metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tetra­phenyl­phospho­nium) bis­­[N-(2,5-di­chloro­phenyl­sulfon­yl)di­thio­carbimato(2−)-κ2S,S′]platinate(II)

aInstituto de Química – UFU, 38408-100 Uberlândia, MG, Brazil, and bDepartamento de Química – UFV, 36571-000 Viçosa, MG, Brazil
*Correspondence e-mail: sguilardi@yahoo.com.br

(Received 21 January 2010; accepted 26 January 2010; online 3 February 2010)

In the title salt, (C24H20P)2[Pt(C7H3Cl2NO2S3)2], the PtII ion (site symmetry [\overline{1}]) is coordinated by two S,S′-bidentate N-(2,5-dichloro­phenyl­sulfon­yl)dithio­carbimate ligands, resulting in a slightly distorted PtS4 square-planar geometry. In the crystal, a C—H⋯O inter­action is observed, as well as electrostatic attraction between the oppositely charged ions.

Related literature

For other complexes containing a [Pt(RSO2N=CS2)]2− unit, see: Amim et al. (2008[Amim, R. S., Oliveira, M. R. L., Perpétuo, G. J., Janczak, J., Miranda, L. D. L. & Rubinger, M. M. M. (2008). Polyhedron, 27, 1891-1897.]); Oliveira et al. (2003[Oliveira, M. R. L., Diniz, R., De Bellis, V. M. & Fernandes, N. G. (2003). Polyhedron, 22, 1561-1566.], 2004[Oliveira, M. R. L., Rubinger, M. M. M., Guilardi, S., Franca, E. F., Ellena, J. & De Bellis, V. M. (2004). Polyhedron, 22, 1153-1158.]). For general background to dithio­carbimates, see: Hogarth (2005[Hogarth, G. A. (2005). Prog. Inorg. Chem. 53, 71-561.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For further synthetic details, see: Franca et al. (2006[Franca, E. F., Oliveira, M. R. L., Guilardi, S., Andrade, R. P., Lindemann, R. H., Amim, J. Jr, Ellena, J., De Bellis, V. M. & Rubinger, M. M. M. (2006). Polyhedron, 25, 2119-2126.]).

[Scheme 1]

Experimental

Crystal data
  • (C24H20P)2[Pt(C7H3Cl2NO2S3)2]

  • Mr = 1474.3

  • Triclinic, [P \overline 1]

  • a = 9.6284 (1) Å

  • b = 10.3409 (2) Å

  • c = 15.1278 (2) Å

  • α = 76.951 (1)°

  • β = 88.353 (1)°

  • γ = 86.193 (1)°

  • V = 1463.94 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.90 mm−1

  • T = 120 K

  • 0.34 × 0.34 × 0.3 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: gaussian (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.439, Tmax = 0.477

  • 11423 measured reflections

  • 6536 independent reflections

  • 6483 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.068

  • S = 1.11

  • 6536 reflections

  • 367 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −2.58 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt—S1 2.3128 (6)
Pt—S2 2.3233 (6)
S1—Pt—S2 74.59 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27⋯O1i 0.95 2.43 3.111 (4) 128
Symmetry code: (i) x+1, y, z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

We became interested in the syntheses and characterization of Pt(II) complexes with dithiocarbimates due to their potential application as antitumoral. Some platinum- dithiocarbimato-anionic complexes with general formulae [Pt(RSO2NCS2)]2- (R = aryl groups) have had their structures determined by X-ray diffraction techniques. All of these compounds have the tetrabutylammonium as counter-ion (Amim et al., 2008; Oliveira et al., 2004). Variations in the counter-ions and in the R group can be important to modulate the activity of these compounds favoring the biological application.

The title compound is quite stable at the ambient conditions. The Pt(II) is located at the inversion centre and the PtS4 fragment has a distorted square-planar geometry due to the bidentate chelation (Figure 1). The Pt—S bond lengths are almost equal but the angles S1—Pt—S2 and S2i—Pt—S1 are 74.59 (2)° and 105.41 (2)° respectively (Table 1). In the fragment N CS2, the C—S bond lengths are nearly equal and are shorter than C—S single bonds (ca 1.815 Å) ( Allen et al., 1987). The C1N bond distances [1.310 (3) Å] have a double character. This behavior indicates that the electron density is delocalized over the entire NCS2 moiety. The S1—C1—N angle is significantly greater than S2—C1—N probably due to the repulsive interaction between the (2,5-Cl2C2H3)SO2 group and the S1 atom, which are in cis position in relation to the C1—N bond. Similar behavior is observed in the square-planar platinum(II) and nickel(II) complexes of dithiocarbimates (Amim et al., 2008; Oliveira et al., 2004; Oliveira et al., 2003; Franca et al., 2006).

The bond lengths and angles of the tetraphenylphosphonium cations are in agreement with the expected values (Allen et al., 1987). The crystal packing is mainly maintained by ionic bond, but there are weak interactions of the type C—H···O (Table 2).

Related literature top

For other complexes containing a [Pt(RSO2NCS2)2- unit, see: Amim et al. (2008); Oliveira et al. (2003, 2004). For general background to dithiocarbimates, see: Hogarth (2005). For reference structural data, see: Allen et al. (1987). For further synthetic details, see: Franca et al. (2006).

Experimental top

Potassium 2,5-dichlorophenylsulfonyldithiocarbimate dihydrate was prepared from the sulfonamide using procedures described in the literature (Franca et al., 2006). The title compound was prepared in 1:1 (10 ml) methanol:water mixture from potassium tetrachloroplatinate(II) (0.40 mmol) potassium 2,5-dichlorophenylsulfonyldithiocarbimate dihydrate (0.80 mmol) and tetraphenylphosphonium bromide (0.80 mmol). The reaction mixture was stirred for 1 h at room temperature. The yellow solid obtained was filtered, washed with distilled water, ethyl alcohol and dried under reduced pressure. The title compound is slightly soluble in chloroform and insoluble in water and in most organic solvents. Yellow prisms of (I) were obtained after slow evaporation of solution of the compound in hot chloroform. M.p. 195.2-195.6°C. IR (most important bands, cm-1): 1409 ν(CN); 1309 νass(SO2); 1107 νsym(SO2); 932 νass(CS2) and 312 ν(NiS).

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H distances of 0.95 Å, and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 30% probability level and H atoms omitted for clarity.
Bis(tetraphenylphosphonium) bis[N-(2,5-dichlorophenylsulfonyl)dithiocarbimato(2-)- κ2S,S']platinate(II) top
Crystal data top
(C24H20P)2[Pt(C7H3Cl2NO2S3)2]Z = 1
Mr = 1474.3F(000) = 736
Triclinic, P1Dx = 1.672 Mg m3
a = 9.6284 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3409 (2) ÅCell parameters from 20612 reflections
c = 15.1278 (2) Åθ = 2.9–27.1°
α = 76.951 (1)°µ = 2.90 mm1
β = 88.353 (1)°T = 120 K
γ = 86.193 (1)°Prism, yellow
V = 1463.94 (4) Å30.34 × 0.34 × 0.3 mm
Data collection top
Nonius KappaCCD
diffractometer
6483 reflections with I > 2σ(I)
CCD rotation images, thick slices scansRint = 0.029
Absorption correction: gaussian
(Coppens et al., 1965)
θmax = 27.3°, θmin = 2.9°
Tmin = 0.439, Tmax = 0.477h = 1212
11423 measured reflectionsk = 1313
6536 independent reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.5896P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.69 e Å3
6536 reflectionsΔρmin = 2.58 e Å3
367 parameters
Crystal data top
(C24H20P)2[Pt(C7H3Cl2NO2S3)2]γ = 86.193 (1)°
Mr = 1474.3V = 1463.94 (4) Å3
Triclinic, P1Z = 1
a = 9.6284 (1) ÅMo Kα radiation
b = 10.3409 (2) ŵ = 2.90 mm1
c = 15.1278 (2) ÅT = 120 K
α = 76.951 (1)°0.34 × 0.34 × 0.3 mm
β = 88.353 (1)°
Data collection top
Nonius KappaCCD
diffractometer
6536 independent reflections
Absorption correction: gaussian
(Coppens et al., 1965)
6483 reflections with I > 2σ(I)
Tmin = 0.439, Tmax = 0.477Rint = 0.029
11423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.11Δρmax = 0.69 e Å3
6536 reflectionsΔρmin = 2.58 e Å3
367 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.48411 (6)1.00796 (6)0.28241 (4)0.01728 (12)
C130.5666 (3)0.7769 (2)0.40148 (18)0.0233 (5)
H130.59060.83390.43910.028*
C120.5927 (3)0.6407 (3)0.4298 (2)0.0271 (5)
H120.63460.6040.48680.032*
C110.5571 (3)0.5583 (3)0.3744 (2)0.0287 (6)
H110.57580.46490.39340.034*
C210.3060 (3)1.0340 (3)0.13883 (19)0.0267 (5)
H210.24280.98830.18240.032*
C100.4953 (3)0.6104 (3)0.2923 (2)0.0284 (6)
H100.47090.55250.25540.034*
C160.1901 (3)1.0494 (3)0.47488 (19)0.0299 (6)
H160.1440.99460.52440.036*
C180.2237 (3)1.2660 (3)0.3820 (2)0.0323 (6)
H180.20251.35930.36880.039*
C220.2692 (3)1.0749 (3)0.0481 (2)0.0315 (6)
H220.18121.05570.02910.038*
C170.1609 (3)1.1857 (3)0.4552 (2)0.0337 (7)
H170.09711.2240.49250.04*
C250.5288 (3)1.1294 (3)0.10141 (19)0.0266 (5)
H250.6181.1470.11960.032*
C270.7675 (3)1.0027 (3)0.2710 (2)0.0332 (6)
H270.75930.92260.25130.04*
C240.4903 (3)1.1720 (3)0.0114 (2)0.0329 (6)
H240.5521.22020.03210.04*
C290.9089 (4)1.1685 (4)0.3024 (2)0.0442 (8)
H290.99761.20340.30290.053*
C300.7922 (4)1.2346 (3)0.3305 (2)0.0418 (8)
H300.80141.31370.35130.05*
C280.8976 (3)1.0525 (4)0.2736 (2)0.0434 (8)
H280.97851.00670.25560.052*
C260.6493 (3)1.0705 (3)0.29743 (17)0.0228 (5)
C200.4372 (3)1.0611 (2)0.16505 (17)0.0208 (5)
C140.3522 (3)1.0734 (2)0.34942 (17)0.0204 (5)
C150.2866 (3)0.9923 (3)0.42239 (18)0.0237 (5)
H150.30740.89890.43630.028*
C80.5052 (2)0.8304 (2)0.31772 (17)0.0187 (5)
C90.4679 (3)0.7474 (2)0.26259 (18)0.0218 (5)
H90.42480.78330.20590.026*
C190.3180 (3)1.2109 (3)0.3275 (2)0.0274 (5)
H190.35911.26590.27580.033*
C310.6623 (3)1.1861 (3)0.3286 (2)0.0321 (6)
H310.58231.23120.34830.038*
C230.3612 (3)1.1437 (3)0.0145 (2)0.0332 (6)
H230.33511.1720.07630.04*
Pt00.50.50.01621 (5)
S20.17449 (6)0.63059 (6)0.42652 (4)0.02153 (13)
S30.04993 (7)0.73789 (6)0.15524 (4)0.02273 (13)
S10.07133 (6)0.57316 (7)0.35140 (4)0.02520 (13)
Cl10.37103 (7)0.44428 (8)0.10640 (5)0.03624 (16)
Cl20.26814 (7)0.48922 (8)0.12924 (5)0.03452 (15)
C30.1452 (3)0.5687 (2)0.13550 (17)0.0218 (5)
H30.20960.63570.14870.026*
C10.0838 (2)0.6508 (2)0.32596 (17)0.0190 (5)
O20.1460 (2)0.7855 (2)0.08289 (14)0.0344 (5)
C20.0029 (3)0.5823 (2)0.13914 (16)0.0200 (5)
N0.1355 (2)0.7139 (2)0.24836 (15)0.0231 (4)
O10.0771 (2)0.81846 (19)0.15895 (14)0.0320 (4)
C40.1928 (3)0.4572 (3)0.11257 (17)0.0242 (5)
C70.0896 (3)0.4807 (2)0.12334 (17)0.0226 (5)
C60.0405 (3)0.3690 (3)0.10070 (18)0.0281 (6)
H60.10450.30010.08990.034*
C50.1009 (3)0.3578 (3)0.09378 (18)0.0278 (5)
H50.13450.2830.07640.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0190 (3)0.0156 (3)0.0170 (3)0.0017 (2)0.0019 (2)0.0028 (2)
C130.0228 (12)0.0221 (12)0.0251 (13)0.0013 (9)0.0040 (10)0.0052 (10)
C120.0237 (13)0.0235 (12)0.0300 (14)0.0033 (10)0.0042 (10)0.0015 (10)
C110.0252 (13)0.0167 (11)0.0425 (17)0.0001 (9)0.0041 (11)0.0039 (11)
C210.0263 (13)0.0263 (12)0.0263 (14)0.0009 (10)0.0058 (10)0.0037 (10)
C100.0301 (14)0.0230 (12)0.0350 (15)0.0046 (10)0.0033 (11)0.0123 (11)
C160.0266 (14)0.0403 (15)0.0214 (13)0.0049 (11)0.0013 (10)0.0059 (11)
C180.0323 (15)0.0271 (13)0.0409 (17)0.0102 (11)0.0124 (13)0.0166 (12)
C220.0334 (15)0.0290 (13)0.0319 (15)0.0064 (11)0.0140 (12)0.0074 (12)
C170.0296 (14)0.0446 (16)0.0313 (15)0.0132 (12)0.0085 (12)0.0215 (13)
C250.0354 (14)0.0208 (12)0.0235 (13)0.0068 (10)0.0024 (11)0.0028 (10)
C270.0246 (14)0.0462 (17)0.0323 (15)0.0081 (12)0.0029 (11)0.0149 (13)
C240.0511 (18)0.0231 (13)0.0221 (14)0.0038 (12)0.0017 (12)0.0009 (10)
C290.0392 (17)0.065 (2)0.0252 (15)0.0321 (16)0.0076 (13)0.0063 (14)
C300.057 (2)0.0319 (15)0.0364 (17)0.0223 (14)0.0183 (15)0.0017 (13)
C280.0235 (14)0.075 (2)0.0337 (17)0.0164 (15)0.0035 (12)0.0135 (16)
C260.0240 (12)0.0259 (12)0.0180 (12)0.0080 (9)0.0040 (9)0.0014 (9)
C200.0266 (12)0.0166 (10)0.0188 (12)0.0001 (9)0.0047 (9)0.0032 (9)
C140.0217 (12)0.0182 (11)0.0215 (12)0.0018 (9)0.0032 (9)0.0055 (9)
C150.0241 (12)0.0234 (12)0.0228 (12)0.0026 (9)0.0023 (10)0.0045 (10)
C80.0163 (11)0.0169 (10)0.0224 (12)0.0000 (8)0.0000 (9)0.0037 (9)
C90.0212 (12)0.0234 (12)0.0218 (12)0.0026 (9)0.0008 (9)0.0069 (10)
C190.0307 (14)0.0204 (12)0.0302 (14)0.0016 (10)0.0061 (11)0.0045 (10)
C310.0390 (16)0.0234 (13)0.0336 (15)0.0049 (11)0.0122 (12)0.0037 (11)
C230.0527 (18)0.0221 (12)0.0226 (14)0.0095 (12)0.0118 (13)0.0028 (10)
Pt0.01621 (7)0.01741 (7)0.01562 (8)0.00152 (4)0.00092 (5)0.00498 (5)
S20.0196 (3)0.0272 (3)0.0181 (3)0.0071 (2)0.0012 (2)0.0041 (2)
S30.0290 (3)0.0199 (3)0.0184 (3)0.0056 (2)0.0033 (2)0.0008 (2)
S10.0198 (3)0.0374 (3)0.0174 (3)0.0103 (2)0.0013 (2)0.0013 (3)
Cl10.0297 (3)0.0462 (4)0.0361 (4)0.0153 (3)0.0007 (3)0.0126 (3)
Cl20.0233 (3)0.0450 (4)0.0312 (4)0.0054 (3)0.0021 (3)0.0021 (3)
C30.0247 (12)0.0227 (11)0.0175 (12)0.0010 (9)0.0017 (9)0.0032 (9)
C10.0185 (11)0.0182 (11)0.0209 (12)0.0019 (8)0.0003 (9)0.0056 (9)
O20.0483 (13)0.0324 (10)0.0213 (10)0.0184 (9)0.0020 (9)0.0011 (8)
C20.0257 (12)0.0193 (11)0.0134 (11)0.0018 (9)0.0022 (9)0.0001 (9)
N0.0225 (11)0.0266 (11)0.0201 (11)0.0069 (8)0.0011 (8)0.0035 (8)
O10.0397 (11)0.0213 (9)0.0349 (11)0.0044 (8)0.0116 (9)0.0063 (8)
C40.0267 (13)0.0275 (12)0.0176 (12)0.0074 (10)0.0003 (10)0.0016 (10)
C70.0235 (12)0.0250 (12)0.0161 (11)0.0012 (9)0.0009 (9)0.0015 (9)
C60.0395 (15)0.0215 (12)0.0206 (13)0.0047 (10)0.0029 (11)0.0011 (10)
C50.0425 (16)0.0204 (12)0.0202 (13)0.0068 (10)0.0014 (11)0.0030 (10)
Geometric parameters (Å, º) top
P—C81.792 (2)C29—H290.95
P—C141.794 (3)C30—C311.382 (4)
P—C261.795 (3)C30—H300.95
P—C201.797 (3)C28—H280.95
C13—C121.384 (4)C26—C311.395 (4)
C13—C81.394 (4)C14—C151.390 (4)
C13—H130.95C14—C191.404 (3)
C12—C111.388 (4)C15—H150.95
C12—H120.95C8—C91.394 (3)
C11—C101.372 (4)C9—H90.95
C11—H110.95C19—H190.95
C21—C221.390 (4)C31—H310.95
C21—C201.400 (4)C23—H230.95
C21—H210.95Pt—S1i2.3128 (6)
C10—C91.396 (4)Pt—S12.3128 (6)
C10—H100.95Pt—S2i2.3233 (6)
C16—C171.384 (4)Pt—S22.3233 (6)
C16—C151.393 (4)S2—C11.740 (3)
C16—H160.95S3—O21.434 (2)
C18—C171.376 (5)S3—O11.440 (2)
C18—C191.389 (4)S3—N1.614 (2)
C18—H180.95S3—C21.788 (2)
C22—C231.385 (5)S1—C11.735 (2)
C22—H220.95Cl1—C41.737 (3)
C17—H170.95Cl2—C71.733 (3)
C25—C241.386 (4)C3—C41.385 (3)
C25—C201.389 (4)C3—C21.391 (4)
C25—H250.95C3—H30.95
C27—C281.391 (4)C1—N1.310 (3)
C27—C261.393 (4)C2—C71.390 (3)
C27—H270.95C4—C51.385 (4)
C24—C231.382 (5)C7—C61.391 (4)
C24—H240.95C6—C51.383 (4)
C29—C281.377 (5)C6—H60.95
C29—C301.383 (6)C5—H50.95
C8—P—C14110.89 (12)C15—C14—C19120.1 (2)
C8—P—C26106.58 (12)C15—C14—P121.79 (18)
C14—P—C26110.24 (12)C19—C14—P118.1 (2)
C8—P—C20111.91 (11)C14—C15—C16119.3 (2)
C14—P—C20108.34 (12)C14—C15—H15120.3
C26—P—C20108.85 (12)C16—C15—H15120.3
C12—C13—C8120.1 (2)C9—C8—C13120.4 (2)
C12—C13—H13120C9—C8—P121.96 (19)
C8—C13—H13120C13—C8—P117.59 (18)
C13—C12—C11119.5 (3)C8—C9—C10118.7 (2)
C13—C12—H12120.3C8—C9—H9120.7
C11—C12—H12120.3C10—C9—H9120.7
C10—C11—C12120.7 (2)C18—C19—C14119.5 (3)
C10—C11—H11119.7C18—C19—H19120.2
C12—C11—H11119.7C14—C19—H19120.2
C22—C21—C20119.1 (3)C30—C31—C26119.6 (3)
C22—C21—H21120.4C30—C31—H31120.2
C20—C21—H21120.4C26—C31—H31120.2
C11—C10—C9120.7 (2)C24—C23—C22121.1 (3)
C11—C10—H10119.6C24—C23—H23119.4
C9—C10—H10119.6C22—C23—H23119.4
C17—C16—C15120.3 (3)S1i—Pt—S1180
C17—C16—H16119.8S1i—Pt—S2i74.59 (2)
C15—C16—H16119.8S1—Pt—S2i105.41 (2)
C17—C18—C19120.2 (3)S1i—Pt—S2105.41 (2)
C17—C18—H18119.9S1—Pt—S274.59 (2)
C19—C18—H18119.9S2i—Pt—S2180.00 (3)
C23—C22—C21119.9 (3)C1—S2—Pt88.44 (8)
C23—C22—H22120.1O2—S3—O1116.81 (13)
C21—C22—H22120.1O2—S3—N106.59 (12)
C18—C17—C16120.5 (3)O1—S3—N111.58 (12)
C18—C17—H17119.7O2—S3—C2106.56 (12)
C16—C17—H17119.7O1—S3—C2105.50 (12)
C24—C25—C20120.1 (3)N—S3—C2109.57 (11)
C24—C25—H25119.9C1—S1—Pt88.90 (9)
C20—C25—H25119.9C4—C3—C2119.8 (2)
C28—C27—C26119.8 (3)C4—C3—H3120.1
C28—C27—H27120.1C2—C3—H3120.1
C26—C27—H27120.1N—C1—S1130.8 (2)
C23—C24—C25119.4 (3)N—C1—S2121.34 (19)
C23—C24—H24120.3S1—C1—S2107.86 (14)
C25—C24—H24120.3C7—C2—C3119.2 (2)
C28—C29—C30120.6 (3)C7—C2—S3123.7 (2)
C28—C29—H29119.7C3—C2—S3116.91 (18)
C30—C29—H29119.7C1—N—S3121.76 (18)
C31—C30—C29120.3 (3)C5—C4—C3121.1 (2)
C31—C30—H30119.9C5—C4—Cl1120.0 (2)
C29—C30—H30119.9C3—C4—Cl1118.9 (2)
C29—C28—C27119.8 (3)C2—C7—C6120.4 (2)
C29—C28—H28120.1C2—C7—Cl2121.7 (2)
C27—C28—H28120.1C6—C7—Cl2117.9 (2)
C27—C26—C31119.9 (3)C5—C6—C7120.4 (2)
C27—C26—P117.0 (2)C5—C6—H6119.8
C31—C26—P123.0 (2)C7—C6—H6119.8
C25—C20—C21120.4 (2)C6—C5—C4119.0 (2)
C25—C20—P120.7 (2)C6—C5—H5120.5
C21—C20—P118.9 (2)C4—C5—H5120.5
C8—C13—C12—C110.1 (4)C20—P—C8—C13168.17 (19)
C13—C12—C11—C100.6 (4)C13—C8—C9—C101.0 (4)
C12—C11—C10—C90.5 (4)P—C8—C9—C10176.1 (2)
C20—C21—C22—C231.2 (4)C11—C10—C9—C80.3 (4)
C19—C18—C17—C160.5 (4)C17—C18—C19—C142.1 (4)
C15—C16—C17—C182.0 (4)C15—C14—C19—C183.3 (4)
C20—C25—C24—C231.2 (4)P—C14—C19—C18175.4 (2)
C28—C29—C30—C311.2 (5)C29—C30—C31—C260.4 (5)
C30—C29—C28—C271.3 (5)C27—C26—C31—C301.8 (4)
C26—C27—C28—C290.1 (5)P—C26—C31—C30174.1 (2)
C28—C27—C26—C311.6 (5)C25—C24—C23—C220.7 (4)
C28—C27—C26—P174.5 (3)C21—C22—C23—C240.5 (4)
C8—P—C26—C2742.3 (2)S1i—Pt—S2—C1177.05 (8)
C14—P—C26—C27162.7 (2)S1—Pt—S2—C12.95 (8)
C20—P—C26—C2778.6 (2)S2i—Pt—S1—C1177.05 (8)
C8—P—C26—C31141.7 (2)S2—Pt—S1—C12.95 (8)
C14—P—C26—C3121.2 (3)Pt—S1—C1—N174.9 (2)
C20—P—C26—C3197.5 (2)Pt—S1—C1—S24.00 (11)
C24—C25—C20—C210.4 (4)Pt—S2—C1—N175.0 (2)
C24—C25—C20—P178.8 (2)Pt—S2—C1—S13.98 (11)
C22—C21—C20—C250.8 (4)C4—C3—C2—C72.7 (4)
C22—C21—C20—P180.0 (2)C4—C3—C2—S3172.41 (19)
C8—P—C20—C25112.6 (2)O2—S3—C2—C748.8 (2)
C14—P—C20—C25124.8 (2)O1—S3—C2—C7173.6 (2)
C26—P—C20—C254.9 (2)N—S3—C2—C766.2 (2)
C8—P—C20—C2168.2 (2)O2—S3—C2—C3126.1 (2)
C14—P—C20—C2154.4 (2)O1—S3—C2—C31.2 (2)
C26—P—C20—C21174.3 (2)N—S3—C2—C3119.0 (2)
C8—P—C14—C154.3 (2)S1—C1—N—S33.5 (3)
C26—P—C14—C15113.5 (2)S2—C1—N—S3177.77 (13)
C20—P—C14—C15127.5 (2)O2—S3—N—C1169.0 (2)
C8—P—C14—C19176.98 (19)O1—S3—N—C162.4 (2)
C26—P—C14—C1965.2 (2)C2—S3—N—C154.1 (2)
C20—P—C14—C1953.8 (2)C2—C3—C4—C50.5 (4)
C19—C14—C15—C161.9 (4)C2—C3—C4—Cl1178.77 (19)
P—C14—C15—C16176.7 (2)C3—C2—C7—C62.5 (4)
C17—C16—C15—C140.7 (4)S3—C2—C7—C6172.3 (2)
C12—C13—C8—C90.9 (4)C3—C2—C7—Cl2178.55 (19)
C12—C13—C8—P176.3 (2)S3—C2—C7—Cl26.7 (3)
C14—P—C8—C9112.1 (2)C2—C7—C6—C50.1 (4)
C26—P—C8—C9127.9 (2)Cl2—C7—C6—C5179.1 (2)
C20—P—C8—C99.0 (2)C7—C6—C5—C42.1 (4)
C14—P—C8—C1370.7 (2)C3—C4—C5—C61.8 (4)
C26—P—C8—C1349.3 (2)Cl1—C4—C5—C6178.9 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27···O1ii0.952.433.111 (4)128
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C24H20P)2[Pt(C7H3Cl2NO2S3)2]
Mr1474.3
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.6284 (1), 10.3409 (2), 15.1278 (2)
α, β, γ (°)76.951 (1), 88.353 (1), 86.193 (1)
V3)1463.94 (4)
Z1
Radiation typeMo Kα
µ (mm1)2.90
Crystal size (mm)0.34 × 0.34 × 0.3
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(Coppens et al., 1965)
Tmin, Tmax0.439, 0.477
No. of measured, independent and
observed [I > 2σ(I)] reflections
11423, 6536, 6483
Rint0.029
(sin θ/λ)max1)0.644
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.11
No. of reflections6536
No. of parameters367
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 2.58

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Pt—S12.3128 (6)Pt—S22.3233 (6)
S1—Pt—S274.59 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27···O1i0.952.433.111 (4)128
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank Professor Dr Javier Ellena of the Instituto de Física de São Carlos, Universidade de São Paulo, Brazil, for the X-ray data collection. This work has been supported by FAPEMIG and CNPq.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmim, R. S., Oliveira, M. R. L., Perpétuo, G. J., Janczak, J., Miranda, L. D. L. & Rubinger, M. M. M. (2008). Polyhedron, 27, 1891–1897.  Web of Science CSD CrossRef CAS Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFranca, E. F., Oliveira, M. R. L., Guilardi, S., Andrade, R. P., Lindemann, R. H., Amim, J. Jr, Ellena, J., De Bellis, V. M. & Rubinger, M. M. M. (2006). Polyhedron, 25, 2119–2126.  CAS Google Scholar
First citationHogarth, G. A. (2005). Prog. Inorg. Chem. 53, 71–561.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOliveira, M. R. L., Diniz, R., De Bellis, V. M. & Fernandes, N. G. (2003). Polyhedron, 22, 1561–1566.  Web of Science CSD CrossRef CAS Google Scholar
First citationOliveira, M. R. L., Rubinger, M. M. M., Guilardi, S., Franca, E. F., Ellena, J. & De Bellis, V. M. (2004). Polyhedron, 22, 1153–1158.  Web of Science CSD CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds