organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Fluoro-1,3,4-tri­phenyl-1H-pyrazolo[3,4-b]quinoline benzene hemisolvate

aDepartment of Chemistry and Physics, Agricultural University, 30-149 Kraków, Poland, and bFaculty of Chemistry, Jagiellonian University, 30-060 Kraków, Poland
*Correspondence e-mail: pszlachcic@ar.krakow.pl

(Received 4 January 2010; accepted 4 February 2010; online 10 February 2010)

In the title compound, C28H18FN3·0.5C6H6, the 1H-pyrazolo[3,4-b]quinoline core is almost planar (r.m.s = 0.0371 Å, maximum deviation = 0.0571 Å) and aromatic. The solvent benzene mol­ecules are located around inversion centres. In the crystal, mol­ecules related by centres of symmetry form dimers, with distances of 3.932 (3) Å between best planes through the fused core due to ππ stacking. The phenyl substituents at positions 1, 3 and 4, are twisted away from the core, making dihedral angles of 29.66 (7), 44.59 (7) and 67.94 (6)°, respectively.

Related literature

For the synthesis of 1H-pyrazolo[3,4-b]quinoline derivatives, see: Chaczatrian et al. (2003[Chaczatrian, K., Chaczatrian, G., Danel, A. & Tomasik, P. (2003). Pol. J. Chem. 77, 1141-1147.], 2007[Chaczatrian, K., Chaczatrian, G., Danel, A. & Tomasik, P. (2007). Polish Patent PL 195700 B1.]). For their photophysical properties, see: Gondek et al. (2006[Gondek, E., Kityk, I. V., Sanetra, J., Szlachcic, P., Armatys, P., Wisla, A. & Danel, A. (2006). Opt. Laser Technol. 38, 487-492.]). For the use of a fluorine derivative of 1H-pyrazolo[3,4-b]quinoline in organic light-emitting diode preparation, see: Tao et al. (2001[Tao, Y. T., Balasubramaniam, E., Danel, A., Jarosz, B. & Tomasik, P. (2001). Chem. Mater. 13, 1207-1212.]). For the effect of substituents on aromatic ring geometry, see: Domen­icano et al. (1975[Domenicano, A., Vaciago, A. & Coulson, C. A. (1975). Acta Cryst. B31, 221-234.]).

[Scheme 1]

Experimental

Crystal data
  • C28H18FN3·0.5C6H6

  • Mr = 454.51

  • Monoclinic, P 21 /c

  • a = 13.2941 (4) Å

  • b = 9.7419 (3) Å

  • c = 20.7608 (5) Å

  • β = 118.559 (2)°

  • V = 2361.58 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.40 × 0.25 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.968, Tmax = 0.998

  • 8615 measured reflections

  • 5135 independent reflections

  • 2974 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.137

  • S = 1.06

  • 5135 reflections

  • 317 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some of the 1H-pyrazolo[3,4-b]quinoline (PQ) derivatives containing hydrogen, phenyl or methyl substituents, and their combination, showed interesting photophysical properties (Gondek et al., 2006). A relatively high quantum efficiency allowed to propose the investigated materials' blue-light luminophore. The approach was recommended for searching the organic chromophore for organic light-emitting diodes (OLED). To synthesize different sort of PQ derivatives, a new method of preparation developed in the research group led by professor Tomasik (Chaczatrian et al., 2003, Chaczatrian et al., 2007) can be used.

It is known that in the case of 6-fluoro-1-methyl-3-phenyl-1H-pyrazolo[3,4-b]quinoline, the incorporation of fluorine atom into PQ molecule rises the values of HOMO/LUMO and ionisation potential of the luminophore in comparison to PQ itself (Tao et al., 2001). Because of that, the method of synthesis mentioned above was used for the preparation of a series of compounds containing fluorine substituents to make it useful for construction of OLED cells with Mg/Ag alloy cathode or even Al cathode.

The promising results of using the PQ flurorine derivatives for OLED preparation will be published elsewhere.

The shape of the title molecule is shown in Fig. 1. The core of the molecule, 1H-pyrazolo[3,4-b]quinoline, is planar and aromatic. All three phenyl substituents' planes are twisted against the core moiety with the torsion angles N2—N1—C11—C16 = -30.1 (3), N2—C3—C31—C32 = -41.7 (3) and C3a—C4—C41—C42 = -66.5 (3)°. For the fluorine substituent at C6, the enlargement of the endocyclic C5—C6—C7 angle, up to 124.0 (3), is caused by σ-electron-withdrawing effect of the fluorine atom (Domenicano et al. 1975).

The packing of the molecules (Fig. 2) is determined by intermolecular π···π stacking. The molecules realted by the centres of symmetry at 1/2, 0, 1/2 and 0, 1/2, 0 (P21/c, position 2 c -1) form dimers due to this type of interaction. The shortest distances were found between the rings N1—N2—C3—C3a—C9a and C4a—C5—C6—C7—C8, at 1-x, -y, 1-z, for which the centre of gravity distance is 4.038 (3) Å, as well as for the rings C3a—C4—C4a—C8a—N9—C9a and C3a—C4—C4a—C8a—N9—C9a, at 1-x, -y, 1-z, for which the centre of gravity distance is 3.964 (3) Å). The distance between the best planes of the whole aromatic core was found to be 3.932 (3) Å.

The structure is stabilized by several C—H···π interactions with the geometry parameters (H···A /Å, D···A /Å, <DHA /°, respectively) given below.

C32—H32···Cg(C3a—C4—C4a—C8a—N9—C9a at 1-x, 1-y, 1-z): 3.017, 3.621, 124;

C43—H43···Cg(C11—C12—C13—C14—C15—C16 at 1-x, 1-y, 1-z): 2.676, 3.567, 161;

C46—H46···Cg(C11—C12—C13—C14—C15—C16 at 1-x, -y, 1-z): 2.878, 3.656, 142;

C15—H15···Cg(C41—C42—C43—C44—C45—C46 at x-1, -y+1/2, z-1/2): 2.887, 3.817, 180.

The molecules of the title compound co-crystallize with the benzene molecules in the ratio 2:1. The benzene molecules occupy the centres of symmetry of the position 2 a (space group P21/c): 0,0,0 and 0,1/2,1/2.

Related literature top

For the synthesis of 1H-pyrazolo[3,4-b]quinoline derivatives, see: Chaczatrian et al. (2003, 2007). For their photophysical properties, see: Gondek et al. (2006). For the use of a fluorine derivative of 1H-pyrazolo[3,4-b]quinoline in organic light-emitting diode preparation, see: Tao et al. (2001). For the effect of substituents on aromatic ring geometry, see: Domenicano et al. (1975).

Experimental top

The title compound was synthesized using procedure already described in literature (Chaczatrian et al., 2003, Chaczatrian et al., 2007) from 4-fluoroaniline, benzaldehyde and 1,3-diphenyl-4,5-dihydro-1H-pyrazol-5-one (15 mmol of each substrate, ethylene glycol as a solvent). The product was purified by flash chromatography on Al2O3 with chloroform as a solvent, followed by crystallization from toluene to give 1.00 g (16% yield) of yellow crystalline solid, mp. 466.5-468.5 K. 1H NMR (CDCl3): δ 7.03-7.09 (m, 2H), 7.12-7.23 (m, 7H), 7.30-7.36 (m, 2H), 7.50 (ddd, J = 10.5, 2.9, 0.6 Hz, 1H) 7.53-7.61 (m, 3H), 8.24 (ddd, J = 9.2, 5.4, 0.6 Hz, 1H), 8.57-8.60 (m, 2H); 13C NMR (CDCl3): δ 109.5 (d, JCF = 23.3 Hz), 115.2, 120.9, 121.4 (d, JCF = 27.0 Hz), 123.8 (d, JCF = 9.3 Hz), 125.3, 125.5, 127.5, 127.7, 128.1, 128.2, 128.6, 129.0, 130.2, 131.4 (d, JCF = 8.9 Hz), 132.4, 134.2, 139.8, 145.6, 146.3, 150.1, 159.0 (d, JCF = 245.2 Hz); 19F NMR (CDCl3): δ -118.5. Single crystals suitable for X-ray diffraction were grown by slow evaporation from benzene solution.

Refinement top

H atoms were included into refinement in geometrically calculated positions, with C—H = 0.93 Å, and Uiso(H) = 1.2Ueq(parent C) for the aromatic CH groups, and constrained as a part of a riding model. The distances between carbon atoms of the benzene ring of the solvent molecule were constrained to 1.397 (4) Å, using DFIX procedure (SHELXL-97; Sheldrick, 2008). The resulting C—C distances of the benzene ring are smaller probably due to large thermal motion or static disorder.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The conformation of the 6-fluoro-1,3,4-triphenyl-1H-pyrazolo[3,4-b]quinoline molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The unit cell contents of the title compound in projection along [010]. The solvent molecules (benzene) are present at the centres of symmetry 0,0,0 and 0,1/2,1/2.
6-Fluoro-1,3,4-triphenyl-1H-pyrazolo[3,4-b]quinoline benzene hemisolvate top
Crystal data top
C28H18FN3·0.5C6H6F(000) = 948
Mr = 454.51Dx = 1.278 Mg m3
Monoclinic, P21/cMelting point = 466.5–468.5 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.2941 (4) ÅCell parameters from 5207 reflections
b = 9.7419 (3) Åθ = 1.0–27.5°
c = 20.7608 (5) ŵ = 0.08 mm1
β = 118.559 (2)°T = 293 K
V = 2361.58 (12) Å3Plate, yellow
Z = 40.40 × 0.25 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
5135 independent reflections
Radiation source: fine-focus sealed tube2974 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.051
Detector resolution: 9 pixels mm-1θmax = 27.0°, θmin = 3.1°
ω scans at χ = 55 °h = 1616
Absorption correction: multi-scan
(HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997)
k = 1012
Tmin = 0.968, Tmax = 0.998l = 2626
8615 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.742P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5135 reflectionsΔρmax = 0.18 e Å3
317 parametersΔρmin = 0.19 e Å3
3 restraintsExtinction correction: SHELXL
0 constraintsExtinction coefficient: 0.0045 (8)
Primary atom site location: structure-invariant direct methods
Crystal data top
C28H18FN3·0.5C6H6V = 2361.58 (12) Å3
Mr = 454.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2941 (4) ŵ = 0.08 mm1
b = 9.7419 (3) ÅT = 293 K
c = 20.7608 (5) Å0.40 × 0.25 × 0.03 mm
β = 118.559 (2)°
Data collection top
Nonius KappaCCD
diffractometer
5135 independent reflections
Absorption correction: multi-scan
(HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997)
2974 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.998Rint = 0.051
8615 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0643 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.06Δρmax = 0.18 e Å3
5135 reflectionsΔρmin = 0.19 e Å3
317 parameters
Special details top

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.36548 (14)0.2474 (2)0.40940 (9)0.0447 (5)
N20.34691 (15)0.3176 (2)0.46036 (9)0.0468 (5)
C30.44144 (18)0.3100 (2)0.52398 (11)0.0404 (5)
C3A0.52804 (17)0.2324 (2)0.51683 (10)0.0383 (5)
C40.64187 (17)0.1959 (2)0.56111 (11)0.0378 (5)
C4A0.69378 (17)0.1174 (2)0.52705 (11)0.0410 (5)
C50.81112 (19)0.0783 (3)0.56551 (12)0.0505 (6)
H50.85600.10130.61460.061*
C60.85632 (19)0.0074 (3)0.52978 (13)0.0580 (7)
C70.7950 (2)0.0309 (3)0.45635 (13)0.0615 (7)
H70.83010.07970.43400.074*
C80.6834 (2)0.0046 (3)0.41845 (12)0.0545 (6)
H80.64120.02150.36960.065*
C8A0.62881 (18)0.0809 (2)0.45139 (11)0.0427 (5)
N90.51761 (14)0.1184 (2)0.40778 (9)0.0446 (5)
C9A0.47403 (17)0.1924 (2)0.44168 (11)0.0395 (5)
C110.27483 (18)0.2366 (2)0.33624 (11)0.0419 (5)
C120.2993 (2)0.2270 (2)0.27896 (12)0.0511 (6)
H120.37480.23000.28780.061*
C130.2108 (2)0.2130 (3)0.20837 (12)0.0634 (7)
H130.22720.20430.16970.076*
C140.0998 (2)0.2118 (3)0.19449 (15)0.0734 (8)
H140.04060.20270.14670.088*
C150.0762 (2)0.2241 (3)0.25178 (15)0.0757 (9)
H150.00040.22500.24240.091*
C160.16303 (19)0.2353 (3)0.32298 (13)0.0592 (7)
H160.14630.24180.36160.071*
C310.44317 (17)0.3780 (2)0.58814 (11)0.0401 (5)
C320.39465 (19)0.5068 (3)0.58066 (12)0.0503 (6)
H320.36340.55160.53570.060*
C330.3925 (2)0.5690 (3)0.63981 (14)0.0606 (7)
H330.35870.65480.63430.073*
C340.4402 (2)0.5045 (3)0.70678 (13)0.0613 (7)
H340.43900.54690.74660.074*
C350.4892 (2)0.3785 (3)0.71493 (12)0.0566 (7)
H350.52210.33560.76050.068*
C360.49028 (19)0.3141 (3)0.65598 (12)0.0493 (6)
H360.52280.22740.66190.059*
C410.70800 (17)0.2372 (2)0.63992 (11)0.0387 (5)
C420.73378 (19)0.3734 (2)0.65922 (12)0.0487 (6)
H420.71290.44010.62300.058*
C430.7907 (2)0.4104 (3)0.73242 (13)0.0608 (7)
H430.80880.50200.74540.073*
C440.8207 (2)0.3122 (3)0.78626 (13)0.0611 (7)
H440.85720.33790.83540.073*
C450.7969 (2)0.1768 (3)0.76749 (12)0.0582 (7)
H450.81810.11040.80390.070*
C460.74159 (19)0.1389 (2)0.69457 (11)0.0499 (6)
H460.72670.04660.68200.060*
F600.96931 (12)0.0276 (2)0.56686 (9)0.0955 (6)
C1011.0871 (4)0.0806 (9)1.0023 (3)0.1389 (18)
H1011.14540.13491.00340.167*
C1021.0815 (5)0.0560 (10)0.9865 (3)0.1379 (19)
H1021.13730.09540.97750.165*
C1030.9946 (7)0.1359 (5)0.9837 (2)0.1363 (19)
H1030.99140.22860.97210.164*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0421 (10)0.0571 (13)0.0335 (10)0.0085 (10)0.0169 (9)0.0020 (9)
N20.0485 (11)0.0540 (13)0.0401 (11)0.0080 (10)0.0229 (9)0.0002 (9)
C30.0440 (12)0.0432 (14)0.0358 (12)0.0044 (11)0.0206 (11)0.0056 (10)
C3A0.0453 (13)0.0368 (13)0.0351 (12)0.0007 (11)0.0211 (10)0.0013 (9)
C40.0414 (12)0.0349 (12)0.0353 (11)0.0003 (11)0.0168 (10)0.0037 (9)
C4A0.0416 (12)0.0418 (13)0.0380 (12)0.0011 (11)0.0177 (10)0.0010 (10)
C50.0463 (13)0.0584 (16)0.0404 (13)0.0085 (13)0.0156 (11)0.0008 (11)
C60.0400 (13)0.0725 (19)0.0547 (15)0.0177 (14)0.0172 (12)0.0041 (14)
C70.0570 (16)0.075 (2)0.0553 (16)0.0186 (14)0.0290 (13)0.0066 (14)
C80.0532 (14)0.0639 (17)0.0440 (13)0.0084 (14)0.0212 (12)0.0091 (12)
C8A0.0431 (13)0.0456 (14)0.0401 (12)0.0012 (11)0.0206 (11)0.0003 (10)
N90.0413 (11)0.0514 (12)0.0384 (10)0.0032 (10)0.0169 (9)0.0041 (9)
C9A0.0402 (12)0.0412 (13)0.0377 (12)0.0035 (11)0.0191 (10)0.0020 (10)
C110.0436 (12)0.0401 (13)0.0361 (12)0.0040 (11)0.0142 (10)0.0022 (10)
C120.0479 (13)0.0594 (17)0.0409 (13)0.0093 (12)0.0172 (11)0.0006 (11)
C130.0744 (18)0.0673 (19)0.0382 (14)0.0158 (15)0.0187 (13)0.0009 (12)
C140.0589 (17)0.082 (2)0.0484 (16)0.0022 (16)0.0005 (14)0.0086 (14)
C150.0429 (14)0.102 (3)0.0670 (19)0.0061 (15)0.0139 (14)0.0044 (17)
C160.0460 (14)0.077 (2)0.0506 (15)0.0011 (14)0.0199 (12)0.0026 (13)
C310.0411 (12)0.0450 (14)0.0372 (12)0.0015 (11)0.0210 (10)0.0006 (10)
C320.0610 (15)0.0487 (15)0.0438 (13)0.0026 (13)0.0270 (12)0.0016 (12)
C330.0756 (17)0.0479 (16)0.0621 (17)0.0063 (14)0.0361 (14)0.0061 (13)
C340.0718 (17)0.0712 (19)0.0493 (15)0.0060 (16)0.0357 (13)0.0152 (14)
C350.0596 (15)0.075 (2)0.0414 (13)0.0014 (15)0.0291 (12)0.0023 (13)
C360.0556 (14)0.0539 (16)0.0455 (13)0.0076 (13)0.0300 (11)0.0070 (12)
C410.0404 (12)0.0406 (13)0.0345 (11)0.0021 (11)0.0174 (10)0.0011 (10)
C420.0553 (14)0.0399 (14)0.0430 (13)0.0013 (12)0.0172 (11)0.0041 (11)
C430.0685 (17)0.0440 (15)0.0550 (16)0.0071 (14)0.0175 (14)0.0106 (13)
C440.0661 (16)0.0680 (19)0.0369 (13)0.0017 (16)0.0145 (12)0.0089 (13)
C450.0728 (16)0.0550 (17)0.0384 (13)0.0037 (15)0.0199 (12)0.0079 (12)
C460.0648 (15)0.0410 (14)0.0382 (13)0.0020 (12)0.0201 (12)0.0007 (11)
F600.0584 (9)0.1362 (17)0.0781 (11)0.0356 (10)0.0216 (8)0.0059 (10)
C1010.082 (3)0.150 (5)0.139 (4)0.012 (4)0.016 (3)0.051 (4)
C1020.114 (5)0.185 (7)0.110 (3)0.045 (4)0.050 (3)0.003 (4)
C1030.122 (3)0.097 (3)0.106 (3)0.032 (4)0.013 (3)0.022 (3)
Geometric parameters (Å, º) top
N1—C9A1.376 (3)C15—H150.9300
N1—N21.378 (2)C16—H160.9300
N1—C111.421 (3)C31—C321.385 (3)
N2—C31.320 (3)C31—C361.386 (3)
C3—C3A1.443 (3)C32—C331.381 (3)
C3—C311.478 (3)C32—H320.9300
C3A—C41.390 (3)C33—C341.374 (3)
C3A—C9A1.425 (3)C33—H330.9300
C4—C4A1.424 (3)C34—C351.361 (4)
C4—C411.495 (3)C34—H340.9300
C4A—C51.423 (3)C35—C361.382 (3)
C4A—C8A1.429 (3)C35—H350.9300
C5—C61.347 (3)C36—H360.9300
C5—H50.9300C41—C421.381 (3)
C6—F601.364 (3)C41—C461.386 (3)
C6—C71.393 (3)C42—C431.383 (3)
C7—C81.351 (3)C42—H420.9300
C7—H70.9300C43—C441.377 (3)
C8—C8A1.421 (3)C43—H430.9300
C8—H80.9300C44—C451.369 (3)
C8A—N91.363 (3)C44—H440.9300
N9—C9A1.319 (3)C45—C461.380 (3)
C11—C161.376 (3)C45—H450.9300
C11—C121.378 (3)C46—H460.9300
C12—C131.379 (3)C101—C103i1.362 (11)
C12—H120.9300C101—C1021.364 (13)
C13—C141.362 (4)C101—H1010.9300
C13—H130.9300C102—C1031.371 (12)
C14—C151.373 (4)C102—H1020.9300
C14—H140.9300C103—C101i1.362 (11)
C15—C161.377 (3)C103—H1030.9300
C9A—N1—N2110.52 (16)C16—C15—H15119.5
C9A—N1—C11130.36 (17)C11—C16—C15119.1 (2)
N2—N1—C11119.06 (17)C11—C16—H16120.5
C3—N2—N1107.82 (16)C15—C16—H16120.5
N2—C3—C3A110.56 (17)C32—C31—C36118.7 (2)
N2—C3—C31118.28 (18)C32—C31—C3119.97 (19)
C3A—C3—C31131.16 (19)C36—C31—C3121.3 (2)
C4—C3A—C9A118.28 (18)C33—C32—C31120.2 (2)
C4—C3A—C3137.38 (19)C33—C32—H32119.9
C9A—C3A—C3104.28 (17)C31—C32—H32119.9
C3A—C4—C4A116.22 (18)C34—C33—C32120.3 (2)
C3A—C4—C41122.66 (18)C34—C33—H33119.9
C4A—C4—C41121.12 (18)C32—C33—H33119.9
C4—C4A—C5121.79 (19)C35—C34—C33120.0 (2)
C4—C4A—C8A119.85 (18)C35—C34—H34120.0
C5—C4A—C8A118.31 (19)C33—C34—H34120.0
C6—C5—C4A119.1 (2)C34—C35—C36120.4 (2)
C6—C5—H5120.4C34—C35—H35119.8
C4A—C5—H5120.4C36—C35—H35119.8
C5—C6—F60118.6 (2)C35—C36—C31120.3 (2)
C5—C6—C7124.0 (2)C35—C36—H36119.8
F60—C6—C7117.5 (2)C31—C36—H36119.8
C8—C7—C6118.3 (2)C42—C41—C46119.2 (2)
C8—C7—H7120.9C42—C41—C4120.70 (19)
C6—C7—H7120.9C46—C41—C4120.0 (2)
C7—C8—C8A121.7 (2)C41—C42—C43119.9 (2)
C7—C8—H8119.2C41—C42—H42120.0
C8A—C8—H8119.2C43—C42—H42120.0
N9—C8A—C8117.47 (19)C44—C43—C42120.3 (2)
N9—C8A—C4A123.85 (19)C44—C43—H43119.9
C8—C8A—C4A118.66 (19)C42—C43—H43119.9
C9A—N9—C8A113.91 (17)C45—C44—C43120.0 (2)
N9—C9A—N1125.35 (18)C45—C44—H44120.0
N9—C9A—C3A127.85 (19)C43—C44—H44120.0
N1—C9A—C3A106.80 (17)C44—C45—C46120.0 (2)
C16—C11—C12120.3 (2)C44—C45—H45120.0
C16—C11—N1119.84 (19)C46—C45—H45120.0
C12—C11—N1119.84 (19)C45—C46—C41120.5 (2)
C11—C12—C13119.4 (2)C45—C46—H46119.8
C11—C12—H12120.3C41—C46—H46119.8
C13—C12—H12120.3C103i—C101—C102118.7 (4)
C14—C13—C12120.9 (2)C103i—C101—H101120.7
C14—C13—H13119.6C102—C101—H101120.7
C12—C13—H13119.6C101—C102—C103120.8 (4)
C13—C14—C15119.3 (2)C101—C102—H102119.6
C13—C14—H14120.4C103—C102—H102119.6
C15—C14—H14120.4C101i—C103—C102120.5 (4)
C14—C15—C16121.0 (2)C101i—C103—H103119.7
C14—C15—H15119.5C102—C103—H103119.7
C9A—N1—N2—C30.8 (2)C3—C3A—C9A—N11.2 (2)
C11—N1—N2—C3178.12 (19)C9A—N1—C11—C16146.7 (2)
N1—N2—C3—C3A0.1 (2)N2—N1—C11—C1630.1 (3)
N1—N2—C3—C31180.00 (18)C9A—N1—C11—C1233.1 (3)
N2—C3—C3A—C4176.2 (2)N2—N1—C11—C12150.1 (2)
C31—C3—C3A—C43.7 (4)C16—C11—C12—C131.5 (4)
N2—C3—C3A—C9A0.8 (2)N1—C11—C12—C13178.3 (2)
C31—C3—C3A—C9A179.3 (2)C11—C12—C13—C141.6 (4)
C9A—C3A—C4—C4A1.6 (3)C12—C13—C14—C150.3 (4)
C3—C3A—C4—C4A178.4 (2)C13—C14—C15—C161.1 (5)
C9A—C3A—C4—C41177.59 (19)C12—C11—C16—C150.1 (4)
C3—C3A—C4—C410.8 (4)N1—C11—C16—C15179.7 (2)
C3A—C4—C4A—C5177.4 (2)C14—C15—C16—C111.2 (4)
C41—C4—C4A—C51.8 (3)N2—C3—C31—C3241.7 (3)
C3A—C4—C4A—C8A0.0 (3)C3A—C3—C31—C32138.2 (2)
C41—C4—C4A—C8A179.23 (19)N2—C3—C31—C36136.7 (2)
C4—C4A—C5—C6178.1 (2)C3A—C3—C31—C3643.4 (3)
C8A—C4A—C5—C60.7 (3)C36—C31—C32—C330.7 (3)
C4A—C5—C6—F60179.0 (2)C3—C31—C32—C33177.8 (2)
C4A—C5—C6—C70.1 (4)C31—C32—C33—C341.1 (4)
C5—C6—C7—C80.2 (4)C32—C33—C34—C350.4 (4)
F60—C6—C7—C8179.1 (2)C33—C34—C35—C360.7 (4)
C6—C7—C8—C8A1.0 (4)C34—C35—C36—C311.1 (4)
C7—C8—C8A—N9176.5 (2)C32—C31—C36—C350.4 (3)
C7—C8—C8A—C4A1.6 (4)C3—C31—C36—C35178.8 (2)
C4—C4A—C8A—N90.9 (3)C3A—C4—C41—C4266.5 (3)
C5—C4A—C8A—N9176.6 (2)C4A—C4—C41—C42112.7 (2)
C4—C4A—C8A—C8178.9 (2)C3A—C4—C41—C46111.8 (2)
C5—C4A—C8A—C81.4 (3)C4A—C4—C41—C4669.0 (3)
C8—C8A—N9—C9A178.0 (2)C46—C41—C42—C431.1 (3)
C4A—C8A—N9—C9A0.0 (3)C4—C41—C42—C43177.2 (2)
C8A—N9—C9A—N1177.3 (2)C41—C42—C43—C440.7 (4)
C8A—N9—C9A—C3A1.9 (3)C42—C43—C44—C451.7 (4)
N2—N1—C9A—N9179.3 (2)C43—C44—C45—C460.8 (4)
C11—N1—C9A—N92.4 (4)C44—C45—C46—C411.1 (4)
N2—N1—C9A—C3A1.3 (2)C42—C41—C46—C452.1 (3)
C11—N1—C9A—C3A178.3 (2)C4—C41—C46—C45176.3 (2)
C4—C3A—C9A—N92.9 (3)C103i—C101—C102—C1031.0 (8)
C3—C3A—C9A—N9179.4 (2)C101—C102—C103—C101i1.0 (8)
C4—C3A—C9A—N1176.48 (18)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···N20.932.582.844 (3)97
C12—H12···N90.932.543.045 (3)114
C44—H44···F60ii0.932.583.374 (3)143
Symmetry code: (ii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC28H18FN3·0.5C6H6
Mr454.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.2941 (4), 9.7419 (3), 20.7608 (5)
β (°) 118.559 (2)
V3)2361.58 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.25 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(HKL DENZO and SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.968, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
8615, 5135, 2974
Rint0.051
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.137, 1.06
No. of reflections5135
No. of parameters317
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

The authors are grateful to the Ministry of Science and Higher Education, Poland, for financial support of this work through grant No. N N204 216734.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationChaczatrian, K., Chaczatrian, G., Danel, A. & Tomasik, P. (2003). Pol. J. Chem. 77, 1141–1147.  CAS Google Scholar
First citationChaczatrian, K., Chaczatrian, G., Danel, A. & Tomasik, P. (2007). Polish Patent PL 195700 B1.  Google Scholar
First citationDomenicano, A., Vaciago, A. & Coulson, C. A. (1975). Acta Cryst. B31, 221–234.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGondek, E., Kityk, I. V., Sanetra, J., Szlachcic, P., Armatys, P., Wisla, A. & Danel, A. (2006). Opt. Laser Technol. 38, 487–492.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, Y. T., Balasubramaniam, E., Danel, A., Jarosz, B. & Tomasik, P. (2001). Chem. Mater. 13, 1207–1212.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds