organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,5-Di­chloro­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 21 January 2010; accepted 6 February 2010; online 13 February 2010)

In the title compound, C12H9Cl2NO2S, the conformation of the N—H bond is syn to the 2-chloro group and anti to the 3-chloro group of the aniline benzene ring. The mol­ecule is bent at the S atom with a C—SO2—NH—C torsion angle of 66.4 (2)°. The two rings form a dihedral angle of 73.3 (1)° and an intra­molecular N—H⋯Cl hydrogen bond occurs. The crystal structure features chains linked by N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]). For our study of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o2763.], 2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o229.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9Cl2NO2S

  • Mr = 302.16

  • Monoclinic, P 21 /n

  • a = 9.595 (1) Å

  • b = 14.188 (2) Å

  • c = 10.424 (1) Å

  • β = 114.42 (2)°

  • V = 1292.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 299 K

  • 0.44 × 0.40 × 0.32 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD Detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.761, Tmax = 0.818

  • 5199 measured reflections

  • 2638 independent reflections

  • 2225 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.086

  • S = 1.05

  • 2638 reflections

  • 167 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (1) 2.28 (1) 3.074 (2) 156 (2)
N1—H1N⋯Cl1 0.84 (1) 2.52 (2) 2.9795 (16) 115 (2)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009; 2010), the structure of (I) has been determined. The conformation of the N—H bond is syn to the 2-chloro group and anti to the 3-chloro group in the aniline benzene ring (Fig. 1). The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of 66.4 (2)°, compared to the values of -62.1 (3)° and 60.7 (3)°, in the two molecules of N-(2,4-dichlorophenyl)benzenesulfonamide (II), -68.1 (3)° in N-(3,5-dichlorophenyl)benzenesulfonamide (III) (Gowda et al., 2010) and 62.7 (2)° in N-(2,5-dimethylphenyl)benzenesulfonamide (IV) (Gowda et al., 2009).

The sulfonyl benzene and the aniline benzene rings in (I) are tilted relative to each other by 73.3 (1)°, compared to the values of 70.8 (1)° (molecule 1) and 74.8 (1)° (molecule 2) in (II), 57.0 (1)° in (III) and 40.4 (1)° in (IV). The other bond parameters in (I) are similar to those observed in (II)-(IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

An intramolecular N—H···Cl hydrogen bond is observed. The crystal packing of molecules in (I) is via N—H···O(S) hydrogen bonds (Table 1, Fig. 2).

Related literature top

For the preparation of the title compound, see: Shetty & Gowda (2005). For our study of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009, 2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of benzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with 2,5-dichloroaniline in the stoichiometric amounts and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid (I) was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Shetty & Gowda, 2005). The rod like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by evaporating it at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (1) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å A l l H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-(2,5-Dichlorophenyl)benzenesulfonamide top
Crystal data top
C12H9Cl2NO2SF(000) = 616
Mr = 302.16Dx = 1.553 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2765 reflections
a = 9.595 (1) Åθ = 2.7–27.8°
b = 14.188 (2) ŵ = 0.66 mm1
c = 10.424 (1) ÅT = 299 K
β = 114.42 (2)°Prism, colourless
V = 1292.1 (3) Å30.44 × 0.40 × 0.32 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD Detector
2638 independent reflections
Radiation source: fine-focus sealed tube2225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
Rotation method data acquisition using ω and phi scans.θmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.761, Tmax = 0.818k = 1317
5199 measured reflectionsl = 713
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.4815P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2638 reflectionsΔρmax = 0.23 e Å3
167 parametersΔρmin = 0.34 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0316 (18)
Crystal data top
C12H9Cl2NO2SV = 1292.1 (3) Å3
Mr = 302.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.595 (1) ŵ = 0.66 mm1
b = 14.188 (2) ÅT = 299 K
c = 10.424 (1) Å0.44 × 0.40 × 0.32 mm
β = 114.42 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD Detector
2638 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2225 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 0.818Rint = 0.010
5199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.23 e Å3
2638 reflectionsΔρmin = 0.34 e Å3
167 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10881 (19)0.57873 (12)0.71058 (18)0.0342 (4)
C20.0940 (2)0.61982 (15)0.8359 (2)0.0482 (5)
H20.02550.59570.92170.058*
C30.1826 (3)0.69707 (18)0.8311 (3)0.0665 (7)
H30.17320.72590.91450.080*
C40.2852 (3)0.73206 (17)0.7038 (3)0.0690 (7)
H40.34520.78400.70160.083*
C50.2991 (3)0.69043 (18)0.5800 (3)0.0675 (7)
H50.36880.71430.49430.081*
C60.2105 (2)0.61368 (15)0.5821 (2)0.0501 (5)
H60.21880.58580.49840.060*
C70.27503 (19)0.56534 (12)0.85564 (18)0.0338 (4)
C80.3535 (2)0.64497 (13)0.8424 (2)0.0403 (4)
C90.4606 (2)0.68914 (15)0.9591 (2)0.0515 (5)
H90.51290.74140.94790.062*
C100.4906 (2)0.65644 (16)1.0922 (2)0.0528 (5)
H100.56210.68651.17130.063*
C110.4128 (2)0.57828 (14)1.10589 (19)0.0429 (4)
C120.3074 (2)0.53198 (13)0.99013 (18)0.0386 (4)
H120.25810.47851.00220.046*
N10.17095 (17)0.51827 (11)0.73345 (15)0.0363 (3)
H1N0.166 (2)0.5403 (13)0.6564 (14)0.044*
O10.05974 (16)0.43413 (9)0.58100 (13)0.0443 (3)
O20.02450 (15)0.42616 (9)0.83833 (13)0.0462 (3)
Cl10.31855 (6)0.68832 (4)0.67634 (6)0.05849 (18)
Cl20.44864 (7)0.53545 (5)1.27273 (5)0.06258 (19)
S10.00256 (5)0.47941 (3)0.71548 (4)0.03304 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0319 (9)0.0366 (9)0.0350 (9)0.0051 (7)0.0147 (7)0.0037 (7)
C20.0452 (11)0.0609 (13)0.0406 (10)0.0044 (9)0.0200 (9)0.0115 (9)
C30.0580 (14)0.0735 (16)0.0783 (17)0.0084 (12)0.0385 (13)0.0330 (14)
C40.0510 (13)0.0540 (14)0.109 (2)0.0053 (11)0.0400 (14)0.0137 (14)
C50.0563 (14)0.0647 (15)0.0737 (16)0.0185 (12)0.0190 (12)0.0078 (13)
C60.0473 (11)0.0551 (12)0.0418 (11)0.0082 (9)0.0125 (9)0.0003 (9)
C70.0272 (8)0.0366 (9)0.0352 (9)0.0026 (7)0.0106 (7)0.0005 (7)
C80.0344 (9)0.0397 (10)0.0434 (10)0.0020 (7)0.0126 (8)0.0064 (8)
C90.0441 (11)0.0457 (11)0.0587 (13)0.0129 (9)0.0152 (9)0.0018 (9)
C100.0427 (11)0.0575 (13)0.0477 (11)0.0115 (9)0.0083 (9)0.0106 (10)
C110.0342 (9)0.0540 (12)0.0351 (9)0.0011 (8)0.0090 (7)0.0019 (8)
C120.0333 (9)0.0421 (10)0.0376 (9)0.0028 (7)0.0118 (8)0.0004 (8)
N10.0340 (8)0.0450 (9)0.0306 (7)0.0030 (6)0.0140 (6)0.0007 (6)
O10.0510 (8)0.0428 (7)0.0338 (7)0.0064 (6)0.0123 (6)0.0099 (5)
O20.0507 (8)0.0454 (7)0.0357 (7)0.0107 (6)0.0112 (6)0.0078 (6)
Cl10.0530 (3)0.0621 (3)0.0535 (3)0.0064 (2)0.0152 (2)0.0205 (3)
Cl20.0564 (3)0.0871 (4)0.0342 (3)0.0090 (3)0.0085 (2)0.0007 (3)
S10.0356 (2)0.0331 (2)0.0272 (2)0.00569 (17)0.00974 (17)0.00172 (16)
Geometric parameters (Å, º) top
C1—C61.383 (3)C7—N11.419 (2)
C1—C21.383 (2)C8—C91.377 (3)
C1—S11.7565 (18)C8—Cl11.7343 (19)
C2—C31.375 (3)C9—C101.375 (3)
C2—H20.9300C9—H90.9300
C3—C41.377 (4)C10—C111.377 (3)
C3—H30.9300C10—H100.9300
C4—C51.375 (4)C11—C121.379 (2)
C4—H40.9300C11—Cl21.737 (2)
C5—C61.376 (3)C12—H120.9300
C5—H50.9300N1—S11.6430 (15)
C6—H60.9300N1—H1N0.844 (9)
C7—C121.388 (2)O1—S11.4292 (13)
C7—C81.396 (2)O2—S11.4254 (13)
C6—C1—C2121.31 (18)C7—C8—Cl1119.74 (14)
C6—C1—S1119.54 (14)C10—C9—C8120.44 (19)
C2—C1—S1119.15 (15)C10—C9—H9119.8
C3—C2—C1118.8 (2)C8—C9—H9119.8
C3—C2—H2120.6C9—C10—C11118.67 (18)
C1—C2—H2120.6C9—C10—H10120.7
C2—C3—C4120.4 (2)C11—C10—H10120.7
C2—C3—H3119.8C10—C11—C12121.72 (18)
C4—C3—H3119.8C10—C11—Cl2119.63 (15)
C5—C4—C3120.2 (2)C12—C11—Cl2118.65 (15)
C5—C4—H4119.9C11—C12—C7119.90 (17)
C3—C4—H4119.9C11—C12—H12120.1
C4—C5—C6120.4 (2)C7—C12—H12120.1
C4—C5—H5119.8C7—N1—S1123.65 (12)
C6—C5—H5119.8C7—N1—H1N115.0 (15)
C5—C6—C1118.9 (2)S1—N1—H1N110.3 (15)
C5—C6—H6120.6O2—S1—O1119.31 (8)
C1—C6—H6120.6O2—S1—N1107.60 (8)
C12—C7—C8118.11 (16)O1—S1—N1104.80 (8)
C12—C7—N1121.79 (16)O2—S1—C1108.27 (8)
C8—C7—N1120.03 (15)O1—S1—C1109.23 (8)
C9—C8—C7121.14 (18)N1—S1—C1106.97 (8)
C9—C8—Cl1119.11 (15)
C6—C1—C2—C30.1 (3)C9—C10—C11—Cl2179.98 (17)
S1—C1—C2—C3179.45 (16)C10—C11—C12—C71.5 (3)
C1—C2—C3—C40.7 (3)Cl2—C11—C12—C7179.16 (13)
C2—C3—C4—C50.5 (4)C8—C7—C12—C111.0 (3)
C3—C4—C5—C60.2 (4)N1—C7—C12—C11178.02 (17)
C4—C5—C6—C10.7 (4)C12—C7—N1—S145.9 (2)
C2—C1—C6—C50.5 (3)C8—C7—N1—S1137.14 (15)
S1—C1—C6—C5178.75 (18)C7—N1—S1—O249.78 (17)
C12—C7—C8—C90.3 (3)C7—N1—S1—O1177.73 (14)
N1—C7—C8—C9176.78 (18)C7—N1—S1—C166.36 (16)
C12—C7—C8—Cl1179.19 (13)C6—C1—S1—O2146.50 (15)
N1—C7—C8—Cl12.1 (2)C2—C1—S1—O232.81 (16)
C7—C8—C9—C101.2 (3)C6—C1—S1—O115.12 (18)
Cl1—C8—C9—C10179.95 (17)C2—C1—S1—O1164.19 (14)
C8—C9—C10—C110.7 (3)C6—C1—S1—N197.79 (16)
C9—C10—C11—C120.6 (3)C2—C1—S1—N182.90 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (1)2.28 (1)3.074 (2)156 (2)
N1—H1N···Cl10.84 (1)2.52 (2)2.9795 (16)115 (2)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H9Cl2NO2S
Mr302.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)9.595 (1), 14.188 (2), 10.424 (1)
β (°) 114.42 (2)
V3)1292.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.44 × 0.40 × 0.32
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD Detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.761, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
5199, 2638, 2225
Rint0.010
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.086, 1.05
No. of reflections2638
No. of parameters167
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.34

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.844 (9)2.282 (12)3.074 (2)156.2 (19)
N1—H1N···Cl10.844 (9)2.520 (19)2.9795 (16)115.3 (16)
Symmetry code: (i) x, y+1, z+1.
 

References

First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o2763.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o229.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds