organic compounds
2,4-Bis(4-chlorophenyl)-1-methyl-3-azabicyclo[3.3.1]nonan-9-one
aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608 739, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai, TamilNadu, India
*Correspondence e-mail: ytjeong@pknu.ac.kr
The title compound, C21H21Cl2NO, exists in a twin-chair conformation with an equatorial orientation of the 4-chlorophenyl groups on both sides of the secondary amino group; the dihedral angle between the 4-chlorophenyl rings is 36.58 (2)°. The crystal packing is stabilized by an intermolecular N—H⋯O hydrogen bond and a weak Cl⋯Cl [3.4331 (9) Å] interaction.
Related literature
For the synthesis and biological activity of 3-azabicyclo[3.3.1] nonan-9-ones, see: Parthiban et al. (2009); Hardick et al. (1996); Jeyaraman & Avila (1981). For the structure of the non-methylated analog of the title compound, see: Parthiban et al. (2009a). For related structures with similar conformations, see: Parthiban et al. (2009b, 2010). For a related structure with chair–boat conformation, see: Smith-Verdier et al. (1983). For a related structure with boat–boat conformation, see: Padegimas & Kovacic (1972). For ring puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983). Scheme: resolution poor
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810004095/hb5322sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810004095/hb5322Isup2.hkl
The 1-methyl-2,4-bis(4-chlorophenyl)-3-azabicyclo[3.3.1]nonan-9-one was synthesized by a modified Mannich reaction in one-pot, using para-chlorobenzaldehyde (0.1 mol, 14.06 g), 2-methylcyclohexanone (0.05 mol, 5.61 g/6.07 ml) and ammonium acetate (0.075 mol, 5.78 g) in 50 ml of absolute ethanol. The mixture was gently warmed on a hot plate with stirring and continued at 303-308 K (30-35° C) till completion of the reaction. The progress was monitered by TLC. After all starting material was used up, the crude 3-azabicyclononan-9-one was separated by filtration and washed with a 1:5 ethanol-ether mixture, till the solid becomes colorless. Colourless blocks of (I) were obtained by slow evoporation from ethanol.
The nitrogen H atom was located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, methylene C—H = 0.97 Å, methine C—H = 0.98 Å and methyl C—H = 0.96 Å . The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and for methyl H atoms atUiso(H) = 1.5Ueq(C)
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I) with atoms represented with 30% probability ellipsoids. | |
Fig. 2. Packing diagram for (I) showing the N—H···O and Cl···Cl interactions. |
C21H21Cl2NO | F(000) = 1568 |
Mr = 374.29 | Dx = 1.312 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 7359 reflections |
a = 28.4515 (14) Å | θ = 2.5–27.3° |
b = 7.0380 (3) Å | µ = 0.35 mm−1 |
c = 21.2771 (12) Å | T = 298 K |
β = 117.148 (4)° | Rectangular block, colourless |
V = 3791.2 (3) Å3 | 0.58 × 0.42 × 0.18 mm |
Z = 8 |
Bruker APEXII CCD diffractometer | 4661 independent reflections |
Radiation source: fine-focus sealed tube | 3149 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
phi and ω scans | θmax = 28.2°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −36→37 |
Tmin = 0.822, Tmax = 0.940 | k = −8→9 |
24985 measured reflections | l = −28→27 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0487P)2 + 3.2087P] where P = (Fo2 + 2Fc2)/3 |
4661 reflections | (Δ/σ)max = 0.001 |
231 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
C21H21Cl2NO | V = 3791.2 (3) Å3 |
Mr = 374.29 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 28.4515 (14) Å | µ = 0.35 mm−1 |
b = 7.0380 (3) Å | T = 298 K |
c = 21.2771 (12) Å | 0.58 × 0.42 × 0.18 mm |
β = 117.148 (4)° |
Bruker APEXII CCD diffractometer | 4661 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 3149 reflections with I > 2σ(I) |
Tmin = 0.822, Tmax = 0.940 | Rint = 0.033 |
24985 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.36 e Å−3 |
4661 reflections | Δρmin = −0.43 e Å−3 |
231 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.17656 (7) | 0.4818 (2) | 0.98420 (9) | 0.0357 (4) | |
H1 | 0.2131 | 0.4889 | 0.9916 | 0.043* | |
C2 | 0.15724 (7) | 0.6894 (2) | 0.98539 (10) | 0.0393 (4) | |
C3 | 0.09894 (8) | 0.7068 (3) | 0.97191 (11) | 0.0501 (5) | |
H3A | 0.0949 | 0.6354 | 1.0082 | 0.060* | |
H3B | 0.0919 | 0.8391 | 0.9772 | 0.060* | |
C4 | 0.05740 (8) | 0.6377 (3) | 0.90001 (12) | 0.0556 (5) | |
H4A | 0.0228 | 0.6790 | 0.8929 | 0.067* | |
H4B | 0.0575 | 0.4999 | 0.8993 | 0.067* | |
C5 | 0.06735 (8) | 0.7126 (3) | 0.83970 (11) | 0.0559 (5) | |
H5A | 0.0564 | 0.8446 | 0.8311 | 0.067* | |
H5B | 0.0456 | 0.6416 | 0.7972 | 0.067* | |
C6 | 0.12516 (8) | 0.6988 (3) | 0.85398 (10) | 0.0450 (4) | |
H6 | 0.1292 | 0.7694 | 0.8171 | 0.054* | |
C7 | 0.14595 (7) | 0.4935 (2) | 0.85650 (9) | 0.0395 (4) | |
H7 | 0.1826 | 0.5010 | 0.8644 | 0.047* | |
C8 | 0.15846 (7) | 0.7924 (2) | 0.92360 (10) | 0.0413 (4) | |
C9 | 0.17610 (7) | 0.3620 (2) | 1.04297 (9) | 0.0376 (4) | |
C10 | 0.22206 (8) | 0.3354 (3) | 1.10561 (10) | 0.0478 (5) | |
H10 | 0.2537 | 0.3846 | 1.1099 | 0.057* | |
C11 | 0.22168 (9) | 0.2369 (3) | 1.16196 (10) | 0.0537 (5) | |
H11 | 0.2528 | 0.2196 | 1.2035 | 0.064* | |
C12 | 0.17493 (9) | 0.1654 (3) | 1.15562 (10) | 0.0487 (5) | |
C13 | 0.12899 (8) | 0.1845 (3) | 1.09386 (11) | 0.0504 (5) | |
H13 | 0.0976 | 0.1325 | 1.0897 | 0.061* | |
C14 | 0.12984 (7) | 0.2817 (3) | 1.03794 (10) | 0.0443 (4) | |
H14 | 0.0988 | 0.2938 | 0.9960 | 0.053* | |
C15 | 0.19367 (9) | 0.7841 (3) | 1.05543 (11) | 0.0562 (5) | |
H15A | 0.2298 | 0.7607 | 1.0662 | 0.084* | |
H15B | 0.1869 | 0.7328 | 1.0923 | 0.084* | |
H15C | 0.1872 | 0.9186 | 1.0519 | 0.084* | |
C16 | 0.11369 (7) | 0.3942 (3) | 0.78664 (10) | 0.0426 (4) | |
C17 | 0.11848 (10) | 0.4523 (3) | 0.72767 (12) | 0.0616 (6) | |
H17 | 0.1433 | 0.5445 | 0.7324 | 0.074* | |
C18 | 0.08692 (11) | 0.3752 (4) | 0.66173 (12) | 0.0692 (7) | |
H18 | 0.0898 | 0.4179 | 0.6222 | 0.083* | |
C19 | 0.05165 (8) | 0.2361 (3) | 0.65530 (10) | 0.0542 (5) | |
C20 | 0.04760 (9) | 0.1701 (4) | 0.71289 (12) | 0.0633 (6) | |
H20 | 0.0243 | 0.0719 | 0.7082 | 0.076* | |
C21 | 0.07852 (9) | 0.2507 (3) | 0.77862 (11) | 0.0571 (5) | |
H21 | 0.0754 | 0.2070 | 0.8178 | 0.068* | |
Cl1 | 0.17372 (3) | 0.04670 (9) | 1.22681 (3) | 0.0770 (2) | |
Cl2 | 0.01186 (2) | 0.13710 (11) | 0.57245 (3) | 0.0829 (2) | |
N1 | 0.14499 (6) | 0.3905 (2) | 0.91547 (8) | 0.0379 (3) | |
O1 | 0.18212 (6) | 0.94051 (19) | 0.92903 (8) | 0.0570 (4) | |
H1A | 0.1580 (8) | 0.278 (3) | 0.9181 (11) | 0.050 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0365 (9) | 0.0322 (8) | 0.0378 (9) | −0.0037 (7) | 0.0163 (7) | −0.0053 (7) |
C2 | 0.0433 (10) | 0.0310 (8) | 0.0429 (10) | −0.0022 (7) | 0.0190 (8) | −0.0065 (7) |
C3 | 0.0534 (11) | 0.0426 (10) | 0.0625 (13) | 0.0049 (9) | 0.0335 (10) | −0.0002 (9) |
C4 | 0.0380 (10) | 0.0519 (12) | 0.0729 (15) | 0.0024 (9) | 0.0218 (10) | 0.0035 (10) |
C5 | 0.0498 (11) | 0.0484 (11) | 0.0540 (12) | 0.0071 (9) | 0.0103 (10) | 0.0044 (10) |
C6 | 0.0557 (11) | 0.0341 (9) | 0.0436 (10) | −0.0041 (8) | 0.0212 (9) | 0.0039 (8) |
C7 | 0.0442 (10) | 0.0363 (9) | 0.0395 (9) | −0.0073 (7) | 0.0204 (8) | −0.0038 (7) |
C8 | 0.0413 (9) | 0.0289 (8) | 0.0556 (11) | 0.0005 (7) | 0.0239 (9) | −0.0021 (8) |
C9 | 0.0425 (9) | 0.0316 (8) | 0.0358 (9) | −0.0020 (7) | 0.0153 (8) | −0.0045 (7) |
C10 | 0.0442 (10) | 0.0454 (10) | 0.0447 (11) | −0.0050 (8) | 0.0123 (9) | −0.0015 (8) |
C11 | 0.0578 (12) | 0.0486 (11) | 0.0391 (10) | −0.0002 (9) | 0.0086 (9) | 0.0007 (9) |
C12 | 0.0700 (13) | 0.0355 (9) | 0.0435 (11) | 0.0047 (9) | 0.0286 (10) | 0.0030 (8) |
C13 | 0.0528 (11) | 0.0438 (10) | 0.0589 (12) | −0.0018 (9) | 0.0292 (10) | 0.0052 (9) |
C14 | 0.0428 (10) | 0.0417 (10) | 0.0425 (10) | −0.0033 (8) | 0.0143 (8) | 0.0022 (8) |
C15 | 0.0680 (13) | 0.0418 (10) | 0.0543 (12) | −0.0053 (10) | 0.0240 (11) | −0.0157 (9) |
C16 | 0.0498 (10) | 0.0395 (9) | 0.0400 (10) | −0.0036 (8) | 0.0219 (8) | −0.0034 (8) |
C17 | 0.0870 (16) | 0.0565 (13) | 0.0506 (12) | −0.0205 (12) | 0.0395 (12) | −0.0065 (10) |
C18 | 0.1041 (19) | 0.0679 (15) | 0.0417 (12) | −0.0056 (14) | 0.0385 (13) | −0.0044 (11) |
C19 | 0.0510 (11) | 0.0640 (13) | 0.0403 (11) | 0.0042 (10) | 0.0146 (9) | −0.0157 (10) |
C20 | 0.0584 (13) | 0.0781 (16) | 0.0545 (13) | −0.0249 (12) | 0.0268 (11) | −0.0228 (12) |
C21 | 0.0655 (13) | 0.0656 (13) | 0.0428 (11) | −0.0235 (11) | 0.0270 (10) | −0.0106 (10) |
Cl1 | 0.1104 (5) | 0.0655 (4) | 0.0658 (4) | 0.0146 (3) | 0.0494 (4) | 0.0240 (3) |
Cl2 | 0.0677 (4) | 0.1129 (6) | 0.0483 (3) | 0.0084 (4) | 0.0094 (3) | −0.0332 (3) |
N1 | 0.0474 (9) | 0.0284 (7) | 0.0358 (8) | −0.0031 (6) | 0.0170 (7) | −0.0040 (6) |
O1 | 0.0632 (9) | 0.0357 (7) | 0.0738 (10) | −0.0121 (6) | 0.0328 (8) | −0.0032 (7) |
C1—N1 | 1.469 (2) | C10—C11 | 1.389 (3) |
C1—C9 | 1.513 (2) | C10—H10 | 0.9300 |
C1—C2 | 1.565 (2) | C11—C12 | 1.370 (3) |
C1—H1 | 0.9800 | C11—H11 | 0.9300 |
C2—C8 | 1.516 (3) | C12—C13 | 1.373 (3) |
C2—C15 | 1.527 (3) | C12—Cl1 | 1.744 (2) |
C2—C3 | 1.554 (3) | C13—C14 | 1.382 (3) |
C3—C4 | 1.524 (3) | C13—H13 | 0.9300 |
C3—H3A | 0.9700 | C14—H14 | 0.9300 |
C3—H3B | 0.9700 | C15—H15A | 0.9600 |
C4—C5 | 1.529 (3) | C15—H15B | 0.9600 |
C4—H4A | 0.9700 | C15—H15C | 0.9600 |
C4—H4B | 0.9700 | C16—C21 | 1.377 (3) |
C5—C6 | 1.533 (3) | C16—C17 | 1.384 (3) |
C5—H5A | 0.9700 | C17—C18 | 1.386 (3) |
C5—H5B | 0.9700 | C17—H17 | 0.9300 |
C6—C8 | 1.498 (3) | C18—C19 | 1.363 (3) |
C6—C7 | 1.553 (3) | C18—H18 | 0.9300 |
C6—H6 | 0.9800 | C19—C20 | 1.364 (3) |
C7—N1 | 1.460 (2) | C19—Cl2 | 1.747 (2) |
C7—C16 | 1.515 (2) | C20—C21 | 1.389 (3) |
C7—H7 | 0.9800 | C20—H20 | 0.9300 |
C8—O1 | 1.217 (2) | C21—H21 | 0.9300 |
C9—C10 | 1.389 (3) | N1—H1A | 0.87 (2) |
C9—C14 | 1.391 (3) | ||
N1—C1—C9 | 110.30 (13) | C10—C9—C14 | 117.55 (17) |
N1—C1—C2 | 111.38 (14) | C10—C9—C1 | 120.56 (16) |
C9—C1—C2 | 111.78 (14) | C14—C9—C1 | 121.83 (16) |
N1—C1—H1 | 107.7 | C11—C10—C9 | 121.37 (18) |
C9—C1—H1 | 107.7 | C11—C10—H10 | 119.3 |
C2—C1—H1 | 107.7 | C9—C10—H10 | 119.3 |
C8—C2—C15 | 111.32 (15) | C12—C11—C10 | 119.18 (18) |
C8—C2—C3 | 104.31 (15) | C12—C11—H11 | 120.4 |
C15—C2—C3 | 109.74 (16) | C10—C11—H11 | 120.4 |
C8—C2—C1 | 106.57 (14) | C11—C12—C13 | 121.07 (18) |
C15—C2—C1 | 109.68 (15) | C11—C12—Cl1 | 119.56 (16) |
C3—C2—C1 | 115.08 (14) | C13—C12—Cl1 | 119.36 (16) |
C4—C3—C2 | 115.70 (16) | C12—C13—C14 | 119.27 (19) |
C4—C3—H3A | 108.4 | C12—C13—H13 | 120.4 |
C2—C3—H3A | 108.4 | C14—C13—H13 | 120.4 |
C4—C3—H3B | 108.4 | C13—C14—C9 | 121.50 (18) |
C2—C3—H3B | 108.4 | C13—C14—H14 | 119.3 |
H3A—C3—H3B | 107.4 | C9—C14—H14 | 119.3 |
C3—C4—C5 | 112.12 (17) | C2—C15—H15A | 109.5 |
C3—C4—H4A | 109.2 | C2—C15—H15B | 109.5 |
C5—C4—H4A | 109.2 | H15A—C15—H15B | 109.5 |
C3—C4—H4B | 109.2 | C2—C15—H15C | 109.5 |
C5—C4—H4B | 109.2 | H15A—C15—H15C | 109.5 |
H4A—C4—H4B | 107.9 | H15B—C15—H15C | 109.5 |
C4—C5—C6 | 113.87 (16) | C21—C16—C17 | 118.09 (18) |
C4—C5—H5A | 108.8 | C21—C16—C7 | 122.73 (17) |
C6—C5—H5A | 108.8 | C17—C16—C7 | 119.16 (17) |
C4—C5—H5B | 108.8 | C16—C17—C18 | 121.1 (2) |
C6—C5—H5B | 108.8 | C16—C17—H17 | 119.5 |
H5A—C5—H5B | 107.7 | C18—C17—H17 | 119.5 |
C8—C6—C5 | 107.78 (16) | C19—C18—C17 | 119.4 (2) |
C8—C6—C7 | 108.41 (15) | C19—C18—H18 | 120.3 |
C5—C6—C7 | 115.04 (15) | C17—C18—H18 | 120.3 |
C8—C6—H6 | 108.5 | C18—C19—C20 | 120.96 (19) |
C5—C6—H6 | 108.5 | C18—C19—Cl2 | 119.73 (18) |
C7—C6—H6 | 108.5 | C20—C19—Cl2 | 119.29 (18) |
N1—C7—C16 | 111.94 (14) | C19—C20—C21 | 119.4 (2) |
N1—C7—C6 | 109.61 (15) | C19—C20—H20 | 120.3 |
C16—C7—C6 | 110.16 (15) | C21—C20—H20 | 120.3 |
N1—C7—H7 | 108.3 | C16—C21—C20 | 121.0 (2) |
C16—C7—H7 | 108.3 | C16—C21—H21 | 119.5 |
C6—C7—H7 | 108.3 | C20—C21—H21 | 119.5 |
O1—C8—C6 | 122.90 (18) | C7—N1—C1 | 113.28 (13) |
O1—C8—C2 | 123.91 (18) | C7—N1—H1A | 109.6 (13) |
C6—C8—C2 | 113.12 (14) | C1—N1—H1A | 106.6 (14) |
N1—C1—C2—C8 | −54.97 (18) | C2—C1—C9—C14 | 79.6 (2) |
C9—C1—C2—C8 | −178.85 (14) | C14—C9—C10—C11 | −1.7 (3) |
N1—C1—C2—C15 | −175.58 (15) | C1—C9—C10—C11 | 175.53 (17) |
C9—C1—C2—C15 | 60.54 (19) | C9—C10—C11—C12 | −0.3 (3) |
N1—C1—C2—C3 | 60.1 (2) | C10—C11—C12—C13 | 2.1 (3) |
C9—C1—C2—C3 | −63.8 (2) | C10—C11—C12—Cl1 | −178.40 (15) |
C8—C2—C3—C4 | 54.2 (2) | C11—C12—C13—C14 | −1.7 (3) |
C15—C2—C3—C4 | 173.54 (17) | Cl1—C12—C13—C14 | 178.79 (15) |
C1—C2—C3—C4 | −62.2 (2) | C12—C13—C14—C9 | −0.5 (3) |
C2—C3—C4—C5 | −46.7 (2) | C10—C9—C14—C13 | 2.1 (3) |
C3—C4—C5—C6 | 44.8 (2) | C1—C9—C14—C13 | −175.09 (17) |
C4—C5—C6—C8 | −52.9 (2) | N1—C7—C16—C21 | 13.9 (3) |
C4—C5—C6—C7 | 68.2 (2) | C6—C7—C16—C21 | −108.3 (2) |
C8—C6—C7—N1 | 57.08 (19) | N1—C7—C16—C17 | −167.77 (18) |
C5—C6—C7—N1 | −63.6 (2) | C6—C7—C16—C17 | 70.0 (2) |
C8—C6—C7—C16 | −179.33 (15) | C21—C16—C17—C18 | 3.2 (4) |
C5—C6—C7—C16 | 60.0 (2) | C7—C16—C17—C18 | −175.2 (2) |
C5—C6—C8—O1 | −111.7 (2) | C16—C17—C18—C19 | −1.9 (4) |
C7—C6—C8—O1 | 123.23 (19) | C17—C18—C19—C20 | −1.0 (4) |
C5—C6—C8—C2 | 65.39 (19) | C17—C18—C19—Cl2 | −179.72 (19) |
C7—C6—C8—C2 | −59.72 (19) | C18—C19—C20—C21 | 2.4 (4) |
C15—C2—C8—O1 | −5.7 (3) | Cl2—C19—C20—C21 | −178.89 (18) |
C3—C2—C8—O1 | 112.63 (19) | C17—C16—C21—C20 | −1.8 (3) |
C1—C2—C8—O1 | −125.20 (18) | C7—C16—C21—C20 | 176.5 (2) |
C15—C2—C8—C6 | 177.33 (16) | C19—C20—C21—C16 | −0.9 (4) |
C3—C2—C8—C6 | −64.39 (18) | C16—C7—N1—C1 | 179.17 (14) |
C1—C2—C8—C6 | 57.77 (19) | C6—C7—N1—C1 | −58.29 (19) |
N1—C1—C9—C10 | 137.96 (17) | C9—C1—N1—C7 | −176.97 (14) |
C2—C1—C9—C10 | −97.55 (19) | C2—C1—N1—C7 | 58.32 (19) |
N1—C1—C9—C14 | −44.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.87 (2) | 2.45 (2) | 3.309 (2) | 170.2 (18) |
Symmetry code: (i) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C21H21Cl2NO |
Mr | 374.29 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 28.4515 (14), 7.0380 (3), 21.2771 (12) |
β (°) | 117.148 (4) |
V (Å3) | 3791.2 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.35 |
Crystal size (mm) | 0.58 × 0.42 × 0.18 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1999) |
Tmin, Tmax | 0.822, 0.940 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 24985, 4661, 3149 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.125, 1.02 |
No. of reflections | 4661 |
No. of parameters | 231 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.36, −0.43 |
Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.87 (2) | 2.45 (2) | 3.309 (2) | 170.2 (18) |
Symmetry code: (i) x, y−1, z. |
Acknowledgements
This work was supported by the Corporate-affiliated Research Institute of Academic–Industrial–Institutional Cooperation Improvement Business No. S7080008110. The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.
References
Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2, XPREP and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860–4866. CrossRef CAS PubMed Web of Science Google Scholar
Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1983). Acta Cryst. C39, 1141–1142. CrossRef CAS Web of Science IUCr Journals Google Scholar
Padegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672–2676. CrossRef CAS Web of Science Google Scholar
Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981–6985. Web of Science CSD CrossRef PubMed CAS Google Scholar
Parthiban, P., Ramkumar, V. & Jeong, Y. T. (2009b). Acta Cryst. E65, o3103. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parthiban, P., Ramkumar, V. & Jeong, Y. T. (2010). Acta Cryst. E66, o194–o195. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parthiban, P., Ramkumar, V., Kim, M. S., Kabilan, S. & Jeong, Y. T. (2009a). Acta Cryst. E65, o609. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101–103. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
3-Azabicyclo[3.3.1]nonanes are an important class of heterocyclic compounds due to their broad spectrum of biological activities such as antibacterial, antifungal, analgesic, antogonistic, anti-inflammatory, local anesthetic and hypotensive activity, and their presence in a wide variety of naturally occurring diterpenoid/norditerpenoid alkaloids (Parthiban et al., 2009; Hardick et al., 1996; Jeyaraman & Avila, 1981). As stereochemistry plays a vital role in biological activities, it is essential to establish the stereochemistry of the synthesized bio-active molecules. Owing to the diverse possibilities in the conformation of the 3-azabicycle such as chair-chair (Parthiban et al., 2009b & 2010), chair-boat (Smith-Verdier et al., 1983) and boat-boat (Padegimas & Kovacic, 1972), the present crystal study was undertaken to examine the stereochemistry of the synthesized 2,4-bis(4-chlorophenyl)-1-methyl-3-azabicyclo[3.3.1]nonan-9-one.
The crystallographic analysis of the title compound shows that the piperidine ring adopts a near ideal chair conformation. The total puckering amplitude QT is 0.587 (2)Å and the phase angle θ is 1.8 (2)° (Cremer & Pople, 1975). The smallest displacement asymmetry parameters being q2 and q3 are 0.022 (2)Å and 0.587 (2) Å, respectively (Nardelli, 1983). The deviation of ring atoms C8 and N1 from the C1/C2/C6/C7 plane by 0.677 (3)Å and -0.642 (3) Å, respectively.
The crystallographic analysis of the title compound suggests that the cyclohexane ring deviates from the ideal chair conformation. The total puckering amplitude QT is 0.573 (2)Å and the phase angle θ is 13.8 (2)° (Cremer & Pople, 1975). The smallest displacement asymmetry parameters being q2 and q3 are 0.134 (2)Å and 0.556 (2) Å, respectively (Nardelli, 1983). The deviation of ring atoms C4 and C8 from the C2/C3/C5/C6 plane by -0.554 (4)Å and 0.723 (2) Å, respectively.
According to the crystallogrphic analysis, the title compound, C21H21Cl2N O, exists in a twin-chair conformation with an equatorial orientation of the para-chlorophenyl groups on both sides of the secondary amino group.
In the title compound, the para-chlorophenyl rings are orientated at an angle of 36.58 (2)° with respect to one another, whereas in its non-methyl analog, 2,4-bis(4-chlorophenyl)-3- azabicyclo[3.3.1]nonan-9-one, the angle is 31.33 (3)°. The crystal structure of the title compound is stabilized by an intermolecular N—H···O interaction and a weak Cl—Cl interaction [Cl···Cl = 3.43 Å]. Though similar interactions observed in the non-methyl analog, the hydrogen bond geometries such as distance and angle of N1—H1···O1 [respectively, 3.1202Å and 160.2 (18)°] are comparatively lower than the title compound (Table 1).
In the title compound, the torsion angles of C1—C2—C8—C9 and C6—C7—C8—C16 are -178.85 (4)° and -179.35 (4)°, respectively (in the non-methyl analog of the title compound, they are -177.88 (4)° and -179.01 (4)°).