organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,7-Bis­(tri­chloro­meth­yl)-1,8-naphthyridine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Chemistry, Bengal Engineering and Science University', Shibpur, Howrah, India 711 103
*Correspondence e-mail: hkfun@usm.my

(Received 10 January 2010; accepted 9 February 2010; online 13 February 2010)

The complete mol­ecule of the title compound, C10H4Cl6N2, is generated by crystallographic twofold symmetry, with two C atoms lying on the rotation axis; the 1,8-naphthyridine ring is almost planar with an r.m.s. deviation of 0.0002 Å. In the crystal structure, the mol­ecules are stacked in an anti­parallel manner along [001]. Short Cl⋯Cl [3.3502 (4)] and Cl⋯N [3.2004 (11)–3.2220 (10) Å] contacts are observed in the crystal structure.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For graph-set notation of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2009[Fun, H.-K., Yeap, C. S., Das, N. K., Mahapatra, A. K. & Goswami, S. (2009). Acta Cryst. E65, o1747.]); Wang et al. (2008[Wang, D.-H., Yu, Y.-M., Chen, J.-H. & Fu, W.-F. (2008). Acta Cryst. E64, o112.]). For background to the properties and applications of 1,8-naphthyridines, see: Braccio et al. (2008[Braccio, M. D., Grossi, G., Roma, G., Piras, D., Mattioli, F. & Gosmar, M. (2008). Eur. J. Med. Chem. 43, 584-594.]); Chen et al. (2001[Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374-2378.]); Ferrarini et al. (1998[Ferrarini, P. L., Manera, C., Nori, C., Badawneh, M. & Saccomanni, G. (1998). Farmaco. 53, 741-746.]; 2000[Ferrarini, P. L., Mori, C., Badawneh, M., Calderone, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Chem. 35, 815-819.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C10H4Cl6N2

  • Mr = 364.85

  • Monoclinic, C 2/c

  • a = 19.9154 (4) Å

  • b = 6.5977 (1) Å

  • c = 10.5975 (2) Å

  • β = 111.483 (2)°

  • V = 1295.73 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 100 K

  • 0.40 × 0.26 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.624, Tmax = 0.944

  • 28872 measured reflections

  • 4010 independent reflections

  • 3136 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.089

  • S = 1.05

  • 4010 reflections

  • 91 parameters

  • All H-atom parameters refined

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The substituted 1,8-naphthyridine compounds have been studied for their chemical and biological activities for a long time. They show various biological activities such as antibacterial (Chen et al., 2001; Ferrarini et al., 1998), anti-inflammatory (Braccio et al., 2008) as well as antihypertensive (Ferrarini et al., 2000) properties. Trichloromethyl-substituted heterocyclic compounds are of great importance due to their broad spectrum biological activities. These interesting properties prompt us to synthesise the title compound (I) and its crystal structure was reported.

The asymmetric unit of the title molecule (Fig. 1), C10H4Cl6N2, contains one half-molecule with two shared C atoms (C3 and C4) lying on a twofold rotation axis. The 1,8-naphthyridine ring is planar with the r.m.s. deviation of 0.0002 (2) Å. One Cl atom (Cl3) of the trichloromethyl substitutent is co-planar with the 1,8-naphthyridine ring which can be indicated by the torsion angle C1–C2–C6–Cl3 = 1.85 (14) Å whereas the other two Cl atoms are in the (+)-anti-clinal and (-)-anti-clinal configurations with the torsion angles C1–C2–C6–Cl1 = 122.04 (10)° and C1–C2–C6–Cl2 = -119.02 (10)°, respectively. The C1—H1···Cl3 intramolecular interaction (Table 1) generates S(5) ring motif (Bernstein et al., 1995). The bond distances are of normal values (Allen et al., 1987) and are comparable with related structures (Fun et al., 2009; Wang et al., 2008).

In the crystal structure (Fig. 2), the non-covalent interactions play a significant role in the three-dimensional supramolecular architecture in which the molecules are stacked in an antiparallel manner along the [0 0 1] direction and the neighbouring molecules are interlinked by C—Cl···Cl interactions into polymeric chains along the [0 1 0] direction. The molecules are also consolidated by Cl···Cl [3.3502 (4)Å] and Cl···N [3.2004 (11)–3.2220 (10) Å] short contacts. π···π interactions were observed with the distances of Cg1···Cg1 = 4.2360 (6) Å (symmetry code: -x, 1 - y, 2 - z) and Cg2···Cg2 = 4.2360 (6) Å (symmetry code: -x, 1 - y, 1 - z): Cg1 and Cg2 are the centroids of C1–C4/C5A/N1 and C1A–C2A/C3–C5/N1A, respectively. All these interactions connect the molecules into a three-dimensional supramolecular network.

Related literature top

For bond-length data, see: Allen et al. (1987). For graph-set notation of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2009); Wang et al. (2008). For background to the properties and applications of 1,8-naphthyridine, see: Braccio et al. (2008); Chen et al. (2001); Ferrarini et al. (1998; 2000). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of N-chlorosuccinimide (500 mg, 4.5 mmol) and triphenylphosphine (500 mg, 4.2 mmol) was moistened with CCl4 (60 ml) in a round bottom flask and stirred at room temperature for 25 min. A solution of 2,7-dimethyl-1,8-naphthyridine (0.9 g, 5.25 mmol) was added to the suspension and the reaction mixture was stirred and heated under reflux for 7 hr. The solution was cooled and filtered. The evaporated filtrate was washed with saturated aqueous Na2CO3 and extracted repeatedly with CHCl3. Drying over anhydrous Na2SO4, the solvent was removed under reduced pressure. The crude product was purified with SiO2 chromatography (eluted with 1% ethylacetate in petroleum ether) to give the title compound as a white crystalline solid. Colorless slabs of (I) were recrystalized from CH2Cl2:hexane (1:10, v/v) by the slow evaporation of the solvent at room temperature after a week.

Refinement top

H atoms were located in a difference maps and refined isotropically. The highest residual electron density peak is located at 1.72 Å from H6 and the deepest hole is located at 0.65 Å from Cl2.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids. Atoms with suffix A were generated by symmetry code -x, y, -1/2 - z.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis, N···Cl and C···.Cl short contacts are shown as dashed lines.
2,7-Bis(trichloromethyl)-1,8-naphthyridine top
Crystal data top
C10H4Cl6N2F(000) = 720
Mr = 364.85Dx = 1.870 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4010 reflections
a = 19.9154 (4) Åθ = 2.2–40.0°
b = 6.5977 (1) ŵ = 1.30 mm1
c = 10.5975 (2) ÅT = 100 K
β = 111.483 (2)°Slab, colorless
V = 1295.73 (4) Å30.40 × 0.26 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4010 independent reflections
Radiation source: sealed tube3136 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 40.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3634
Tmin = 0.624, Tmax = 0.944k = 1111
28872 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.889P]
where P = (Fo2 + 2Fc2)/3
4010 reflections(Δ/σ)max = 0.002
91 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C10H4Cl6N2V = 1295.73 (4) Å3
Mr = 364.85Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.9154 (4) ŵ = 1.30 mm1
b = 6.5977 (1) ÅT = 100 K
c = 10.5975 (2) Å0.40 × 0.26 × 0.05 mm
β = 111.483 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4010 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3136 reflections with I > 2σ(I)
Tmin = 0.624, Tmax = 0.944Rint = 0.053
28872 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.089All H-atom parameters refined
S = 1.05Δρmax = 0.64 e Å3
4010 reflectionsΔρmin = 0.56 e Å3
91 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.090117 (15)0.01827 (4)1.12884 (3)0.01585 (6)
Cl20.194324 (15)0.02817 (4)0.99732 (3)0.01645 (6)
Cl30.202697 (15)0.31574 (4)1.20815 (3)0.01848 (6)
N10.04657 (5)0.21807 (14)0.85379 (9)0.01358 (15)
C10.09721 (6)0.53166 (17)0.96675 (12)0.01599 (18)
C20.09266 (6)0.31794 (16)0.95656 (11)0.01302 (16)
C30.00000.3281 (2)0.75000.0124 (2)
C40.00000.5430 (2)0.75000.0136 (2)
C50.05049 (6)0.64457 (17)0.63741 (11)0.01611 (18)
C60.14272 (6)0.17959 (16)1.06796 (10)0.01333 (16)
H60.0513 (10)0.788 (3)0.6355 (18)0.021 (4)*
H10.1292 (10)0.598 (3)1.038 (2)0.024 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01798 (11)0.01518 (11)0.01362 (10)0.00263 (8)0.00487 (8)0.00164 (8)
Cl20.01578 (11)0.01700 (12)0.01533 (11)0.00202 (8)0.00425 (8)0.00040 (8)
Cl30.02005 (12)0.01629 (11)0.01330 (11)0.00383 (9)0.00076 (8)0.00181 (8)
N10.0155 (4)0.0114 (3)0.0115 (3)0.0004 (3)0.0021 (3)0.0002 (3)
C10.0186 (4)0.0110 (4)0.0152 (4)0.0022 (3)0.0025 (4)0.0012 (3)
C20.0145 (4)0.0113 (4)0.0123 (4)0.0008 (3)0.0038 (3)0.0001 (3)
C30.0137 (5)0.0101 (5)0.0117 (5)0.0000.0027 (4)0.000
C40.0173 (6)0.0095 (5)0.0132 (5)0.0000.0045 (5)0.000
C50.0198 (5)0.0104 (4)0.0155 (4)0.0011 (3)0.0033 (4)0.0009 (3)
C60.0148 (4)0.0122 (4)0.0113 (4)0.0015 (3)0.0028 (3)0.0007 (3)
Geometric parameters (Å, º) top
Cl1—C61.7725 (11)C2—C61.5358 (15)
Cl2—C61.7827 (11)C3—N1i1.3602 (12)
Cl3—C61.7723 (10)C3—C41.418 (2)
N1—C21.3156 (14)C4—C51.4160 (13)
N1—C31.3602 (12)C4—C5i1.4160 (13)
C1—C5i1.3736 (16)C5—C1i1.3737 (16)
C1—C21.4145 (15)C5—H60.95 (2)
C1—H10.90 (2)
C2—N1—C3117.68 (10)C5—C4—C3118.24 (7)
C5i—C1—C2118.28 (10)C5i—C4—C3118.24 (7)
C5i—C1—H1118.1 (14)C1i—C5—C4118.91 (11)
C2—C1—H1123.6 (14)C1i—C5—H6121.6 (11)
N1—C2—C1124.62 (10)C4—C5—H6119.5 (11)
N1—C2—C6113.48 (9)C2—C6—Cl3113.05 (7)
C1—C2—C6121.90 (9)C2—C6—Cl1109.44 (7)
N1—C3—N1i115.46 (13)Cl3—C6—Cl1107.82 (6)
N1—C3—C4122.27 (6)C2—C6—Cl2108.79 (7)
N1i—C3—C4122.27 (6)Cl3—C6—Cl2108.72 (6)
C5—C4—C5i123.51 (14)Cl1—C6—Cl2108.95 (6)
C3—N1—C2—C10.00 (16)N1i—C3—C4—C5i179.98 (8)
C3—N1—C2—C6179.95 (8)C5i—C4—C5—C1i180.00 (13)
C5i—C1—C2—N10.02 (19)C3—C4—C5—C1i0.00 (13)
C5i—C1—C2—C6179.92 (11)N1—C2—C6—Cl3178.20 (8)
C2—N1—C3—N1i179.98 (11)C1—C2—C6—Cl31.85 (14)
C2—N1—C3—C40.02 (11)N1—C2—C6—Cl158.01 (11)
N1—C3—C4—C5179.98 (8)C1—C2—C6—Cl1122.04 (10)
N1i—C3—C4—C50.02 (8)N1—C2—C6—Cl260.93 (11)
N1—C3—C4—C5i0.02 (8)C1—C2—C6—Cl2119.02 (10)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl30.90 (2)2.63 (2)3.0085 (12)106.0 (14)

Experimental details

Crystal data
Chemical formulaC10H4Cl6N2
Mr364.85
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)19.9154 (4), 6.5977 (1), 10.5975 (2)
β (°) 111.483 (2)
V3)1295.73 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.40 × 0.26 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.624, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
28872, 4010, 3136
Rint0.053
(sin θ/λ)max1)0.904
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.089, 1.05
No. of reflections4010
No. of parameters91
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.64, 0.56

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

This paper is dedicated to His Majesty King Bhumibol Adulyadej of Thailand (King Rama IX) for his sustainable development of the country.

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, email: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

SPG thanks the CSIR and DST, Government of India for funds and ACM acknowledges the UGC for a fellowship. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBraccio, M. D., Grossi, G., Roma, G., Piras, D., Mattioli, F. & Gosmar, M. (2008). Eur. J. Med. Chem. 43, 584–594.  Web of Science PubMed Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerrarini, P. L., Manera, C., Nori, C., Badawneh, M. & Saccomanni, G. (1998). Farmaco. 53, 741–746.  Web of Science PubMed CAS Google Scholar
First citationFerrarini, P. L., Mori, C., Badawneh, M., Calderone, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Chem. 35, 815–819.  CrossRef CAS Google Scholar
First citationFun, H.-K., Yeap, C. S., Das, N. K., Mahapatra, A. K. & Goswami, S. (2009). Acta Cryst. E65, o1747.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, D.-H., Yu, Y.-M., Chen, J.-H. & Fu, W.-F. (2008). Acta Cryst. E64, o112.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds