metal-organic compounds
Di-μ-acetato-bis[(acetato-κ2O,O′)bis(isonicotinamide-κN)copper(II)]
aDepartamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina, and bDepartamento de Física, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
*Correspondence e-mail: baggio@cnea.gov.ar
The title centrosymmetric bimetallic complex, [Cu2(C2H3O2)4(C6H6N2O)4], is composed of two copper(II) cations, four acetate anions and four isonicotinamide (INA) ligands. The contains one copper cation to which two acetate units bind asymmetrically; one of the Cu—O distances is rather long [2.740 (2) Å], almost at the limit of coordination. These Cu—O bonds define an equatorial plane to which the Cu—N bonds to the INA ligands are almost perpendicular, the Cu—N vectors subtending angles of 2.4 (1) and 2.3 (1)° to the normal to the plane. The metal coordination geometry can be described as a slightly distorted trigonal bipyramid if the extremely weak Cu—O bond is disregarded, or as a highly distorted square bipyramid if it is not. The double acetate bridge between the copper ions is not coplanar with the CuO4 equatorial planes, the dihedral angle between the (O—C—O)2 and O—Cu—O groups being 34.3 (1)°, resulting in a sofa-like conformation for the 8-member bridging loop. In the crystal, N—H⋯O hydrogen bonds occur, some of which generate a head-to tail-linkage between INA units, giving raise to chains along [101]; the remaining ones make inter-chain contacts, defining a three-dimensional network. There are in addition a number of C—H⋯O bonds involving aromatic H atoms. Probably due to the aromatic rings are not involved in significant π⋯π interactions.
Related literature
For the importance of Cu(II) carboxylate complexes in biology, see: Lippard & Berg (1994). For coordination properties of anionic carboxylates, see: Deacon & Phillips (1980). For related compounds obtained from the same (or similar) reaction, see: Aakeröy et al. (2003). For a chloroacetate analogue of the title compound, see: Moncol et al. (2007).
Experimental
Crystal data
|
Refinement
|
|
Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell MSC/AFC Diffractometer Control Software; data reduction: MSC/AFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-NT and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810004393/hb5326sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810004393/hb5326Isup2.hkl
To a solution of Cu(CH3CO2)2.H2O (0.20 g, 0.01 mol) in methanol (40 cm3) at troom temperature was added solid isonicotinamide (INA) (0.14 g, 0.01 mol) in small portions under constant stirring. It was then filtered and the solution allowed to stand for two days, after which small blue blocks of (I) were filtered and dried under vacuum. Yield: 0.28 g (80%). Found: C, 45.10; H, 4.23; N, 13.20; Cu, 15.02%. Calc. for C32H36Cu2N8O12: C, 45.08; H, 4.26; N, 13.16; Cu, 14.92%.
All H atoms were located at idealized positions (C—H: 0.93 Å, N—H: 0.85 Å) after being confirmed by inspection in a difference map. They were allowed to ride, with Uiso(H) = 1.2Ueq(host)
Data collection: MSC/AFC Diffractometer Control Software, (Molecular Structure Corporation, 1988); cell
MSC/AFC Diffractometer Control Software, (Molecular Structure Corporation, 1988); data reduction: MSC/AFC Diffractometer Control Software, (Molecular Structure Corporation, 1988); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-NT (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. Molecular view of a dimer, with displacement ellipsoids at a 40% level. Atoms in the asymmetric unit drawn in full ellipsoids and full bonds; symmetry related ones (through the i: 1 - x, 1 - y, 1 - z operation), in empty ellipsoids and simple bonds. In double broken lines, the extremely weak Cu—O interaction. H atoms bound to carbon not shown, for clarity. | |
Fig. 2. Schematic view of a chain running along [101]. Intrachain H-bonds drawn in broken lines. C—H atoms omitted for clarity. |
[Cu2(C2H3O2)4(C6H6N2O)4] | F(000) = 876 |
Mr = 851.77 | Dx = 1.491 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 10.910 (2) Å | θ = 7.5–15.0° |
b = 11.462 (2) Å | µ = 1.19 mm−1 |
c = 15.644 (3) Å | T = 294 K |
β = 104.05 (3)° | Block, blue |
V = 1897.6 (7) Å3 | 0.28 × 0.18 × 0.14 mm |
Z = 2 |
Rigaku AFC6 Difractometer diffractometer | 2384 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.064 |
Graphite monochromator | θmax = 26.0°, θmin = 1.9° |
ω/2θ scans | h = −3→13 |
Absorption correction: ψ scan (North et al., 1968) | k = −13→14 |
Tmin = 0.76, Tmax = 0.85 | l = −19→19 |
12257 measured reflections | 3 standard reflections every 150 reflections |
3736 independent reflections | intensity decay: <2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0438P)2] where P = (Fo2 + 2Fc2)/3 |
3736 reflections | (Δ/σ)max = 0.001 |
244 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
[Cu2(C2H3O2)4(C6H6N2O)4] | V = 1897.6 (7) Å3 |
Mr = 851.77 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.910 (2) Å | µ = 1.19 mm−1 |
b = 11.462 (2) Å | T = 294 K |
c = 15.644 (3) Å | 0.28 × 0.18 × 0.14 mm |
β = 104.05 (3)° |
Rigaku AFC6 Difractometer diffractometer | 2384 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.064 |
Tmin = 0.76, Tmax = 0.85 | 3 standard reflections every 150 reflections |
12257 measured reflections | intensity decay: <2% |
3736 independent reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.36 e Å−3 |
3736 reflections | Δρmin = −0.43 e Å−3 |
244 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.52008 (4) | 0.66370 (3) | 0.55107 (2) | 0.03432 (14) | |
N11 | 0.6436 (2) | 0.6393 (2) | 0.67105 (15) | 0.0354 (6) | |
N21 | 0.8631 (2) | 0.6620 (3) | 0.99514 (15) | 0.0515 (8) | |
H21A | 0.9136 | 0.6681 | 1.0465 | 0.062* | |
H21B | 0.7827 | 0.6654 | 0.9894 | 0.062* | |
O11 | 1.0221 (2) | 0.6417 (3) | 0.92761 (13) | 0.0622 (8) | |
C11 | 0.7678 (3) | 0.6569 (3) | 0.6801 (2) | 0.0453 (8) | |
H11 | 0.7968 | 0.6700 | 0.6297 | 0.054* | |
C21 | 0.8542 (3) | 0.6563 (3) | 0.76043 (19) | 0.0458 (8) | |
H21 | 0.9396 | 0.6671 | 0.7635 | 0.055* | |
C31 | 0.8135 (3) | 0.6396 (3) | 0.83658 (19) | 0.0355 (7) | |
C41 | 0.6858 (3) | 0.6182 (3) | 0.82759 (18) | 0.0384 (8) | |
H41 | 0.6548 | 0.6037 | 0.8770 | 0.046* | |
C51 | 0.6054 (3) | 0.6187 (3) | 0.74488 (18) | 0.0368 (7) | |
H51 | 0.5201 | 0.6040 | 0.7399 | 0.044* | |
C61 | 0.9091 (3) | 0.6474 (3) | 0.92481 (19) | 0.0401 (8) | |
N12 | 0.4021 (2) | 0.6837 (2) | 0.43010 (14) | 0.0338 (6) | |
N22 | 0.2051 (3) | 0.6561 (2) | 0.10087 (15) | 0.0438 (7) | |
H22A | 0.1567 | 0.6508 | 0.0487 | 0.053* | |
H22B | 0.2852 | 0.6462 | 0.1091 | 0.053* | |
O12 | 0.0434 (2) | 0.6944 (3) | 0.16185 (14) | 0.0768 (10) | |
C12 | 0.4499 (3) | 0.6853 (3) | 0.35855 (19) | 0.0400 (8) | |
H12 | 0.5373 | 0.6871 | 0.3671 | 0.048* | |
C22 | 0.3768 (3) | 0.6843 (3) | 0.27344 (19) | 0.0401 (8) | |
H22 | 0.4146 | 0.6840 | 0.2261 | 0.048* | |
C32 | 0.2462 (3) | 0.6838 (3) | 0.25892 (18) | 0.0365 (8) | |
C42 | 0.1959 (3) | 0.6871 (3) | 0.33279 (18) | 0.0441 (9) | |
H42 | 0.1089 | 0.6898 | 0.3260 | 0.053* | |
C52 | 0.2757 (3) | 0.6864 (3) | 0.41562 (19) | 0.0411 (8) | |
H52 | 0.2403 | 0.6878 | 0.4641 | 0.049* | |
C62 | 0.1560 (3) | 0.6793 (3) | 0.16855 (19) | 0.0415 (8) | |
O13 | 0.3889 (2) | 0.5867 (2) | 0.59603 (12) | 0.0434 (6) | |
O23 | 0.3372 (2) | 0.4336 (2) | 0.50649 (14) | 0.0500 (6) | |
C13 | 0.3202 (3) | 0.5003 (3) | 0.5648 (2) | 0.0408 (8) | |
C23 | 0.2067 (4) | 0.4812 (4) | 0.6042 (3) | 0.0855 (14) | |
H23A | 0.1303 | 0.4859 | 0.5583 | 0.128* | |
H23B | 0.2056 | 0.5397 | 0.6478 | 0.128* | |
H23C | 0.2128 | 0.4054 | 0.6310 | 0.128* | |
O14 | 0.61484 (19) | 0.81068 (17) | 0.53598 (12) | 0.0355 (5) | |
O24 | 0.4839 (2) | 0.8831 (2) | 0.61005 (15) | 0.0558 (7) | |
C14 | 0.5792 (3) | 0.8918 (3) | 0.58074 (19) | 0.0372 (7) | |
C24 | 0.6596 (4) | 0.9995 (3) | 0.5983 (2) | 0.0635 (11) | |
H24A | 0.6678 | 1.0316 | 0.5433 | 0.095* | |
H24B | 0.7418 | 0.9798 | 0.6338 | 0.095* | |
H24C | 0.6209 | 1.0559 | 0.6287 | 0.095* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0350 (2) | 0.0431 (2) | 0.01981 (18) | −0.0048 (2) | −0.00328 (14) | 0.00104 (18) |
N11 | 0.0377 (15) | 0.0443 (16) | 0.0207 (12) | −0.0029 (12) | 0.0005 (11) | 0.0014 (11) |
N21 | 0.0301 (14) | 0.099 (2) | 0.0211 (12) | −0.0010 (17) | −0.0028 (11) | −0.0061 (15) |
O11 | 0.0350 (13) | 0.123 (2) | 0.0245 (11) | −0.0002 (15) | −0.0009 (10) | −0.0015 (14) |
C11 | 0.0378 (18) | 0.071 (2) | 0.0250 (15) | −0.0064 (19) | 0.0036 (14) | 0.0053 (17) |
C21 | 0.0341 (18) | 0.071 (2) | 0.0298 (16) | −0.0078 (19) | 0.0032 (14) | 0.0023 (17) |
C31 | 0.0313 (16) | 0.047 (2) | 0.0242 (14) | −0.0024 (15) | −0.0003 (12) | −0.0017 (14) |
C41 | 0.0389 (18) | 0.052 (2) | 0.0221 (14) | −0.0018 (16) | 0.0029 (13) | 0.0027 (14) |
C51 | 0.0305 (16) | 0.0485 (19) | 0.0280 (15) | −0.0025 (15) | 0.0001 (13) | −0.0011 (14) |
C61 | 0.0353 (18) | 0.053 (2) | 0.0263 (15) | −0.0020 (17) | −0.0043 (14) | 0.0014 (15) |
N12 | 0.0358 (14) | 0.0390 (16) | 0.0226 (12) | −0.0013 (12) | −0.0006 (11) | −0.0003 (10) |
N22 | 0.0381 (15) | 0.0658 (18) | 0.0227 (12) | 0.0051 (15) | −0.0016 (11) | −0.0014 (13) |
O12 | 0.0387 (14) | 0.156 (3) | 0.0292 (12) | 0.0195 (17) | −0.0046 (11) | −0.0138 (15) |
C12 | 0.0295 (16) | 0.055 (2) | 0.0314 (16) | −0.0034 (15) | 0.0002 (13) | 0.0027 (15) |
C22 | 0.0387 (18) | 0.057 (2) | 0.0235 (14) | 0.0013 (17) | 0.0050 (13) | 0.0008 (14) |
C32 | 0.0352 (17) | 0.048 (2) | 0.0217 (14) | 0.0035 (15) | −0.0016 (13) | −0.0017 (13) |
C42 | 0.0326 (17) | 0.068 (3) | 0.0266 (15) | 0.0103 (17) | −0.0026 (13) | 0.0011 (15) |
C52 | 0.0431 (19) | 0.056 (2) | 0.0232 (15) | 0.0085 (16) | 0.0058 (14) | −0.0014 (14) |
C62 | 0.0376 (19) | 0.056 (2) | 0.0260 (15) | 0.0064 (17) | −0.0008 (14) | −0.0003 (15) |
O13 | 0.0447 (13) | 0.0550 (15) | 0.0267 (11) | −0.0126 (12) | 0.0014 (10) | −0.0026 (10) |
O23 | 0.0490 (14) | 0.0535 (14) | 0.0439 (13) | 0.0058 (13) | 0.0040 (11) | −0.0070 (12) |
C13 | 0.0376 (17) | 0.046 (2) | 0.0364 (18) | 0.0006 (17) | 0.0046 (14) | 0.0057 (17) |
C23 | 0.075 (3) | 0.077 (3) | 0.116 (4) | −0.026 (3) | 0.045 (3) | −0.020 (3) |
O14 | 0.0361 (12) | 0.0407 (13) | 0.0288 (10) | −0.0035 (10) | 0.0063 (9) | −0.0003 (9) |
O24 | 0.0549 (16) | 0.0677 (17) | 0.0524 (14) | 0.0021 (13) | 0.0277 (13) | 0.0018 (13) |
C14 | 0.0390 (19) | 0.0441 (19) | 0.0263 (15) | −0.0015 (16) | 0.0037 (14) | 0.0035 (15) |
C24 | 0.081 (3) | 0.049 (2) | 0.061 (2) | −0.013 (2) | 0.018 (2) | −0.015 (2) |
Cu1—O13 | 1.952 (2) | N22—H22B | 0.8600 |
Cu1—O14 | 2.020 (2) | O12—C62 | 1.220 (4) |
Cu1—N12 | 2.027 (2) | C12—C22 | 1.376 (4) |
Cu1—N11 | 2.047 (2) | C12—H12 | 0.9300 |
Cu1—O23i | 2.271 (2) | C22—C32 | 1.387 (4) |
Cu1—O24 | 2.740 (2) | C22—H22 | 0.9300 |
N11—C51 | 1.341 (4) | C32—C42 | 1.395 (4) |
N11—C11 | 1.343 (4) | C32—C62 | 1.515 (4) |
N21—C61 | 1.326 (4) | C42—C52 | 1.374 (4) |
N21—H21A | 0.8600 | C42—H42 | 0.9300 |
N21—H21B | 0.8600 | C52—H52 | 0.9300 |
O11—C61 | 1.224 (4) | O13—C13 | 1.265 (4) |
C11—C21 | 1.376 (4) | O23—C13 | 1.239 (4) |
C11—H11 | 0.9300 | O23—Cu1i | 2.271 (2) |
C21—C31 | 1.382 (4) | C13—C23 | 1.526 (5) |
C21—H21 | 0.9300 | C23—H23A | 0.9600 |
C31—C41 | 1.388 (4) | C23—H23B | 0.9600 |
C31—C61 | 1.517 (4) | C23—H23C | 0.9600 |
C41—C51 | 1.376 (4) | O14—C14 | 1.280 (4) |
C41—H41 | 0.9300 | O24—C14 | 1.237 (4) |
C51—H51 | 0.9300 | C14—C24 | 1.501 (5) |
N12—C52 | 1.343 (4) | C24—H24A | 0.9600 |
N12—C12 | 1.345 (4) | C24—H24B | 0.9600 |
N22—C62 | 1.324 (4) | C24—H24C | 0.9600 |
N22—H22A | 0.8600 | ||
O13—Cu1—O14 | 149.31 (9) | N12—C12—C22 | 123.7 (3) |
O13—Cu1—N12 | 91.88 (10) | N12—C12—H12 | 118.2 |
O14—Cu1—N12 | 91.34 (9) | C22—C12—H12 | 118.2 |
O13—Cu1—N11 | 89.15 (9) | C12—C22—C32 | 119.3 (3) |
O14—Cu1—N11 | 88.80 (9) | C12—C22—H22 | 120.3 |
N12—Cu1—N11 | 177.73 (10) | C32—C22—H22 | 120.3 |
O13—Cu1—O23i | 123.64 (10) | C22—C32—C42 | 117.3 (3) |
O14—Cu1—O23i | 86.76 (9) | C22—C32—C62 | 124.2 (3) |
N12—Cu1—O23i | 91.51 (9) | C42—C32—C62 | 118.5 (3) |
N11—Cu1—O23i | 86.23 (9) | C52—C42—C32 | 119.6 (3) |
C51—N11—C11 | 116.9 (2) | C52—C42—H42 | 120.2 |
C51—N11—Cu1 | 122.7 (2) | C32—C42—H42 | 120.2 |
C11—N11—Cu1 | 119.94 (19) | N12—C52—C42 | 123.3 (3) |
C61—N21—H21A | 120.0 | N12—C52—H52 | 118.4 |
C61—N21—H21B | 120.0 | C42—C52—H52 | 118.4 |
H21A—N21—H21B | 120.0 | O12—C62—N22 | 123.6 (3) |
N11—C11—C21 | 123.0 (3) | O12—C62—C32 | 119.2 (3) |
N11—C11—H11 | 118.5 | N22—C62—C32 | 117.1 (3) |
C21—C11—H11 | 118.5 | C13—O13—Cu1 | 129.2 (2) |
C11—C21—C31 | 119.7 (3) | C13—O23—Cu1i | 146.6 (2) |
C11—C21—H21 | 120.1 | O23—C13—O13 | 125.9 (3) |
C31—C21—H21 | 120.1 | O23—C13—C23 | 119.3 (3) |
C21—C31—C41 | 117.5 (3) | O13—C13—C23 | 114.8 (3) |
C21—C31—C61 | 118.8 (3) | C13—C23—H23A | 109.4 |
C41—C31—C61 | 123.7 (3) | C13—C23—H23B | 109.8 |
C51—C41—C31 | 119.3 (3) | H23A—C23—H23B | 109.5 |
C51—C41—H41 | 120.3 | C13—C23—H23C | 109.2 |
C31—C41—H41 | 120.3 | H23A—C23—H23C | 109.5 |
N11—C51—C41 | 123.4 (3) | H23B—C23—H23C | 109.5 |
N11—C51—H51 | 118.3 | C14—O14—Cu1 | 108.03 (19) |
C41—C51—H51 | 118.3 | O24—C14—O14 | 122.6 (3) |
O11—C61—N21 | 123.9 (3) | O24—C14—C24 | 120.3 (3) |
O11—C61—C31 | 119.6 (3) | O14—C14—C24 | 117.1 (3) |
N21—C61—C31 | 116.6 (3) | C14—C24—H24A | 109.2 |
C52—N12—C12 | 116.7 (2) | C14—C24—H24B | 109.6 |
C52—N12—Cu1 | 123.6 (2) | H24A—C24—H24B | 109.5 |
C12—N12—Cu1 | 119.5 (2) | C14—C24—H24C | 109.7 |
C62—N22—H22A | 120.0 | H24A—C24—H24C | 109.5 |
C62—N22—H22B | 120.0 | H24B—C24—H24C | 109.5 |
H22A—N22—H22B | 120.0 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N21—H21A···O12ii | 0.86 | 2.03 | 2.884 (3) | 174 |
N21—H21B···O14iii | 0.86 | 2.15 | 2.946 (3) | 154 |
N22—H22A···O11iv | 0.86 | 2.10 | 2.955 (3) | 174 |
N22—H22B···O24v | 0.86 | 2.19 | 3.044 (4) | 172 |
C22—H22···O24v | 0.93 | 2.26 | 3.154 (4) | 160 |
C11—H11···O23i | 0.93 | 2.56 | 3.047 (4) | 113 |
C12—H12···O23i | 0.93 | 2.53 | 3.054 (4) | 116 |
C51—H51···O13 | 0.93 | 2.36 | 2.910 (4) | 117 |
C52—H52···O13 | 0.93 | 2.57 | 3.017 (4) | 110 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z+1; (iii) x, −y+3/2, z+1/2; (iv) x−1, y, z−1; (v) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C2H3O2)4(C6H6N2O)4] |
Mr | 851.77 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 294 |
a, b, c (Å) | 10.910 (2), 11.462 (2), 15.644 (3) |
β (°) | 104.05 (3) |
V (Å3) | 1897.6 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.19 |
Crystal size (mm) | 0.28 × 0.18 × 0.14 |
Data collection | |
Diffractometer | Rigaku AFC6 Difractometer diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.76, 0.85 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12257, 3736, 2384 |
Rint | 0.064 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.099, 1.08 |
No. of reflections | 3736 |
No. of parameters | 244 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.43 |
Computer programs: MSC/AFC Diffractometer Control Software, (Molecular Structure Corporation, 1988), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-NT (Sheldrick, 2008) and PLATON (Spek, 2009).
Cu1—O13 | 1.952 (2) | Cu1—N11 | 2.047 (2) |
Cu1—O14 | 2.020 (2) | Cu1—O23i | 2.271 (2) |
Cu1—N12 | 2.027 (2) | Cu1—O24 | 2.740 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N21—H21A···O12ii | 0.86 | 2.03 | 2.884 (3) | 174 |
N21—H21B···O14iii | 0.86 | 2.15 | 2.946 (3) | 154 |
N22—H22A···O11iv | 0.86 | 2.10 | 2.955 (3) | 174 |
N22—H22B···O24v | 0.86 | 2.19 | 3.044 (4) | 172 |
C22—H22···O24v | 0.93 | 2.26 | 3.154 (4) | 160 |
C11—H11···O23i | 0.93 | 2.56 | 3.047 (4) | 113 |
C12—H12···O23i | 0.93 | 2.53 | 3.054 (4) | 116 |
C51—H51···O13 | 0.93 | 2.36 | 2.910 (4) | 117 |
C52—H52···O13 | 0.93 | 2.57 | 3.017 (4) | 110 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z+1; (iii) x, −y+3/2, z+1/2; (iv) x−1, y, z−1; (v) x, −y+3/2, z−1/2. |
Acknowledgements
We acknowledge the Spanish Research Council (CSIC) for providing us with a free-of-charge licence to the CSD system (Allen, 2002) as well as the donation of a Rigaku AFC6S four-circle diffractometer by Professor Judith Howard. MP is a member of CONICET.
References
Aakeröy, Ch. B., Beatty, A. M., Desper, J., O'Shea, M. & Valdés-Martínez, J. (2003). Dalton Trans. pp. 3956–3962. Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Deacon, G. B. & Phillips, R. J. (1980). Coord. Chem. Rev. 33, 227–250. CrossRef CAS Web of Science Google Scholar
Lippard, S. J. & Berg, J. M. (1994). Principles of Bioinorganic Chemistry. Mill Valley, CA: University Science Books. Google Scholar
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA. Google Scholar
Moncol, J., Mudra, M., Lönnecke, P., Hewitt, M., Valko, M., Morris, H., Svorec, J., Melnik, M., Mazur, M. & Koman, M. (2007). Inorg. Chim. Acta, 360, 3213–3225. Web of Science CSD CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Lewis based coordinated Cu(II) carboxylate complexes are an important class of coordination compounds due to their relevance as structural and functional models for biologically important metalloenzymes (Lippard & Berg, 1994). Anionic carboxylates are highly flexible and versatile O-donor ligands since a range of substituents may be introduced on the alkyl chain to modulate its reactivity and coordination propensity and result in a variety of coordination modes such as monodentate, bidentate bridging, chelating, monoatomic bridging and chelating bridging (Deacon & Phillips, 1980). The Lewis base isonicotinamide acts as an effective tool for assembling coordination building units of Cu(II) into infinite 1-D chains. It has been reported that the reaction of Cu(II) acetate with isonicotinamide in acetonitrile (molar ratio 1:10) and drops of glacial acetic acid afforded the tetrakis (µ-acetato-O,O')-bis(isonicotinamide-N) dicopper (II) acetonitrile, whereas the same rection in methanol affords bis{bis(µ2-acetato-O)-aceticacid-O-bis(isonicotinamide-N)copper}bis(methanol) (Aakeröy et al., 2003). The crystal structure of the former contains the classical "paddle-wheel" core and peripheral isonicotinamide ligands with the amides oriented linearly and pointing in opposite directions. In the latter, two monodentate acetates and two isonicotinamides are in a plane in trans- geometry with a third acetate completing a square-pyramidal arrangement, two acetates coordinate to neighbouring coppers in a µ2 coordination, creating the dinuclear species. We now report a third structure obtained from the reaction of isonicotinamide and Cu(II) acetate (1:1) in methanol, (C16H18CuN4O6)2(I). The structure here consists of a dinuclear unit with two bridging µ2 acetate ligands, two peripheral acetate ligands, and four axial isonicotinamide ligands. The common feature in the three structures with different Cu(II) coordination geometries is the role played by the isonicotinamide units as rigid structures to guide the direction of propagation of the hydrogen-bonded links in the 1-D constructions.
The dimeric title compound (I) (Fig. 1) is built up around a center of symmetry; the independent unit is composed of one cation to which two acetate units bind, both of them in rather asymmetric way: the one with trailing number 3, bridging both copper cations in a double bridge (Cu1—O13: 1.952 (2) Å; Cu1—O23i: 2.271 (2) Å, (i): 1 - x,1 - y,1 - z); the remaining one (trailing number 4) binding each cation in a chelating manner, with a Cu—O bond in the normal range (Cu1—O14: 2.020 (2) Å) and a second, extremely long contact almost in the limit of coordination (Cu1—O24: 2.740 (2) Å). These bonds define an equatorial plane to which the Cu—N bonds provided by the INA groups (Cu1—N11: 2.047 (2); Cu1—N12: 2.027 (2) Å) are almost perpendicular, the preceeding Cu—N vectors subtending angles of 2.4 (1) and 2.3 (1)° to the plane normal. The coordination geometry thus described could be defined as as lightly distorted trigonal bipyramid, if the weak Cu1—O24 bond is disregarded, or as a highly distorted square bipyramid, if not. The double acetate bridge is non-coplanar to the cation equatorial planes, the corresponding O—C—O and O—Cu—O planes forming a dihedral angle of 34.3 (1)° and resulting in a sofa-like conformation for the 8-member bridging loop.
The packing organization is governed by N—H···O interactions (Table 1, first 4 entries). Those involving H21a and H22a generate the characteristic head to tail linkage between INA units, giving raise to chains along [101] (Fig. 2). This particular disposition leaves H21b and H22b pointing outwards the chains, in a favourable disposition to make interchain contacts to define a strong three-dimensional network. There are in addition a number of C—H···O bonds involving aromatic H atoms. One of them (fifth entry in Table 1), the only one involving the bridging acetate, is rather strong for a non conventional H-bond and provides to interchain cohesion, while the remaining four, involving the chelating acetate O atoms, are intradimeric. Probably due to steric hindrance, the aromatic rings are not involved in significant π···πinteractions.
A chloroacetate isolog of the title compound has been recently described in the literature (Moncol et al., 2007), and in spite of presenting an anisotropic cell expansion/contraction as compared to (I) (Unit cell differences: -1% in a, +5% in b, +1% in c) the general trend both in the dimer metrics as well as in packing interactions is extremely similar.