organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2,3,5,6,7,8-Hexa­hydro-1H-cyclo­penta­[b]quinolin-9-yl)-1,5-bis­­(4-meth­oxy­phen­yl)biuret

aDivision of Biotechnology and Life Science, Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: sakuraik@cc.tuat.ac.jp

(Received 10 February 2010; accepted 15 February 2010; online 20 February 2010)

Ipidacrine (2,3,5,6,7,8-hexa­hydro-1H-cyclo­penta­[b]quinolin-9-amine) was reacted with 4-methoxy­phenyl isocyanate to give the title compound, C28H30N4O4. An intra­molecular N—H⋯O hydrogen bond results in an essentially planar [r.m.s. deviation from the mean plane is 0.126 (1) Å] conformation for the biuret unit. The central ring of the quinoline unit is twisted by 78.2 (1)° with respect to the biuret mean plane, whereas the two 4-methoxy­benzene rings are twisted out of this plane by 24.3 (1)° and 48.5 (1)°, resulting in an overall propeller-like structure. An inter­molecular N—H⋯N hydrogen bond between the biuret NH atom and the quinoline ring nitro­gen defines the crystal packing.

Related literature

For related structures, see: Roh & Jeong (2000[Roh, S.-G. & Jeong, J. H. (2000). Acta Cryst. C56, e529-e530.]); Harrison (2007[Harrison, W. T. A. (2007). Acta Cryst. E63, o3883.]).

[Scheme 1]

Experimental

Crystal data
  • C28H30N4O4

  • Mr = 486.56

  • Monoclinic, C c

  • a = 22.4514 (4) Å

  • b = 12.7128 (2) Å

  • c = 8.83183 (16) Å

  • β = 105.526 (1)°

  • V = 2428.80 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 193 K

  • 0.45 × 0.25 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1999[Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.754, Tmax = 0.929

  • 19342 measured reflections

  • 2235 independent reflections

  • 2168 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.09

  • 2235 reflections

  • 328 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.88 1.97 2.623 (3) 130
N4—H4⋯N3i 0.88 2.26 2.961 (2) 137
Symmetry code: (i) [x, -y, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (I) (Fig. 1) was obtained as a side product in the synthesis of ipidacrine urea derivatives.

In the biuret moiety of (I), there are two types of C—N bonds, both of which display a partial double bond character. Their bond lengths are between 1.47 Å (for typical C—N bonds) and 1.28 Å (for CN bonds) (Allen et al. 1987). The terminal C1—N2 and C21—N4 bonds are shorter (1.340 (3) and 1.343 (3) Å) than the internal C1—N1 and C21–N1 bonds (1.429 (2) and 1.415 (3) Å). O3 is involved in the hydrogen bonding with H2, forming a six-membered ring, which is consistent with solid state structures of other biuret compounds (Harrison, 2007; Roh and Jeong, 2000). However, the biuret moiety of (I) is not completely planar as the dihedral angle for O3–C21–N1–C1 is 8.8 (3)°.

Due to the partial double bond character of the terminal biuret C—N bonds, A1,3 strain is incurred between the buiret carbonyl groups and the bulky p-methoxyphenyl rings. These interactions cause the p-methoxyphenyl rings to twist out of plane with respect to the biuret moiety by approximately 24.3 (1)° and 48.5 (1)°. The bulkier quinoline moiety is substituted at N1, which forms a partial double bond with both C1 and C2. It develops A1,3 strain with two groups, one with p-methoxyphenylamino group, the other with one of the biuret carbonyl group. As a consequence, it is twisted close to perpendicular (78.2 (1)°) to the buiret plane. The steric congestion among the three aromatic substituents around the biuret moiety drives (I) to adopt an overall propeller-like structure.

In the present crystal structure for the title compound (I), these two p-methoxyphenyl rings are not geometrically equivalent. However, the 1H NMR spectrum of (I) shows only one set of peaks for the protons of a p-methoxyphenyl group. This observation suggests that the hydrogen bonds for O1···H4 and O3···H2 are in fast exchange in solution and that the rotational barrier around the internal C—N bond of the biuret group is not significant under ambient condition. Since the biuret moiety deviates slightly from a planar conformation, there is helicity along the biuret backbone (N2—C1—N2—C21—N4). The interconversion of the two hydrogen bonding pairs (between O1···H4 and O3···H2) represents the interconversion of two corresponding helical conformations of (I), making the molecule dynamically racemic in solution.

Related literature top

For related structures, see: Roh & Jeong (2000); Harrison (2007).

Experimental top

The title compound was prepared by reacting ipidacrine (20.0 mg, 0.11 mmol) and 4-methoxyphenyl isocyanate (23.9 mg, 0.16 mmol) in dichloromethane (0.5 ml) at room temperature for 18 h. The resultant reaction mixture was concentrated in vacuo and was purified by flash chromatography (2 % MeOH/CH2Cl2) to afford the title compound I (18.1 mg; 33.8 % yield). Crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution of (I) in MeCN. 1H NMR (CDCl3) δ 7.28 (d, J = 8.96 Hz, 4H), δ (d, J = 8.96 Hz, 4H), δ 3.82 (s, 1H), δ 3.10 (dd, J = 7.54 Hz, 2H), δ 2.94-3.00 (m, 4H), δ 2.71 (m, 2H), δ 2.18 (m, 2H), δ 1.87 (m, 4H). ESI-MS calcd for C28H31N4O4 (M+H+) 487.23, found 487.22.

Refinement top

The value of the absolute structure parameter is meaningless because of its large s.u. value (Flack's x = -0.01 (14)). Therefore, the merging of Friedel pair data was performed before the final refinement cycles. The methylene, methyl and phenyl H atoms were positioned using the HFIX 23, HFIX 137 and HFIX 43 instructions, with C—H = 0.99, 0.98 and 0.95 Å, respectively. In addition, the amide H atoms were positioned using the HFIX 43 instructions, with N—H = 0.88 Å. These C- and N-bound H atoms were also refined as a riding model, with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). The ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres with arbitrary radii. The hydrogen bond is indicated by a dashed line.
3-(2,3,5,6,7,8-Hexahydro- 1H-cyclopenta[b]quinolin-9-yl)-1,5-bis(4-methoxyphenyl)biuret top
Crystal data top
C28H30N4O4F(000) = 1032
Mr = 486.56Dx = 1.331 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.54187 Å
Hall symbol: C -2ycCell parameters from 18332 reflections
a = 22.4514 (4) Åθ = 4.0–68.2°
b = 12.7128 (2) ŵ = 0.73 mm1
c = 8.83183 (16) ÅT = 193 K
β = 105.526 (1)°Block, colorless
V = 2428.80 (8) Å30.45 × 0.25 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2235 independent reflections
Radiation source: rotating anode2168 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 4.0°
ω scansh = 2626
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
k = 1515
Tmin = 0.754, Tmax = 0.929l = 1010
19342 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.5591P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2235 reflectionsΔρmax = 0.17 e Å3
328 parametersΔρmin = 0.15 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00173 (14)
Crystal data top
C28H30N4O4V = 2428.80 (8) Å3
Mr = 486.56Z = 4
Monoclinic, CcCu Kα radiation
a = 22.4514 (4) ŵ = 0.73 mm1
b = 12.7128 (2) ÅT = 193 K
c = 8.83183 (16) Å0.45 × 0.25 × 0.10 mm
β = 105.526 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2235 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
2168 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.929Rint = 0.022
19342 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0282 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.09Δρmax = 0.17 e Å3
2235 reflectionsΔρmin = 0.15 e Å3
328 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06234 (8)0.24673 (12)1.0794 (2)0.0445 (4)
O20.10168 (7)0.65103 (12)1.1352 (2)0.0444 (4)
O30.17237 (8)0.40771 (11)0.8629 (2)0.0430 (4)
O40.38341 (7)0.39432 (13)0.50693 (18)0.0416 (4)
N10.13344 (8)0.25410 (12)0.9380 (2)0.0306 (4)
N20.06980 (9)0.39868 (14)0.9509 (2)0.0395 (4)
H20.08800.42760.88450.047*
N30.18591 (8)0.05082 (13)1.12185 (19)0.0305 (4)
N40.20716 (8)0.25153 (13)0.7982 (2)0.0329 (4)
H40.20300.18270.79980.039*
C10.08617 (9)0.30000 (16)0.9974 (2)0.0321 (4)
C20.15121 (9)0.14855 (15)0.9958 (2)0.0284 (4)
C30.11494 (9)0.06101 (15)0.9357 (2)0.0281 (4)
C40.13470 (9)0.03777 (15)1.0012 (2)0.0292 (4)
C50.21934 (10)0.03451 (15)1.1761 (2)0.0309 (4)
C60.20443 (9)0.13524 (16)1.1171 (2)0.0305 (4)
C70.27760 (11)0.03514 (17)1.3082 (3)0.0383 (5)
H7A0.31310.00831.27310.046*
H7B0.27290.00771.39790.046*
C80.28579 (11)0.15237 (18)1.3523 (3)0.0426 (5)
H8A0.33020.17151.38350.051*
H8B0.26790.16831.44080.051*
C90.25137 (11)0.21355 (17)1.2040 (3)0.0393 (5)
H9A0.23110.27721.23160.047*
H9B0.27980.23451.14100.047*
C100.05380 (10)0.07332 (17)0.8131 (2)0.0340 (5)
H10A0.05910.12350.73200.041*
H10B0.02340.10400.86350.041*
C110.02802 (11)0.02892 (18)0.7335 (3)0.0367 (5)
H11A0.05140.04940.65770.044*
H11B0.01570.01860.67430.044*
C120.03227 (10)0.11677 (17)0.8540 (3)0.0353 (5)
H12A0.00930.09640.93070.042*
H12B0.01350.18190.80040.042*
C130.09972 (10)0.13645 (16)0.9390 (3)0.0343 (5)
H13A0.10180.18521.02770.041*
H13B0.12010.17120.86580.041*
C140.02570 (10)0.46052 (17)0.9997 (3)0.0348 (5)
C150.03188 (11)0.56866 (18)0.9956 (3)0.0429 (5)
H150.06510.59810.96190.051*
C160.00968 (11)0.63476 (18)1.0399 (3)0.0432 (5)
H160.00480.70891.03700.052*
C170.05833 (10)0.59240 (17)1.0885 (3)0.0359 (5)
C180.06523 (10)0.48428 (18)1.0894 (3)0.0414 (5)
H180.09900.45491.12080.050*
C190.02389 (11)0.41839 (19)1.0454 (3)0.0429 (5)
H190.02930.34431.04640.051*
C200.08528 (13)0.7562 (2)1.1797 (4)0.0531 (6)
H20A0.11590.78671.22770.064*
H20B0.08400.79721.08660.064*
H20C0.04450.75751.25560.064*
C210.17192 (10)0.31169 (16)0.8647 (3)0.0324 (4)
C220.25105 (9)0.29474 (15)0.7251 (2)0.0308 (4)
C230.31085 (10)0.25400 (15)0.7664 (2)0.0326 (4)
H230.32200.20160.84560.039*
C240.35403 (10)0.28971 (17)0.6923 (2)0.0340 (4)
H240.39480.26190.72070.041*
C250.33780 (10)0.36646 (16)0.5759 (2)0.0326 (4)
C260.27881 (10)0.40864 (16)0.5364 (2)0.0347 (5)
H260.26790.46220.45890.042*
C270.23551 (10)0.37212 (17)0.6111 (3)0.0343 (4)
H270.19490.40060.58360.041*
C280.36885 (12)0.4734 (2)0.3897 (3)0.0483 (6)
H28A0.40500.48720.35060.058*
H28B0.35700.53800.43460.058*
H28C0.33440.44960.30270.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0526 (10)0.0364 (8)0.0552 (10)0.0085 (7)0.0329 (8)0.0106 (7)
O20.0345 (8)0.0379 (8)0.0634 (10)0.0020 (6)0.0175 (7)0.0103 (7)
O30.0495 (9)0.0270 (7)0.0621 (10)0.0047 (7)0.0315 (8)0.0014 (7)
O40.0372 (8)0.0457 (9)0.0458 (9)0.0037 (7)0.0177 (7)0.0070 (7)
N10.0318 (8)0.0258 (8)0.0365 (9)0.0002 (7)0.0133 (7)0.0008 (7)
N20.0456 (10)0.0323 (9)0.0489 (11)0.0058 (8)0.0267 (9)0.0082 (8)
N30.0330 (9)0.0274 (8)0.0326 (9)0.0005 (7)0.0115 (7)0.0006 (7)
N40.0376 (10)0.0258 (8)0.0387 (9)0.0028 (7)0.0161 (8)0.0007 (7)
C10.0343 (11)0.0299 (10)0.0341 (10)0.0005 (8)0.0126 (9)0.0007 (8)
C20.0308 (10)0.0264 (9)0.0313 (10)0.0009 (8)0.0142 (8)0.0012 (7)
C30.0287 (10)0.0298 (9)0.0277 (9)0.0012 (8)0.0111 (8)0.0005 (8)
C40.0287 (10)0.0320 (10)0.0290 (10)0.0012 (8)0.0116 (8)0.0024 (8)
C50.0299 (10)0.0329 (10)0.0321 (10)0.0016 (8)0.0122 (8)0.0004 (8)
C60.0313 (10)0.0300 (10)0.0324 (10)0.0028 (8)0.0124 (8)0.0030 (8)
C70.0365 (11)0.0382 (11)0.0380 (11)0.0001 (9)0.0059 (10)0.0001 (9)
C80.0379 (12)0.0426 (12)0.0432 (13)0.0052 (10)0.0040 (10)0.0052 (10)
C90.0388 (12)0.0338 (11)0.0428 (12)0.0059 (9)0.0066 (10)0.0025 (9)
C100.0321 (11)0.0364 (11)0.0329 (10)0.0004 (9)0.0075 (9)0.0035 (9)
C110.0360 (11)0.0426 (12)0.0316 (11)0.0064 (9)0.0092 (9)0.0026 (9)
C120.0366 (11)0.0365 (11)0.0341 (11)0.0075 (9)0.0114 (9)0.0054 (9)
C130.0397 (12)0.0285 (10)0.0358 (11)0.0022 (9)0.0118 (9)0.0029 (8)
C140.0353 (11)0.0341 (11)0.0366 (11)0.0053 (9)0.0126 (9)0.0033 (9)
C150.0441 (13)0.0343 (12)0.0579 (14)0.0029 (10)0.0268 (11)0.0065 (10)
C160.0444 (13)0.0303 (11)0.0587 (15)0.0021 (10)0.0205 (11)0.0021 (10)
C170.0319 (11)0.0376 (11)0.0374 (11)0.0054 (9)0.0080 (9)0.0022 (9)
C180.0352 (12)0.0392 (12)0.0543 (13)0.0015 (9)0.0200 (10)0.0020 (10)
C190.0428 (13)0.0322 (11)0.0574 (15)0.0007 (9)0.0198 (11)0.0009 (10)
C200.0440 (13)0.0434 (13)0.0753 (18)0.0013 (11)0.0218 (13)0.0171 (12)
C210.0328 (10)0.0308 (10)0.0352 (10)0.0028 (8)0.0120 (8)0.0007 (8)
C220.0337 (10)0.0285 (10)0.0326 (10)0.0036 (8)0.0131 (8)0.0034 (8)
C230.0383 (12)0.0284 (10)0.0313 (10)0.0006 (8)0.0097 (9)0.0027 (8)
C240.0293 (10)0.0362 (11)0.0358 (10)0.0022 (9)0.0076 (8)0.0006 (9)
C250.0331 (10)0.0331 (10)0.0323 (10)0.0073 (8)0.0103 (8)0.0038 (8)
C260.0397 (12)0.0312 (10)0.0338 (11)0.0001 (9)0.0113 (9)0.0045 (8)
C270.0311 (10)0.0333 (10)0.0386 (11)0.0008 (8)0.0095 (9)0.0011 (9)
C280.0562 (15)0.0430 (13)0.0532 (14)0.0043 (11)0.0275 (12)0.0090 (11)
Geometric parameters (Å, º) top
O1—C11.215 (3)C10—H10B0.9900
O2—C171.374 (3)C11—C121.528 (3)
O2—C201.414 (3)C11—H11A0.9900
O3—C211.221 (3)C11—H11B0.9900
O4—C251.371 (3)C12—C131.520 (3)
O4—C281.417 (3)C12—H12A0.9900
N1—C211.415 (3)C12—H12B0.9900
N1—C11.429 (2)C13—H13A0.9900
N1—C21.453 (2)C13—H13B0.9900
N2—C11.340 (3)C14—C151.383 (3)
N2—C141.418 (3)C14—C191.389 (3)
N2—H20.8800C15—C161.388 (3)
N3—C51.333 (3)C15—H150.9500
N3—C41.352 (3)C16—C171.385 (3)
N4—C211.343 (3)C16—H160.9500
N4—C221.425 (3)C17—C181.383 (3)
N4—H40.8800C18—C191.381 (3)
C2—C61.385 (3)C18—H180.9500
C2—C31.397 (3)C19—H190.9500
C3—C41.404 (3)C20—H20A0.9800
C3—C101.512 (3)C20—H20B0.9800
C4—C131.504 (3)C20—H20C0.9800
C5—C61.390 (3)C22—C271.383 (3)
C5—C71.502 (3)C22—C231.393 (3)
C6—C91.503 (3)C23—C241.383 (3)
C7—C81.539 (3)C23—H230.9500
C7—H7A0.9900C24—C251.393 (3)
C7—H7B0.9900C24—H240.9500
C8—C91.542 (3)C25—C261.384 (3)
C8—H8A0.9900C26—C271.393 (3)
C8—H8B0.9900C26—H260.9500
C9—H9A0.9900C27—H270.9500
C9—H9B0.9900C28—H28A0.9800
C10—C111.517 (3)C28—H28B0.9800
C10—H10A0.9900C28—H28C0.9800
C17—O2—C20116.32 (17)C11—C12—H12A109.8
C25—O4—C28117.02 (17)C13—C12—H12B109.8
C21—N1—C1124.17 (16)C11—C12—H12B109.8
C21—N1—C2119.67 (16)H12A—C12—H12B108.2
C1—N1—C2114.15 (16)C4—C13—C12113.39 (17)
C1—N2—C14125.59 (18)C4—C13—H13A108.9
C1—N2—H2117.2C12—C13—H13A108.9
C14—N2—H2117.2C4—C13—H13B108.9
C5—N3—C4117.49 (17)C12—C13—H13B108.9
C21—N4—C22122.56 (16)H13A—C13—H13B107.7
C21—N4—H4118.7C15—C14—C19119.0 (2)
C22—N4—H4118.7C15—C14—N2117.37 (19)
O1—C1—N2125.17 (19)C19—C14—N2123.6 (2)
O1—C1—N1118.70 (18)C14—C15—C16121.0 (2)
N2—C1—N1116.06 (17)C14—C15—H15119.5
C6—C2—C3119.41 (18)C16—C15—H15119.5
C6—C2—N1118.90 (17)C17—C16—C15119.8 (2)
C3—C2—N1121.66 (18)C17—C16—H16120.1
C2—C3—C4117.90 (18)C15—C16—H16120.1
C2—C3—C10120.99 (18)O2—C17—C18116.60 (19)
C4—C3—C10120.93 (17)O2—C17—C16124.26 (19)
N3—C4—C3122.87 (17)C18—C17—C16119.1 (2)
N3—C4—C13115.87 (17)C19—C18—C17121.1 (2)
C3—C4—C13121.26 (18)C19—C18—H18119.5
N3—C5—C6123.98 (19)C17—C18—H18119.5
N3—C5—C7124.98 (18)C18—C19—C14119.9 (2)
C6—C5—C7111.04 (18)C18—C19—H19120.0
C2—C6—C5118.31 (18)C14—C19—H19120.0
C2—C6—C9131.00 (19)O2—C20—H20A109.5
C5—C6—C9110.68 (19)O2—C20—H20B109.5
C5—C7—C8102.83 (18)H20A—C20—H20B109.5
C5—C7—H7A111.2O2—C20—H20C109.5
C8—C7—H7A111.2H20A—C20—H20C109.5
C5—C7—H7B111.2H20B—C20—H20C109.5
C8—C7—H7B111.2O3—C21—N4123.77 (19)
H7A—C7—H7B109.1O3—C21—N1122.10 (18)
C7—C8—C9105.95 (18)N4—C21—N1114.13 (17)
C7—C8—H8A110.5C27—C22—C23119.49 (19)
C9—C8—H8A110.5C27—C22—N4122.23 (19)
C7—C8—H8B110.5C23—C22—N4118.22 (18)
C9—C8—H8B110.5C24—C23—C22120.15 (19)
H8A—C8—H8B108.7C24—C23—H23119.9
C6—C9—C8102.91 (17)C22—C23—H23119.9
C6—C9—H9A111.2C23—C24—C25120.05 (19)
C8—C9—H9A111.2C23—C24—H24120.0
C6—C9—H9B111.2C25—C24—H24120.0
C8—C9—H9B111.2O4—C25—C26124.47 (19)
H9A—C9—H9B109.1O4—C25—C24115.45 (18)
C3—C10—C11113.83 (18)C26—C25—C24120.08 (19)
C3—C10—H10A108.8C25—C26—C27119.57 (19)
C11—C10—H10A108.8C25—C26—H26120.2
C3—C10—H10B108.8C27—C26—H26120.2
C11—C10—H10B108.8C22—C27—C26120.6 (2)
H10A—C10—H10B107.7C22—C27—H27119.7
C10—C11—C12110.99 (18)C26—C27—H27119.7
C10—C11—H11A109.4O4—C28—H28A109.5
C12—C11—H11A109.4O4—C28—H28B109.5
C10—C11—H11B109.4H28A—C28—H28B109.5
C12—C11—H11B109.4O4—C28—H28C109.5
H11A—C11—H11B108.0H28A—C28—H28C109.5
C13—C12—C11109.42 (18)H28B—C28—H28C109.5
C13—C12—H12A109.8
C14—N2—C1—O15.5 (4)C10—C11—C12—C1362.0 (2)
C14—N2—C1—N1177.6 (2)N3—C4—C13—C12157.07 (17)
C21—N1—C1—O1168.7 (2)C3—C4—C13—C1223.4 (3)
C2—N1—C1—O15.0 (3)C11—C12—C13—C449.9 (2)
C21—N1—C1—N214.2 (3)C1—N2—C14—C15154.1 (2)
C2—N1—C1—N2177.95 (18)C1—N2—C14—C1928.2 (4)
C21—N1—C2—C664.4 (2)C19—C14—C15—C161.6 (4)
C1—N1—C2—C6100.1 (2)N2—C14—C15—C16179.4 (2)
C21—N1—C2—C3117.7 (2)C14—C15—C16—C170.3 (4)
C1—N1—C2—C377.8 (2)C20—O2—C17—C18161.6 (2)
C6—C2—C3—C40.4 (3)C20—O2—C17—C1619.2 (3)
N1—C2—C3—C4178.32 (17)C15—C16—C17—O2179.7 (2)
C6—C2—C3—C10174.75 (17)C15—C16—C17—C181.0 (3)
N1—C2—C3—C103.1 (3)O2—C17—C18—C19179.6 (2)
C5—N3—C4—C31.9 (3)C16—C17—C18—C191.1 (4)
C5—N3—C4—C13177.58 (18)C17—C18—C19—C140.2 (4)
C2—C3—C4—N31.9 (3)C15—C14—C19—C181.5 (4)
C10—C3—C4—N3173.28 (17)N2—C14—C19—C18179.2 (2)
C2—C3—C4—C13177.55 (18)C22—N4—C21—O33.1 (3)
C10—C3—C4—C137.3 (3)C22—N4—C21—N1176.96 (18)
C4—N3—C5—C60.5 (3)C1—N1—C21—O38.8 (3)
C4—N3—C5—C7179.63 (19)C2—N1—C21—O3154.1 (2)
C3—C2—C6—C50.9 (3)C1—N1—C21—N4171.12 (18)
N1—C2—C6—C5177.05 (16)C2—N1—C21—N426.0 (3)
C3—C2—C6—C9179.65 (19)C21—N4—C22—C2752.2 (3)
N1—C2—C6—C91.7 (3)C21—N4—C22—C23130.4 (2)
N3—C5—C6—C20.9 (3)C27—C22—C23—C240.9 (3)
C7—C5—C6—C2179.00 (18)N4—C22—C23—C24176.55 (18)
N3—C5—C6—C9179.93 (19)C22—C23—C24—C250.1 (3)
C7—C5—C6—C90.0 (2)C28—O4—C25—C261.4 (3)
N3—C5—C7—C8164.38 (19)C28—O4—C25—C24179.1 (2)
C6—C5—C7—C815.5 (2)C23—C24—C25—O4178.30 (18)
C5—C7—C8—C924.5 (2)C23—C24—C25—C261.3 (3)
C2—C6—C9—C8163.3 (2)O4—C25—C26—C27178.06 (19)
C5—C6—C9—C815.5 (2)C24—C25—C26—C271.5 (3)
C7—C8—C9—C624.6 (2)C23—C22—C27—C260.7 (3)
C2—C3—C10—C11166.33 (18)N4—C22—C27—C26176.64 (18)
C4—C3—C10—C1118.6 (3)C25—C26—C27—C220.5 (3)
C3—C10—C11—C1245.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.881.972.623 (3)130
N4—H4···N3i0.882.262.961 (2)137
Symmetry code: (i) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC28H30N4O4
Mr486.56
Crystal system, space groupMonoclinic, Cc
Temperature (K)193
a, b, c (Å)22.4514 (4), 12.7128 (2), 8.83183 (16)
β (°) 105.526 (1)
V3)2428.80 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.73
Crystal size (mm)0.45 × 0.25 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1999)
Tmin, Tmax0.754, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
19342, 2235, 2168
Rint0.022
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.09
No. of reflections2235
No. of parameters328
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.881.972.623 (3)130
N4—H4···N3i0.882.262.961 (2)137
Symmetry code: (i) x, y, z1/2.
 

Acknowledgements

This work was funded by the Japan Science and Technology Agency (JST). Ipidacrine was generously provided by Professor Kazuo Nagasawa.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A. (2007). Acta Cryst. E63, o3883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRoh, S.-G. & Jeong, J. H. (2000). Acta Cryst. C56, e529–e530.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds