metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­chloridoiron(II)]-μ-4,4′′-bis­­(benzimidazol-1-yl)-1,1′:4′,1′′-terphen­yl]

aDepartment of Applied Chemistry, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China
*Correspondence e-mail: lihuiwf@yahoo.com

(Received 18 January 2010; accepted 22 January 2010; online 6 February 2010)

In the title coordination polymer, [FeCl2(C32H22N4)]n, the FeII atom lies on a crystallographic twofold axis and a distorted FeCl2N2 tetra­hedral coordination geometry arises. The complete ligand is generated by crystallographic twofold symmetry, resulting in an infinite one-dimensional architecture along [101].

Related literature

For background to benzimidazoles as ligands, see: Vijayan et al. (2006[Vijayan, N., Bhagavannarayana, G., Balamurugan, N., Babu, R. R., Maurya, K. K., Gopalakrishnan, R. & Ramasamy, P. (2006). J. Cryst. Growth, 293, 318-323.]).

[Scheme 1]

Experimental

Crystal data
  • [FeCl2(C32H22N4)]

  • Mr = 589.29

  • Monoclinic, C 2/c

  • a = 14.519 (3) Å

  • b = 14.303 (3) Å

  • c = 12.461 (3) Å

  • β = 101.94 (3)°

  • V = 2531.6 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.846, Tmax = 0.882

  • 9515 measured reflections

  • 2218 independent reflections

  • 1960 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.117

  • S = 1.12

  • 2218 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—N1 2.076 (2)
Fe1—Cl1 2.2489 (10)

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzimidazole has been well used in crystal engineering, and a large number of benzimidazole-containing flexible ligands have been extensively studied. However, to our knowledge, the research on benzoimidazole ligands bearing rigid spacers is still less developed.

Single-crystal X-ray diffraction analysis reveals that the title compound crystallizes in the monoclinic space group C2/c. The geometry of the FeII ion is surrounded by two benzimidazole rings of distinct L ligands and two chlorine anions, which illustrates a slightly distorted tetrahedral coordination environment (Fig. 1). Notably, as shown in Fig. 2, the four-coordinated FeII center is bridged by the linear ligand L to form an infinite one-dimensional architecture along crystallographic [101] axis.

Related literature top

For background to benzimidazoles as ligands, see: Vijayan et al. (2006).

Experimental top

A mixture of (CH3)2CHOH and CHCl3 (1:1, 8 ml), as a buffer layer, was carefully layered over a solution of 4,4'-Bis(benzimidazol-1-yl)terphenyl (L, 0.06 mmol) in CHCl3 (6 ml). Then a solution of FeCl2 (0.02 mmol) in (CH3)2CHOH (6 ml) was layered over the buffer layer, and the resultant reaction was left to stand at room temperature. After ca three weeks, yellow blocks of (I) appeared at the boundary. Yield: ~10% (based on L).

Refinement top

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93Å and Uiso(H) = 1.2Ueq.

The N-bound H atoms were located in a difference map and their positions were freely refined with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A fragment of a polymeric chain in (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
catena-Poly[[dichloridoiron(II)]-µ- 4,4''-bis(benzimidazol-1-yl)-1,1':4',1''-terphenyl] top
Crystal data top
[FeCl2(C32H22N4)]F(000) = 1208
Mr = 589.29Dx = 1.546 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2574 reflections
a = 14.519 (3) Åθ = 2.0–27.9°
b = 14.303 (3) ŵ = 0.84 mm1
c = 12.461 (3) ÅT = 293 K
β = 101.94 (3)°Block, yellow
V = 2531.6 (9) Å30.20 × 0.18 × 0.15 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2218 independent reflections
Radiation source: fine-focus sealed tube1960 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = 1716
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1615
Tmin = 0.846, Tmax = 0.882l = 1414
9515 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0565P)2 + 2.1075P]
where P = (Fo2 + 2Fc2)/3
2218 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[FeCl2(C32H22N4)]V = 2531.6 (9) Å3
Mr = 589.29Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.519 (3) ŵ = 0.84 mm1
b = 14.303 (3) ÅT = 293 K
c = 12.461 (3) Å0.20 × 0.18 × 0.15 mm
β = 101.94 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2218 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1960 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.882Rint = 0.052
9515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.12Δρmax = 0.35 e Å3
2218 reflectionsΔρmin = 0.41 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00001.12084 (4)0.75000.0240 (2)
Cl10.02255 (6)1.20219 (6)0.90773 (8)0.0423 (3)
N20.20786 (16)0.96985 (16)0.63670 (19)0.0186 (6)
N10.10013 (17)1.02547 (17)0.72169 (19)0.0207 (6)
C150.4708 (2)0.8783 (2)0.2868 (2)0.0176 (6)
H150.45160.82160.31150.021*
C110.3788 (2)0.9625 (2)0.4047 (2)0.0181 (6)
C140.4398 (2)0.9609 (2)0.3250 (2)0.0185 (6)
C80.2661 (2)0.9662 (2)0.5587 (2)0.0187 (6)
C130.3223 (2)1.0412 (2)0.5485 (2)0.0183 (6)
H130.32311.09310.59370.022*
C30.1067 (2)0.8921 (2)0.8545 (2)0.0213 (7)
H30.05980.91410.88870.026*
C100.3213 (2)0.8878 (2)0.4174 (3)0.0228 (7)
H100.32120.83510.37360.027*
C10.1466 (2)1.0385 (2)0.6442 (2)0.0203 (7)
H10.13811.09050.59840.024*
C90.2649 (2)0.8892 (2)0.4924 (3)0.0233 (7)
H90.22610.83870.49860.028*
C160.4710 (2)1.0437 (2)0.2859 (2)0.0199 (6)
H160.45141.10050.30980.024*
C70.2006 (2)0.9061 (2)0.7177 (2)0.0171 (6)
C120.3767 (2)1.0395 (2)0.4721 (2)0.0184 (6)
H120.41371.09130.46470.022*
C20.1330 (2)0.9411 (2)0.7698 (2)0.0177 (6)
C50.2242 (2)0.7782 (2)0.8350 (2)0.0245 (7)
H50.25590.72350.86050.029*
C60.2490 (2)0.8247 (2)0.7494 (2)0.0212 (7)
H60.29570.80270.71490.025*
C40.1526 (2)0.8102 (2)0.8854 (2)0.0235 (7)
H40.13600.77500.94120.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0229 (4)0.0202 (4)0.0323 (4)0.0000.0134 (3)0.000
Cl10.0413 (6)0.0368 (5)0.0522 (6)0.0083 (4)0.0174 (5)0.0199 (4)
N20.0184 (13)0.0194 (13)0.0205 (13)0.0010 (10)0.0099 (10)0.0014 (10)
N10.0213 (14)0.0203 (14)0.0226 (13)0.0014 (11)0.0097 (11)0.0035 (11)
C150.0176 (16)0.0168 (15)0.0187 (14)0.0018 (12)0.0041 (12)0.0017 (12)
C110.0186 (16)0.0178 (15)0.0182 (14)0.0007 (12)0.0043 (12)0.0020 (12)
C140.0170 (15)0.0204 (16)0.0185 (14)0.0008 (12)0.0047 (12)0.0003 (12)
C80.0172 (15)0.0216 (16)0.0192 (14)0.0036 (12)0.0082 (12)0.0026 (12)
C130.0190 (16)0.0155 (15)0.0203 (15)0.0014 (12)0.0041 (12)0.0030 (12)
C30.0202 (16)0.0266 (17)0.0182 (15)0.0030 (13)0.0066 (12)0.0023 (13)
C100.0272 (18)0.0191 (17)0.0253 (16)0.0050 (13)0.0125 (14)0.0069 (13)
C10.0193 (16)0.0190 (16)0.0242 (15)0.0009 (13)0.0081 (13)0.0044 (13)
C90.0243 (17)0.0193 (16)0.0281 (17)0.0046 (13)0.0097 (14)0.0021 (13)
C160.0224 (16)0.0167 (15)0.0218 (15)0.0004 (12)0.0074 (12)0.0023 (12)
C70.0199 (16)0.0134 (14)0.0189 (14)0.0024 (12)0.0057 (12)0.0013 (12)
C120.0183 (16)0.0171 (15)0.0200 (14)0.0018 (12)0.0044 (12)0.0004 (12)
C20.0159 (15)0.0170 (15)0.0211 (15)0.0003 (12)0.0058 (12)0.0011 (12)
C50.0288 (18)0.0147 (16)0.0284 (17)0.0007 (13)0.0018 (14)0.0025 (13)
C60.0203 (16)0.0185 (16)0.0257 (16)0.0001 (13)0.0066 (13)0.0037 (13)
C40.0315 (18)0.0207 (16)0.0181 (15)0.0060 (13)0.0048 (13)0.0024 (13)
Geometric parameters (Å, º) top
Fe1—N1i2.076 (2)C13—H130.9300
Fe1—N12.076 (2)C3—C41.362 (4)
Fe1—Cl1i2.2489 (10)C3—C21.384 (4)
Fe1—Cl12.2489 (10)C3—H30.9300
N2—C11.342 (4)C10—C91.364 (4)
N2—C71.381 (4)C10—H100.9300
N2—C81.415 (4)C1—H10.9300
N1—C11.300 (4)C9—H90.9300
N1—C21.388 (4)C16—C16ii1.349 (6)
C15—C15ii1.373 (6)C16—H160.9300
C15—C141.383 (4)C7—C61.375 (4)
C15—H150.9300C7—C21.379 (4)
C11—C101.386 (4)C12—H120.9300
C11—C121.389 (4)C5—C61.367 (4)
C11—C141.461 (4)C5—C41.398 (4)
C14—C161.392 (4)C5—H50.9300
C8—C131.368 (4)C6—H60.9300
C8—C91.375 (4)C4—H40.9300
C13—C121.358 (4)
N1i—Fe1—N197.86 (13)C9—C10—C11121.9 (3)
N1i—Fe1—Cl1i120.53 (7)C9—C10—H10119.1
N1—Fe1—Cl1i99.90 (7)C11—C10—H10119.1
N1i—Fe1—Cl199.90 (7)N1—C1—N2113.6 (3)
N1—Fe1—Cl1120.53 (7)N1—C1—H1123.2
Cl1i—Fe1—Cl1117.69 (6)N2—C1—H1123.2
C1—N2—C7106.3 (2)C10—C9—C8119.3 (3)
C1—N2—C8125.0 (2)C10—C9—H9120.4
C7—N2—C8128.6 (2)C8—C9—H9120.4
C1—N1—C2105.1 (2)C16ii—C16—C14121.72 (17)
C1—N1—Fe1121.4 (2)C16ii—C16—H16119.1
C2—N1—Fe1133.50 (19)C14—C16—H16119.1
C15ii—C15—C14121.33 (17)C6—C7—C2122.9 (3)
C15ii—C15—H15119.3C6—C7—N2131.2 (3)
C14—C15—H15119.3C2—C7—N2105.9 (2)
C10—C11—C12117.0 (3)C13—C12—C11121.8 (3)
C10—C11—C14122.0 (3)C13—C12—H12119.1
C12—C11—C14121.0 (3)C11—C12—H12119.1
C15—C14—C16117.0 (3)C7—C2—C3120.7 (3)
C15—C14—C11122.2 (3)C7—C2—N1109.1 (2)
C16—C14—C11120.8 (3)C3—C2—N1130.2 (3)
C13—C8—C9120.3 (3)C6—C5—C4122.1 (3)
C13—C8—N2119.2 (3)C6—C5—H5118.9
C9—C8—N2120.5 (3)C4—C5—H5118.9
C12—C13—C8119.7 (3)C5—C6—C7115.8 (3)
C12—C13—H13120.1C5—C6—H6122.1
C8—C13—H13120.1C7—C6—H6122.1
C4—C3—C2117.1 (3)C3—C4—C5121.3 (3)
C4—C3—H3121.5C3—C4—H4119.3
C2—C3—H3121.5C5—C4—H4119.3
N1i—Fe1—N1—C1139.0 (3)N2—C8—C9—C10179.6 (3)
Cl1i—Fe1—N1—C116.0 (2)C15—C14—C16—C16ii0.1 (5)
Cl1—Fe1—N1—C1114.6 (2)C11—C14—C16—C16ii178.6 (3)
N1i—Fe1—N1—C240.2 (2)C1—N2—C7—C6177.4 (3)
Cl1i—Fe1—N1—C2163.2 (3)C8—N2—C7—C63.3 (5)
Cl1—Fe1—N1—C266.2 (3)C1—N2—C7—C20.4 (3)
C15ii—C15—C14—C160.3 (5)C8—N2—C7—C2178.9 (3)
C15ii—C15—C14—C11179.0 (3)C8—C13—C12—C111.3 (4)
C10—C11—C14—C1523.9 (4)C10—C11—C12—C131.1 (4)
C12—C11—C14—C15155.5 (3)C14—C11—C12—C13178.3 (3)
C10—C11—C14—C16157.5 (3)C6—C7—C2—C33.6 (5)
C12—C11—C14—C1623.2 (4)N2—C7—C2—C3178.3 (3)
C1—N2—C8—C1353.0 (4)C6—C7—C2—N1177.6 (3)
C7—N2—C8—C13127.8 (3)N2—C7—C2—N10.5 (3)
C1—N2—C8—C9125.7 (3)C4—C3—C2—C72.0 (4)
C7—N2—C8—C953.5 (4)C4—C3—C2—N1179.4 (3)
C9—C8—C13—C120.3 (4)C1—N1—C2—C70.4 (3)
N2—C8—C13—C12178.4 (3)Fe1—N1—C2—C7179.6 (2)
C12—C11—C10—C90.1 (5)C1—N1—C2—C3178.3 (3)
C14—C11—C10—C9179.5 (3)Fe1—N1—C2—C31.0 (5)
C2—N1—C1—N20.1 (3)C4—C5—C6—C71.4 (4)
Fe1—N1—C1—N2179.48 (19)C2—C7—C6—C51.8 (4)
C7—N2—C1—N10.2 (3)N2—C7—C6—C5179.3 (3)
C8—N2—C1—N1179.1 (3)C2—C3—C4—C51.1 (4)
C11—C10—C9—C81.2 (5)C6—C5—C4—C32.9 (5)
C13—C8—C9—C100.9 (5)
Symmetry codes: (i) x, y, z+3/2; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[FeCl2(C32H22N4)]
Mr589.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.519 (3), 14.303 (3), 12.461 (3)
β (°) 101.94 (3)
V3)2531.6 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.846, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
9515, 2218, 1960
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.117, 1.12
No. of reflections2218
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.41

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Fe1—N12.076 (2)Fe1—Cl12.2489 (10)
 

Acknowledgements

We thank the College Research Program of Yuncheng University [2008114] for funding.

References

First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijayan, N., Bhagavannarayana, G., Balamurugan, N., Babu, R. R., Maurya, K. K., Gopalakrishnan, R. & Ramasamy, P. (2006). J. Cryst. Growth, 293, 318–323.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds