organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Fluoro­phenyl­sulfin­yl)-2,4,6-tri­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 29 January 2010; accepted 7 February 2010; online 13 February 2010)

In the title compound, C17H15FO2S, the O atom and the 4-fluoro­phenyl group of the 4-fluoro­phenyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran; the 4-fluoro­phenyl ring is almost perpendicular to this plane, making a dihedral angle of 88.99 (4)°. The crystal structure exhibits inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions between the methyl H atom and the 4-fluoro­phenyl ring.

Related literature

For the crystal structures of similar 2-methyl-3-phenyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2007[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4042.], 2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1395.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1476.]). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15FO2S

  • Mr = 302.35

  • Orthorhombic, P n a 21

  • a = 11.9486 (4) Å

  • b = 18.8134 (9) Å

  • c = 6.4435 (3) Å

  • V = 1448.46 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.36 × 0.34 × 0.23 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.920, Tmax = 0.947

  • 6188 measured reflections

  • 2147 independent reflections

  • 2094 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.076

  • S = 1.05

  • 2147 reflections

  • 193 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 745 Friedel pairs

  • Flack parameter: 0.01 (8)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O2i 0.98 2.60 3.301 (3) 129
C10—H10CCgii 0.98 2.78 3.604 (3) 142
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) x, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules containing benzofuran skeleton show significant pharmacological activities such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), antimicrobial (Khan et al., 2005) properties. These compounds are widely occurring in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 2-methyl-3-phenylsulfinyl-1-benzofuran analogues (Choi et al., 2007, 2008a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.013 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is almost perpendicular to the plane of the benzofuran fragment [88.99 (4)°] and is tilted slightly towards it. The crystal packing (Fig. 2) is stabilized by an intermolecular C—H···O hydrogen bond between the methyl H atom and the oxygen of the SO unit, with a C10—H10A···O2i (Table 1). The molecular packing (Fig. 2) is further stabilized by an intermolecular C—H···π interaction between the methyl H atom and the 4–fluorophenyl ring, with a C10—H10C···Cgii (Table 1; Cg is the centroid of the C11–C16 4-fluorophenyl ring).

Related literature top

For the crystal structures of similar 2-methyl-3-phenylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2007, 2008a,b). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003).

Experimental top

77% 3-Chloroperoxybenzoic acid (224 mg, 1.0 mmol) was added in small portions to a stirred solution of 3-(4-fluorophenylsulfanyl)-2,4,6-trimethyl-1-benzofuran (257 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 82%, m.p. 410–411 K; Rf = 0.69 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in diisopropyl ether at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq (C) for aryl and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C—H···O and C—H···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroid. [Symmetry codes: i) x - 1/2, - y + 1/2,z; ii) x, y, z + 1; iii) x + 1/2, - y + 1/2, z; iv) x, y, z - 1.]
3-(4-Fluorophenylsulfinyl)-2,4,6-trimethyl-1-benzofuran top
Crystal data top
C17H15FO2SF(000) = 632
Mr = 302.35Dx = 1.386 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5305 reflections
a = 11.9486 (4) Åθ = 2.8–31.0°
b = 18.8134 (9) ŵ = 0.24 mm1
c = 6.4435 (3) ÅT = 173 K
V = 1448.46 (11) Å3Block, colourless
Z = 40.36 × 0.34 × 0.23 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2147 independent reflections
Radiation source: Rotating Anode2094 reflections with I > 2σ(I)
Bruker HELIOS graded multilayer optics monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 2.0°
ϕ and ω scansh = 1314
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 229
Tmin = 0.920, Tmax = 0.947l = 57
6188 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.2112P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2147 reflectionsΔρmax = 0.19 e Å3
193 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Flack (1983), 745 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (8)
Crystal data top
C17H15FO2SV = 1448.46 (11) Å3
Mr = 302.35Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 11.9486 (4) ŵ = 0.24 mm1
b = 18.8134 (9) ÅT = 173 K
c = 6.4435 (3) Å0.36 × 0.34 × 0.23 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2147 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2094 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.947Rint = 0.027
6188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.19 e Å3
S = 1.05Δρmin = 0.32 e Å3
2147 reflectionsAbsolute structure: Flack (1983), 745 Friedel pairs
193 parametersAbsolute structure parameter: 0.01 (8)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.58051 (3)0.24745 (2)0.81941 (12)0.02603 (14)
F0.48280 (12)0.04865 (7)0.1409 (3)0.0569 (4)
O10.31672 (10)0.36585 (6)0.9109 (2)0.0272 (3)
O20.69067 (10)0.28105 (7)0.7715 (3)0.0352 (4)
C10.47298 (13)0.31127 (8)0.8012 (4)0.0235 (4)
C20.44816 (14)0.36764 (9)0.6520 (3)0.0232 (4)
C30.49438 (14)0.39469 (9)0.4673 (4)0.0264 (4)
C40.43695 (16)0.45042 (9)0.3733 (3)0.0307 (5)
H40.46640.46970.24850.037*
C50.33771 (15)0.47965 (10)0.4533 (4)0.0321 (5)
C60.35091 (14)0.39864 (9)0.7305 (3)0.0247 (4)
C180.29371 (15)0.45395 (9)0.6362 (4)0.0299 (4)
H180.22740.47320.69480.036*
C70.39288 (14)0.31267 (9)0.9495 (3)0.0250 (4)
C80.59776 (16)0.36461 (11)0.3682 (3)0.0328 (5)
H8A0.57840.32130.29190.049*
H8B0.65290.35330.47590.049*
H8C0.62940.39960.27210.049*
C90.27873 (19)0.53802 (10)0.3354 (5)0.0480 (6)
H9A0.20070.54110.38160.072*
H9B0.28080.52750.18650.072*
H9C0.31640.58340.36160.072*
C100.36932 (15)0.26859 (10)1.1344 (4)0.0315 (4)
H10A0.29850.24321.11460.047*
H10B0.36380.29921.25710.047*
H10C0.43000.23421.15400.047*
C110.54562 (14)0.19223 (9)0.6020 (3)0.0247 (4)
C120.44150 (15)0.15884 (10)0.5924 (4)0.0316 (5)
H120.38540.16940.69210.038*
C130.42097 (15)0.11030 (11)0.4364 (4)0.0367 (5)
H130.35060.08700.42710.044*
C140.50423 (17)0.09628 (9)0.2943 (4)0.0367 (5)
C150.60681 (16)0.12901 (10)0.2988 (4)0.0340 (5)
H150.66180.11910.19630.041*
C160.62779 (14)0.17706 (10)0.4580 (4)0.0299 (4)
H160.69880.19950.46780.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0224 (2)0.0280 (2)0.0277 (3)0.00348 (15)0.0020 (2)0.00368 (19)
F0.0605 (8)0.0523 (7)0.0578 (11)0.0008 (6)0.0001 (8)0.0262 (8)
O10.0251 (6)0.0272 (6)0.0294 (9)0.0035 (4)0.0020 (6)0.0003 (6)
O20.0207 (6)0.0380 (7)0.0469 (12)0.0016 (5)0.0048 (6)0.0005 (7)
C10.0213 (7)0.0236 (8)0.0256 (11)0.0000 (5)0.0015 (8)0.0000 (8)
C20.0232 (7)0.0227 (8)0.0237 (10)0.0013 (6)0.0046 (8)0.0008 (8)
C30.0277 (8)0.0250 (9)0.0264 (11)0.0062 (7)0.0046 (8)0.0008 (8)
C40.0345 (9)0.0278 (9)0.0297 (13)0.0086 (7)0.0045 (9)0.0064 (8)
C50.0313 (9)0.0240 (9)0.0411 (15)0.0026 (7)0.0115 (9)0.0061 (9)
C60.0249 (8)0.0232 (8)0.0259 (11)0.0031 (6)0.0025 (8)0.0007 (7)
C180.0261 (8)0.0224 (8)0.0412 (13)0.0013 (7)0.0048 (9)0.0016 (9)
C70.0236 (7)0.0250 (8)0.0263 (11)0.0003 (6)0.0036 (8)0.0018 (8)
C80.0325 (9)0.0369 (10)0.0290 (14)0.0046 (7)0.0037 (9)0.0051 (9)
C90.0476 (12)0.0365 (11)0.0599 (19)0.0043 (8)0.0101 (13)0.0178 (12)
C100.0288 (9)0.0373 (9)0.0282 (12)0.0003 (8)0.0027 (9)0.0049 (10)
C110.0231 (8)0.0227 (8)0.0284 (12)0.0047 (7)0.0007 (8)0.0058 (8)
C120.0261 (9)0.0290 (9)0.0398 (14)0.0007 (7)0.0076 (9)0.0029 (9)
C130.0320 (10)0.0331 (10)0.0449 (16)0.0055 (7)0.0023 (10)0.0033 (10)
C140.0407 (10)0.0287 (9)0.0408 (15)0.0047 (7)0.0001 (10)0.0041 (10)
C150.0337 (9)0.0356 (10)0.0328 (13)0.0087 (7)0.0069 (11)0.0006 (10)
C160.0227 (8)0.0311 (9)0.0360 (13)0.0038 (7)0.0035 (9)0.0048 (9)
Geometric parameters (Å, º) top
S—O21.4925 (13)C8—H8A0.9800
S—C11.7625 (16)C8—H8B0.9800
S—C111.793 (2)C8—H8C0.9800
F—C141.358 (3)C9—H9A0.9800
O1—C71.375 (2)C9—H9B0.9800
O1—C61.378 (2)C9—H9C0.9800
C1—C71.353 (3)C10—H10A0.9800
C1—C21.462 (3)C10—H10B0.9800
C2—C61.395 (3)C10—H10C0.9800
C2—C31.407 (3)C11—C161.380 (3)
C3—C41.392 (3)C11—C121.395 (2)
C3—C81.501 (3)C12—C131.380 (3)
C4—C51.405 (3)C12—H120.9500
C4—H40.9500C13—C141.377 (3)
C5—C181.378 (3)C13—H130.9500
C5—C91.510 (3)C14—C151.372 (3)
C6—C181.385 (3)C15—C161.390 (3)
C18—H180.9500C15—H150.9500
C7—C101.478 (3)C16—H160.9500
O2—S—C1109.91 (8)H8A—C8—H8C109.5
O2—S—C11106.78 (9)H8B—C8—H8C109.5
C1—S—C1199.97 (9)C5—C9—H9A109.5
C7—O1—C6106.39 (14)C5—C9—H9B109.5
C7—C1—C2107.87 (15)H9A—C9—H9B109.5
C7—C1—S118.82 (15)C5—C9—H9C109.5
C2—C1—S133.31 (15)H9A—C9—H9C109.5
C6—C2—C3118.82 (16)H9B—C9—H9C109.5
C6—C2—C1103.55 (17)C7—C10—H10A109.5
C3—C2—C1137.63 (17)C7—C10—H10B109.5
C4—C3—C2116.55 (18)H10A—C10—H10B109.5
C4—C3—C8120.3 (2)C7—C10—H10C109.5
C2—C3—C8123.12 (17)H10A—C10—H10C109.5
C3—C4—C5123.5 (2)H10B—C10—H10C109.5
C3—C4—H4118.3C16—C11—C12120.76 (19)
C5—C4—H4118.3C16—C11—S118.65 (14)
C18—C5—C4119.89 (18)C12—C11—S120.18 (16)
C18—C5—C9120.50 (19)C13—C12—C11119.26 (19)
C4—C5—C9119.6 (2)C13—C12—H12120.4
O1—C6—C18124.05 (17)C11—C12—H12120.4
O1—C6—C2111.43 (15)C14—C13—C12118.84 (17)
C18—C6—C2124.49 (19)C14—C13—H13120.6
C5—C18—C6116.76 (17)C12—C13—H13120.6
C5—C18—H18121.6F—C14—C15118.7 (2)
C6—C18—H18121.6F—C14—C13118.28 (18)
C1—C7—O1110.76 (17)C15—C14—C13123.0 (2)
C1—C7—C10133.87 (17)C14—C15—C16118.0 (2)
O1—C7—C10115.33 (16)C14—C15—H15121.0
C3—C8—H8A109.5C16—C15—H15121.0
C3—C8—H8B109.5C11—C16—C15120.13 (17)
H8A—C8—H8B109.5C11—C16—H16119.9
C3—C8—H8C109.5C15—C16—H16119.9
O2—S—C1—C7136.51 (15)C9—C5—C18—C6177.70 (19)
C11—S—C1—C7111.44 (17)O1—C6—C18—C5178.39 (17)
O2—S—C1—C243.3 (2)C2—C6—C18—C50.5 (3)
C11—S—C1—C268.77 (19)C2—C1—C7—O10.2 (2)
C7—C1—C2—C60.1 (2)S—C1—C7—O1179.66 (12)
S—C1—C2—C6179.73 (15)C2—C1—C7—C10177.4 (2)
C7—C1—C2—C3179.6 (2)S—C1—C7—C102.8 (3)
S—C1—C2—C30.6 (4)C6—O1—C7—C10.2 (2)
C6—C2—C3—C41.3 (3)C6—O1—C7—C10177.86 (16)
C1—C2—C3—C4178.3 (2)O2—S—C11—C1613.49 (17)
C6—C2—C3—C8179.13 (17)C1—S—C11—C16127.95 (15)
C1—C2—C3—C80.5 (4)O2—S—C11—C12173.86 (14)
C2—C3—C4—C50.1 (3)C1—S—C11—C1259.40 (17)
C8—C3—C4—C5177.82 (18)C16—C11—C12—C130.2 (3)
C3—C4—C5—C181.2 (3)S—C11—C12—C13172.66 (16)
C3—C4—C5—C9177.43 (19)C11—C12—C13—C140.0 (3)
C7—O1—C6—C18178.01 (18)C12—C13—C14—F179.69 (19)
C7—O1—C6—C20.16 (19)C12—C13—C14—C150.8 (4)
C3—C2—C6—O1179.81 (15)F—C14—C15—C16179.36 (19)
C1—C2—C6—O10.05 (19)C13—C14—C15—C161.7 (3)
C3—C2—C6—C181.7 (3)C12—C11—C16—C151.2 (3)
C1—C2—C6—C18178.11 (18)S—C11—C16—C15173.77 (15)
C4—C5—C18—C61.0 (3)C14—C15—C16—C111.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i0.982.603.301 (3)129
C10—H10C···Cgii0.982.783.604 (3)142
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H15FO2S
Mr302.35
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)11.9486 (4), 18.8134 (9), 6.4435 (3)
V3)1448.46 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.36 × 0.34 × 0.23
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.920, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
6188, 2147, 2094
Rint0.027
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.05
No. of reflections2147
No. of parameters193
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.32
Absolute structureFlack (1983), 745 Friedel pairs
Absolute structure parameter0.01 (8)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i0.982.603.301 (3)128.7
C10—H10C···Cgii0.982.783.604 (3)142.4
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y, z+1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1476.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds