50% probability level. Symmetry code: as above and (iv) -x + 3/2, y - 1/2, -z + 1; (v) x - 1/2, y - 1/2, z - 1; (vi) x, y, z - 1; (vii) x + 1/2, y - 1/2, z; (viii) -x + 1/2, y - 1/2, -z.
[Figure 3] Fig. 3. View of of the environment of K2 atom (Spek, 2009). The displacement ellipsoids are shown at the 50% probability level. Symmetry code: as above and (ix) x - 1/2, y + 1/2, z - 1.
[Figure 4] Fig. 4. View of of the environment of I1 atom (Spek, 2009). The displacement ellipsoids are shown at the 50% probability level. Symmetry code: as above and (x) -x + 1, y, -z + 2; (xi) -x + 3/2, y + 1/2, -z + 2; (xii) -x + 3/2, y - 1/2, -z + 2.
[Figure 5] Fig. 5. View of of the environment of I2 atom (Spek, 2009). The displacement ellipsoids are shown at the 50% probability level. Symmetry code: as above and (xiii) -x + 1/2, y - 1/2, -z + 1.
dipotassium zinc tetraiodate(V) dihydrate top
Crystal data top
K2Zn(IO3)4·2H2OF(000) = 792
Mr = 879.2Dx = 4.112 (1) Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71069 Å
Hall symbol: C 2yCell parameters from 8075 reflections
a = 13.8044 (3) Åθ = 2.9–27.5°
b = 7.7285 (2) ŵ = 11.08 mm1
c = 8.2860 (2) ÅT = 295 K
β = 126.5726 (13)°Prism, colourless
V = 709.95 (3) Å30.17 × 0.12 × 0.05 mm
Z = 2
Data collection top
Nonius KappaCCD area-detector
diffractometer
1639 independent reflections
Radiation source: X-ray tube1595 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 1717
Absorption correction: gaussian
(Coppens, 1970)
k = 1010
Tmin = 0.241, Tmax = 0.581l = 1010
11909 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.72(Δ/σ)max = 0.040
1639 reflectionsΔρmax = 0.60 e Å3
105 parametersΔρmin = 0.61 e Å3
4 restraintsExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
3 constraintsExtinction coefficient: 1040 (40)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 761 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (3)
Crystal data top
K2Zn(IO3)4·2H2OV = 709.95 (3) Å3
Mr = 879.2Z = 2
Monoclinic, C2Mo Kα radiation
a = 13.8044 (3) ŵ = 11.08 mm1
b = 7.7285 (2) ÅT = 295 K
c = 8.2860 (2) Å0.17 × 0.12 × 0.05 mm
β = 126.5726 (13)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1639 independent reflections
Absorption correction: gaussian
(Coppens, 1970)
1595 reflections with I > 3σ(I)
Tmin = 0.241, Tmax = 0.581Rint = 0.045
11909 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055Δρmax = 0.60 e Å3
S = 1.72Δρmin = 0.61 e Å3
1639 reflectionsAbsolute structure: Flack (1983), 761 Friedel pairs
105 parametersAbsolute structure parameter: 0.01 (3)
4 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.50.0000 (3)00.0217 (9)
K20.50.5290 (3)00.0239 (10)
I10.73832 (3)0.2702150.98624 (4)0.01481 (16)
I20.27889 (3)0.28124 (7)0.51786 (4)0.01419 (16)
Zn0.50.45608 (17)0.50.0173 (4)
O10.8188 (3)0.2594 (6)0.8770 (5)0.0199 (17)
O20.3446 (3)0.2678 (6)0.7822 (5)0.0230 (16)
O30.6415 (4)0.0814 (5)0.8708 (5)0.0220 (19)
O40.1355 (4)0.3798 (5)0.4160 (6)0.023 (2)
O50.3581 (3)0.4756 (5)0.5308 (5)0.0201 (18)
O60.6246 (4)0.4346 (5)0.8313 (5)0.0207 (18)
O70.50.7158 (7)0.50.039 (4)
O80.50.1904 (7)0.50.033 (3)
H1O80.471 (6)0.1269 (7)0.3979 (19)0.05*
H1O70.478 (7)0.7793 (7)0.556 (10)0.0591*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0231 (11)0.0199 (9)0.0240 (8)00.0151 (8)0
K20.0164 (10)0.0199 (9)0.0345 (10)00.0148 (9)0
I10.01408 (17)0.0169 (2)0.01324 (16)0.0000 (2)0.00804 (13)0.00000 (15)
I20.01437 (18)0.01408 (19)0.01467 (16)0.00005 (19)0.00895 (13)0.00057 (14)
Zn0.0182 (5)0.0151 (4)0.0223 (4)00.0142 (4)0
O10.0197 (17)0.0216 (19)0.0229 (17)0.0030 (18)0.0152 (15)0.0003 (16)
O20.0221 (18)0.0275 (19)0.0177 (16)0.005 (2)0.0111 (14)0.0010 (18)
O30.022 (2)0.0181 (18)0.0195 (18)0.0001 (17)0.0090 (18)0.0001 (15)
O40.017 (2)0.024 (2)0.031 (2)0.0035 (15)0.0160 (18)0.0061 (15)
O50.0208 (19)0.0138 (18)0.0319 (19)0.0002 (15)0.0191 (17)0.0002 (15)
O60.017 (2)0.0214 (19)0.0191 (17)0.0056 (17)0.0080 (16)0.0004 (15)
O70.052 (4)0.017 (3)0.082 (5)00.058 (4)0
O80.041 (4)0.016 (3)0.024 (3)00.009 (3)0
Geometric parameters (Å, º) top
K1—O1i2.778 (4)I1—O61.823 (4)
K1—O1ii2.778 (4)I1—O6xi3.031 (4)
K1—O2iii2.744 (4)I2—O1iv2.701 (4)
K1—O2iv2.744 (4)I2—O21.807 (4)
K1—O3iii2.802 (6)I2—O41.795 (5)
K1—O3iv2.802 (6)I2—O4xii3.248 (4)
K1—O4v2.925 (4)I2—O51.823 (4)
K1—O4vi2.925 (4)I2—O5xii2.900 (4)
K2—O1vii2.726 (4)I2—O83.2202 (13)
K2—O1viii2.726 (4)Zn—O52.126 (6)
K2—O2iii2.706 (4)Zn—O5iv2.126 (6)
K2—O2iv2.706 (4)Zn—O62.212 (3)
K2—O5iii3.170 (4)Zn—O6iv2.212 (3)
K2—O5iv3.170 (4)Zn—O72.007 (6)
K2—O6iii2.883 (6)Zn—O82.053 (6)
K2—O6iv2.883 (6)O7—H1o70.85 (9)
I1—O11.805 (5)O7—H1o7iv0.85 (9)
I1—O2ix2.758 (5)O8—H1o80.845 (16)
I1—O31.818 (4)O8—H1o8iv0.845 (16)
I1—O3x2.756 (4)
H1o7—O7—H1o7iv109 (6)O5—Zn—O5iv171.86 (15)
H1o8—O8—H1o8iv109.0 (13)O5—Zn—O686.97 (18)
O1i—K1—O1ii95.96 (14)O5—Zn—O6iv93.64 (18)
O1i—K1—O2iii94.78 (12)O5—Zn—O785.93 (10)
O1i—K1—O2iv157.90 (15)O5—Zn—O894.07 (10)
O1i—K1—O3iii133.68 (13)O5iv—Zn—O693.64 (18)
O1i—K1—O3iv67.05 (13)O5iv—Zn—O6iv86.97 (18)
O1i—K1—O4v91.35 (12)O5iv—Zn—O785.93 (10)
O1i—K1—O4vi63.35 (14)O5iv—Zn—O894.07 (10)
O1ii—K1—O2iii157.90 (15)O6—Zn—O6iv171.39 (16)
O1ii—K1—O2iv94.78 (12)O6—Zn—O794.30 (11)
O1ii—K1—O3iii67.05 (13)O6—Zn—O885.70 (11)
O1ii—K1—O3iv133.68 (13)O6iv—Zn—O794.30 (11)
O1ii—K1—O4v63.35 (14)O6iv—Zn—O885.70 (11)
O1ii—K1—O4vi91.35 (12)O7—Zn—O8180
O2iii—K1—O2iv82.07 (13)O1—I1—O2ix169.37 (11)
O2iii—K1—O3iii91.68 (14)O1—I1—O3100.2 (2)
O2iii—K1—O3iv68.40 (13)O1—I1—O3x82.15 (18)
O2iii—K1—O4v135.62 (14)O1—I1—O6102.0 (2)
O2iii—K1—O4vi76.36 (11)O1—I1—O6xi79.79 (17)
O2iv—K1—O3iii68.40 (13)O1—I1—O881.25 (8)
O2iv—K1—O3iv91.68 (14)O2ix—I1—O383.2 (2)
O2iv—K1—O4v76.36 (11)O2ix—I1—O3x95.72 (15)
O2iv—K1—O4vi135.62 (14)O2ix—I1—O687.4 (2)
O3iii—K1—O3iv154.04 (14)O2ix—I1—O6xi92.39 (14)
O3iii—K1—O4v114.81 (13)O2ix—I1—O8108.21 (6)
O3iii—K1—O4vi73.91 (13)O3—I1—O3x172.60 (14)
O3iv—K1—O4v73.91 (13)O3—I1—O697.71 (16)
O3iv—K1—O4vi114.81 (13)O3—I1—O6xi67.69 (14)
O4v—K1—O4vi142.99 (13)O3—I1—O849.04 (14)
O1vii—K2—O1viii98.42 (15)O3x—I1—O674.92 (14)
O1vii—K2—O2iii92.96 (12)O3x—I1—O6xi119.70 (10)
O1vii—K2—O2iv157.39 (15)O3x—I1—O8125.11 (11)
O1vii—K2—O5iii82.40 (11)O6—I1—O6xi165.29 (13)
O1vii—K2—O5iv107.60 (12)O6—I1—O858.30 (14)
O1vii—K2—O6iii131.60 (13)O6xi—I1—O8108.09 (11)
O1vii—K2—O6iv70.54 (13)O1iv—I2—O2173.13 (18)
O1viii—K2—O2iii157.39 (15)O1iv—I2—O480.92 (18)
O1viii—K2—O2iv92.96 (12)O1iv—I2—O4xii90.78 (12)
O1viii—K2—O5iii107.60 (12)O1iv—I2—O588.38 (16)
O1viii—K2—O5iv82.40 (11)O1iv—I2—O5xii88.12 (13)
O1viii—K2—O6iii70.54 (13)O1iv—I2—O874.54 (9)
O1viii—K2—O6iv131.60 (13)O2—I2—O4102.2 (2)
O2iii—K2—O2iv83.50 (13)O2—I2—O4xii82.61 (17)
O2iii—K2—O5iii54.54 (12)O2—I2—O597.22 (19)
O2iii—K2—O5iv112.69 (13)O2—I2—O5xii86.36 (17)
O2iii—K2—O6iii87.30 (14)O2—I2—O8103.80 (15)
O2iii—K2—O6iv70.70 (13)O4—I2—O4xii132.34 (15)
O2iv—K2—O5iii112.69 (13)O4—I2—O597.63 (19)
O2iv—K2—O5iv54.54 (12)O4—I2—O5xii80.51 (16)
O2iv—K2—O6iii70.70 (13)O4—I2—O8151.77 (18)
O2iv—K2—O6iv87.30 (14)O4xii—I2—O5129.17 (17)
O5iii—K2—O5iv165.03 (13)O4xii—I2—O5xii52.21 (12)
O5iii—K2—O6iii58.89 (11)O4xii—I2—O862.61 (14)
O5iii—K2—O6iv116.79 (11)O5—I2—O5xii176.26 (13)
O5iv—K2—O6iii116.79 (11)O5—I2—O868.31 (19)
O5iv—K2—O6iv58.89 (11)O5xii—I2—O8111.94 (14)
O6iii—K2—O6iv150.67 (15)
Symmetry codes: (i) x1/2, y1/2, z1; (ii) x+3/2, y1/2, z+1; (iii) x, y, z1; (iv) x+1, y, z+1; (v) x+1/2, y1/2, z; (vi) x+1/2, y1/2, z; (vii) x1/2, y+1/2, z1; (viii) x+3/2, y+1/2, z+1; (ix) x+1, y, z+2; (x) x+3/2, y+1/2, z+2; (xi) x+3/2, y1/2, z+2; (xii) x+1/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1O7···O4xiii0.85 (9)1.88 (10)2.672 (6)155 (5)
O7—H1O7iv···O4xiv0.85 (9)1.88 (10)2.672 (6)155 (5)
O8—H1O8···O3iv0.845 (16)1.837 (16)2.610 (4)151 (4)
O8—H1O8···I1iv0.845 (16)2.96 (3)3.4119 (10)116 (3)
Symmetry codes: (iv) x+1, y, z+1; (xiii) x+1/2, y+1/2, z+1; (xiv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaK2Zn(IO3)4·2H2O
Mr879.2
Crystal system, space groupMonoclinic, C2
Temperature (K)295
a, b, c (Å)13.8044 (3), 7.7285 (2), 8.2860 (2)
β (°) 126.5726 (13)
V3)709.95 (3)
Z2
Radiation typeMo Kα
µ (mm1)11.08
Crystal size (mm)0.17 × 0.12 × 0.05
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionGaussian
(Coppens, 1970)
Tmin, Tmax0.241, 0.581
No. of measured, independent and
observed [I > 3σ(I)] reflections
11909, 1639, 1595
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.055, 1.72
No. of reflections1639
No. of parameters105
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.61
Absolute structureFlack (1983), 761 Friedel pairs
Absolute structure parameter0.01 (3)

Computer programs: COLLECT (Nonius, 2000) and HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), JANA2006 (Petříček et al., 2006), Spek (2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1O7···O4i0.85 (9)1.88 (10)2.672 (6)155 (5)
O7—H1O7ii···O4iii0.85 (9)1.88 (10)2.672 (6)155 (5)
O8—H1O8···O3ii0.845 (16)1.837 (16)2.610 (4)151 (4)
O8—H1O8···I1ii0.845 (16)2.96 (3)3.4119 (10)116 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

IC gratefully acknowledges support under grant MSM0021620857.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBecker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.  CrossRef IUCr Journals Web of Science Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, p. 13. New York: Oxford University Press Inc.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHamid, S. A. (1974). J. Cryst. Growth, 22, 331–332.  CrossRef CAS Web of Science Google Scholar
First citationICDD (2000). The Powder Diffraction Database. International Centre for Diffraction Data, Newtown Square, Pennsylvania, USA.  Google Scholar
First citationICSD (2009). Inorganic Crystal Structure Database. FIZ-Karlsruhe, Germany, and the National Institute of Standards and Technology (NIST), USA.  Google Scholar
First citationJuncheng, H., Hongwen, W., Mingfei, X., Tianzhi, W., Yun, Y. & Songsheng, Q. (2000). Thermochim. Acta, 345, 135–139.  CrossRef Google Scholar
First citationLepeshkov, I. N., Vinogradov, E. E. & Karataeva, I. M. (1977). Zh. Neorg. Khim. 22, 2277–2281.  CAS Google Scholar
First citationLü, M. & Zhang, K. (1987). Sci. Sin. A30, 45–52.  Google Scholar
First citationLucas, B. W. (1984). Acta Cryst. C40, 1989–1992.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationManeva, M. & Rabadjieva, D. (1994). Thermochim. Acta, 231, 267–275.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). Jana2006. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVinogradov, E. E., Karataeva, I. M. & Lepeshkov, I. N. (1979). Zh. Neorg. Khim. 24, 223–227.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages i22-i23
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds