metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(pyrazine-2-carbox­amide)mercury(II)]-di-μ-chlorido]

aDepartment of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: h-khavasi@sbu.ac.ir

(Received 3 January 2010; accepted 1 February 2010; online 6 February 2010)

In the polymeric title compound, [HgCl2(C5H5N3O)2]n, the HgII atom (site symmetry [\overline{1}]) adopts a distorted trans-HgN2Cl4 octa­hedral coordination geometry. In the crystal, adjacent mercury ions are bridged by pairs of chloride ions, generating infinite [100] chains, and N—H⋯O and N—H⋯(N,N) hydrogen bonds help to consolidate the packing.

Related literature

For related structures, see: Cati & Stoeckli-Evans (2004[Cati, D. S. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, m177-m179.]); Hausmann & Brooker (2004[Hausmann, J. & Brooker, S. (2004). Chem. Commun. pp. 1530-1531.]); Mir Mohammad Sadegh et al. (2010[Mir Mohammad Sadegh, B., Azhdari Tehrani, A. & Khavasi, H. R. (2010). Acta Cryst. E66, m158.]); Miyazaki et al. (2007[Miyazaki, S., Ohkubo, K., Kojima, T. & Fukuzumi, S. (2007). Angew. Chem. Int. Ed. 46, 905-908.]).

[Scheme 1]

Experimental

Crystal data
  • [HgCl2(C5H5N3O)2]

  • Mr = 517.73

  • Triclinic, [P \overline 1]

  • a = 3.8451 (8) Å

  • b = 6.4170 (13) Å

  • c = 14.854 (3) Å

  • α = 101.14 (3)°

  • β = 92.53 (3)°

  • γ = 94.69 (3)°

  • V = 357.73 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 11.14 mm−1

  • T = 298 K

  • 0.48 × 0.15 × 0.06 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical [optically, by X-RED and XSHAPE (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and XSHAPE. Stoe & Cie, Darmstadt, Germany.])] Tmin = 0.150, Tmax = 0.515

  • 4201 measured reflections

  • 1887 independent reflections

  • 1880 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.144

  • S = 1.08

  • 1887 reflections

  • 97 parameters

  • H-atom parameters constrained

  • Δρmax = 3.25 e Å−3

  • Δρmin = −3.75 e Å−3

Table 1
Selected geometric parameters (Å, °)

Hg1—N2 2.661 (7)
Hg1—Cl1i 2.970 (2)
Hg1—Cl1 2.375 (2)
Hg1—Cl1—Hg1ii 91.31 (7)
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1iii 0.86 2.01 2.864 (12) 176
N3—H3B⋯N1 0.86 2.40 2.758 (12) 105
N3—H3B⋯N1iv 0.86 2.54 3.198 (12) 134
Symmetry codes: (iii) -x+2, -y, -z+1; (iv) -x+1, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and XSHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The coordination chemistry of parazineamides is rich. Examples of coordination via the pyrazine N atoms, the carbonyl O atoms and the amide N atoms of the ligand in a non-, mono-, or bis-deprotonated form are known (Hausmann and Brooker, 2004; Cati & Stoeckli-Evans, 2004; Miyazaki et al. 2007) and metal complexes of the ligands have been used extensively to mimic the properties of biologically active systems. Here we synthesized the title compound, (I), and report here its crystal structure.

The asymmetric unit of the title compound, (I), contains one half-molecule (Fig. 1). The HgII atom is six-coordinated in a distorted octahedral configuration by two N atoms from pyrazine amides and four bridging Cl atoms. The bridging function of chloro atoms leads to a one-dimensional chain structure. The Hg—Cl and Hg—N bond lengths and angles (Table 1) are within normal ranges. In the crystal structure (Fig. 2), intermolecular N—H···O and N—H···N hydrogen bonds (Table 2) result in the formation of a supramolecular structure, in which they may be effective in the stabilization of the structure.

Related literature top

For related structures, see: Cati & Stoeckli-Evans (2004); Hausmann & Brooker (2004); Mir Mohammad Sadegh et al. (2010); Miyazaki et al. (2007).

Experimental top

A solution of pyrazineamide (0.246 g, 2.0 mmol) in methanol (10 ml) was added to a solution of HgCl2 (0.272 g, 1.0 mmol) in methanol (5 ml) at room temperature. Colourless plates of (I) were obtained by slow evaporation from methanolic solution after one week (yield; 0.359 g, 69.3%).

Refinement top

All of the H atoms were positioned geometrically with C—H = 0.93 and 0.86Å for aromatic ring and NH2 hydrogen atoms respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The largest peak and deppest hole are near to Hg (0.87 and 0.75Å respectively).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular staucture with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) in b-directrion. Hydrogen bonds are shown as dashed lines.
catena-Poly[[bis(pyrazine-2-carboxamide)mercury(II)]-di-µ-chlorido] top
Crystal data top
[HgCl2(C5H5N3O)2]Z = 1
Mr = 517.73F(000) = 242
Triclinic, P1Dx = 2.403 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8451 (8) ÅCell parameters from 976 reflections
b = 6.4170 (13) Åθ = 3.3–29.1°
c = 14.854 (3) ŵ = 11.14 mm1
α = 101.14 (3)°T = 298 K
β = 92.53 (3)°Plate, colourless
γ = 94.69 (3)°0.48 × 0.15 × 0.06 mm
V = 357.73 (13) Å3
Data collection top
Stoe IPDS II
diffractometer
1880 reflections with I > 2σ(I)
ω scansRint = 0.096
Absorption correction: numerical
[optically, by X-RED and X-SHAPE (Stoe & Cie, 2005)]
θmax = 29.1°, θmin = 3.3°
Tmin = 0.150, Tmax = 0.515h = 54
4201 measured reflectionsk = 88
1887 independent reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.110P)2 + 0.204P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.144(Δ/σ)max < 0.001
S = 1.08Δρmax = 3.25 e Å3
1887 reflectionsΔρmin = 3.75 e Å3
97 parameters
Crystal data top
[HgCl2(C5H5N3O)2]γ = 94.69 (3)°
Mr = 517.73V = 357.73 (13) Å3
Triclinic, P1Z = 1
a = 3.8451 (8) ÅMo Kα radiation
b = 6.4170 (13) ŵ = 11.14 mm1
c = 14.854 (3) ÅT = 298 K
α = 101.14 (3)°0.48 × 0.15 × 0.06 mm
β = 92.53 (3)°
Data collection top
Stoe IPDS II
diffractometer
1887 independent reflections
Absorption correction: numerical
[optically, by X-RED and X-SHAPE (Stoe & Cie, 2005)]
1880 reflections with I > 2σ(I)
Tmin = 0.150, Tmax = 0.515Rint = 0.096
4201 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.08Δρmax = 3.25 e Å3
1887 reflectionsΔρmin = 3.75 e Å3
97 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.397 (3)0.5265 (12)0.2863 (6)0.0431 (16)
H10.30770.65830.30140.052*
C20.400 (3)0.4268 (13)0.1935 (6)0.0431 (16)
H20.31770.49530.14820.052*
C30.632 (2)0.1435 (13)0.2363 (6)0.0391 (14)
H30.70830.0080.22150.047*
C40.639 (2)0.2438 (11)0.3279 (5)0.0341 (12)
C50.793 (2)0.1365 (12)0.3999 (6)0.0385 (14)
N10.520 (2)0.4354 (11)0.3536 (5)0.0429 (14)
N20.519 (2)0.2350 (11)0.1690 (5)0.0412 (13)
N30.784 (3)0.2340 (13)0.4863 (6)0.0516 (19)
H3A0.87240.17950.52960.062*
H3B0.68880.3520.49940.062*
O10.924 (3)0.0327 (12)0.3755 (5)0.0539 (18)
Cl10.8689 (6)0.2371 (3)0.05218 (16)0.0444 (4)
Hg10.5000.03963 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (4)0.036 (3)0.041 (4)0.016 (3)0.005 (3)0.007 (3)
C20.056 (4)0.042 (3)0.034 (4)0.011 (3)0.000 (3)0.012 (3)
C30.046 (4)0.042 (3)0.029 (3)0.016 (3)0.001 (3)0.004 (2)
C40.038 (3)0.036 (3)0.029 (3)0.009 (2)0.001 (3)0.006 (2)
C50.045 (4)0.040 (3)0.030 (3)0.006 (3)0.004 (3)0.008 (2)
N10.052 (4)0.038 (3)0.038 (3)0.012 (2)0.001 (3)0.003 (2)
N20.049 (4)0.045 (3)0.031 (3)0.014 (2)0.001 (3)0.007 (2)
N30.077 (6)0.045 (3)0.035 (3)0.032 (3)0.003 (3)0.003 (3)
O10.084 (5)0.047 (3)0.033 (3)0.033 (3)0.001 (3)0.004 (2)
Cl10.0448 (9)0.0477 (9)0.0434 (10)0.0146 (7)0.0022 (8)0.0114 (7)
Hg10.0397 (2)0.0505 (3)0.0305 (2)0.01765 (14)0.00015 (15)0.00733 (15)
Geometric parameters (Å, º) top
C1—N11.340 (12)C5—N31.318 (11)
C1—C21.404 (12)N3—H3A0.86
C1—H10.93N3—H3B0.86
C2—N21.338 (11)Cl1—Hg1i2.970 (2)
C2—H20.93Hg1—Cl1ii2.375 (2)
C3—N21.327 (11)Hg1—N2ii2.661 (7)
C3—C41.387 (10)Hg1—Cl1iii2.970 (2)
C3—H30.93Hg1—N22.661 (7)
C4—N11.338 (10)Hg1—Cl1iv2.970 (2)
C4—C51.506 (11)Hg1—Cl12.375 (2)
C5—O11.232 (11)
N1—C1—C2121.3 (7)C5—N3—H3A120
N1—C1—H1119.4C5—N3—H3B120
C2—C1—H1119.4H3A—N3—H3B120
N2—C2—C1121.3 (8)Hg1—Cl1—Hg1i91.31 (7)
N2—C2—H2119.4Cl1ii—Hg1—Cl1180.0
C1—C2—H2119.4Cl1ii—Hg1—N289.49 (17)
N2—C3—C4122.0 (7)Cl1—Hg1—N290.51 (17)
N2—C3—H3119Cl1ii—Hg1—N2ii90.51 (17)
C4—C3—H3119Cl1—Hg1—N2ii89.49 (17)
N1—C4—C3121.7 (8)N2—Hg1—N2ii180.0
N1—C4—C5119.3 (7)Cl1ii—Hg1—Cl1iii91.31 (7)
C3—C4—C5118.9 (7)Cl1—Hg1—Cl1iii88.69 (7)
O1—C5—N3124.0 (8)N2—Hg1—Cl1iii94.05 (18)
O1—C5—C4119.1 (7)N2ii—Hg1—Cl1iii85.95 (18)
N3—C5—C4116.9 (7)Cl1ii—Hg1—Cl1iv88.69 (7)
C4—N1—C1116.7 (7)Cl1—Hg1—Cl1iv91.31 (7)
C3—N2—C2117.0 (7)N2—Hg1—Cl1iv85.95 (18)
C3—N2—Hg1116.0 (5)N2ii—Hg1—Cl1iv94.05 (18)
C2—N2—Hg1126.8 (6)Cl1iii—Hg1—Cl1iv180.0
N1—C1—C2—N21.5 (15)C1—C2—N2—Hg1174.2 (7)
N2—C3—C4—N12.4 (13)Hg1i—Cl1—Hg1—N294.04 (18)
N2—C3—C4—C5175.8 (8)Hg1i—Cl1—Hg1—N2ii85.96 (18)
N1—C4—C5—O1174.9 (9)Hg1i—Cl1—Hg1—Cl1iii0
C3—C4—C5—O13.3 (12)Hg1i—Cl1—Hg1—Cl1iv180
N1—C4—C5—N34.0 (12)C3—N2—Hg1—Cl1ii163.8 (6)
C3—C4—C5—N3177.8 (9)C2—N2—Hg1—Cl1ii10.0 (8)
C3—C4—N1—C10.5 (12)C3—N2—Hg1—Cl116.2 (6)
C5—C4—N1—C1177.7 (8)C2—N2—Hg1—Cl1170.0 (8)
C2—C1—N1—C41.4 (13)C3—N2—Hg1—Cl1iii104.9 (6)
C4—C3—N2—C22.3 (13)C2—N2—Hg1—Cl1iii81.3 (8)
C4—C3—N2—Hg1176.7 (6)C3—N2—Hg1—Cl1iv75.1 (6)
C1—C2—N2—C30.4 (13)C2—N2—Hg1—Cl1iv98.7 (8)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+2, y, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1v0.862.012.864 (12)176
N3—H3B···N10.862.402.758 (12)105
N3—H3B···N1vi0.862.543.198 (12)134
Symmetry codes: (v) x+2, y, z+1; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[HgCl2(C5H5N3O)2]
Mr517.73
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)3.8451 (8), 6.4170 (13), 14.854 (3)
α, β, γ (°)101.14 (3), 92.53 (3), 94.69 (3)
V3)357.73 (13)
Z1
Radiation typeMo Kα
µ (mm1)11.14
Crystal size (mm)0.48 × 0.15 × 0.06
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
[optically, by X-RED and X-SHAPE (Stoe & Cie, 2005)]
Tmin, Tmax0.150, 0.515
No. of measured, independent and
observed [I > 2σ(I)] reflections
4201, 1887, 1880
Rint0.096
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.144, 1.08
No. of reflections1887
No. of parameters97
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.25, 3.75

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Hg1—N22.661 (7)Hg1—Cl12.375 (2)
Hg1—Cl1i2.970 (2)
Hg1—Cl1—Hg1ii91.31 (7)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1iii0.862.012.864 (12)176
N3—H3B···N10.862.402.758 (12)105
N3—H3B···N1iv0.862.543.198 (12)134
Symmetry codes: (iii) x+2, y, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors wish to acknowledge Shahid Beheshti University, G.C., for financial support.

References

First citationCati, D. S. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, m177–m179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHausmann, J. & Brooker, S. (2004). Chem. Commun. pp. 1530–1531.  Web of Science CSD CrossRef Google Scholar
First citationMir Mohammad Sadegh, B., Azhdari Tehrani, A. & Khavasi, H. R. (2010). Acta Cryst. E66, m158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiyazaki, S., Ohkubo, K., Kojima, T. & Fukuzumi, S. (2007). Angew. Chem. Int. Ed. 46, 905–908.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED and XSHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds