organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis[(E)-1-(2-hydroxyphenyl)ethyl­­idene]thiocarbonohydrazide mono­hydrate

aDepartment of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 2 February 2010; accepted 2 February 2010; online 6 February 2010)

In the title compound, C17H18N4O2S·H2O, the thio­urea derivative is almost planar, with an r.m.s. deviation for the non-H atoms of 0.057 Å. The hydroxyl groups lie to the same side of the mol­ecule as the thione S atom, a conformation that allows the formation of intra­molecular O—H⋯S and O—H⋯N hydrogen bonds. In the crystal structure, the thio­urea and water mol­ecules self-assemble into a two-dimensional array by a combination of Owater—H⋯Ohydrox­yl, N—H⋯Owater and Owater—H⋯S hydrogen bonds and C—H⋯π inter­actions.

Related literature

For background and recent studies of the biological activity of organotin compounds, see: Gielen & Tiekink (2005[Gielen, M. & Tiekink, E. R. T. (2005). Editors. Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine, pp. 421-439. Chichester: John Wiley & Sons.]); Affan et al. (2009[Affan, M. A., Foo, S. W., Jusoh, I., Hanapi, S. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 5031-5037.]). For the structure of the ketone analogue of the title compound, see: Zukerman-Schpector et al. (2009[Zukerman-Schpector, J., Affan, M. A., Foo, S. W. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o2951.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N4O2S·H2O

  • Mr = 360.43

  • Monoclinic, P 21 /n

  • a = 15.8654 (3) Å

  • b = 7.3938 (1) Å

  • c = 16.3697 (3) Å

  • β = 115.922 (1)°

  • V = 1727.06 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.44 × 0.13 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.905, Tmax = 1

  • 15464 measured reflections

  • 3968 independent reflections

  • 3136 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.03

  • 3968 reflections

  • 246 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N2 0.83 (2) 1.79 (2) 2.5191 (17) 147 (2)
O1—H1O⋯S1 0.83 (2) 2.86 (2) 3.5126 (13) 138 (2)
O2—H2O⋯N4 0.82 (2) 1.81 (2) 2.542 (2) 148 (2)
O2—H2O⋯S1 0.82 (2) 2.96 (2) 3.6220 (15) 139 (2)
O3—H3O⋯O1 0.84 (2) 1.91 (2) 2.7525 (18) 174 (2)
O3—H4O⋯S1i 0.82 (2) 2.76 (2) 3.5089 (14) 154 (2)
N1—H1N⋯O3ii 0.87 (2) 2.04 (2) 2.8169 (19) 150 (2)
N3—H3N⋯O3ii 0.88 (2) 2.04 (2) 2.854 (2) 154 (2)
C11—H11CCg1iii 0.98 2.61 3.4497 (17) 144
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecule in the title hydrate, (I), was synthesised as part of an on-going study into biological studies of organotin compounds (Gielen & Tiekink, 2005; Affan et al., 2009). The thiourea derivative in (I) is effectively planar with the maximum deviation of any of the torsion angles from 0 or 180° being 4.6 (2)° for N4—C10—C12—C13 and -174.62 (15)° for C11—C10—C12—C13. The r.m.s. deviation for all non-hydrogen atoms in the thiourea molecule = 0.057 Å. The conformation about each of the C1N2 [1.290 (2) Å] and C10N4 [1.2956 (19) Å] double bonds is E. Finally, the hydroxyl groups are orientated to the same side of the molecule as the thione-S atom. The described molecular conformation is stabilised by intramolecular Ohydroxyl—H···Nimine and Ohydroxyl—H···Sthione hydrogen bonds, Table 1. Allowing for substitution of the thione by a ketone group, the described molecular conformation for the thiourea molecule in (I) resembles that in the recently reported ketone derivative (Zukerman-Schpector et al., 2009).

In addition to the intramolecular hydrogen bonds, the crystal structure features Owater—H···Ohydroxyl, N—H···Owater and Owater—H···S hydrogen bonds, Table 1. The N—H atoms of one molecule connect to a water molecule which in turn forms a hydrogen bond with a hydroxyl-O1 atom of a second thiourea derivative. These interactions give rise to a supramolecular chain with base vector [101]. However, this does not take into account a second donor hydrogen bond involving the water molecule. This forms a hydrogen bond with a thione-S atom of a third thiourea derivative, Fig. 2. The latter interactions link chains into a 2-D array with additional stabilisation afforded by C—H···π, Table 1, and π···π interactions. The latter occur between the benzene rings: ring centroid(C4–C9)···ring centroid(C12–C17)i distance = 3.7821 (10) Å, with a dihedral angle between the least-squares plane through the rings of 2.25 (7)°; symmetry operation i: 1 - x, -y, 1 - z.

Related literature top

For background and recent studies of the biological activity of organotin compounds, see: Gielen & Tiekink (2005); Affan et al. (2009). For the structure of the ketone analogue of the title compound, see: Zukerman-Schpector et al. (2009).

Experimental top

A mixture of thiocarbohydrazone (0.53 g, 0.005 mol) and 2-hydroxyacetophenone (1.36 g, 0.01 mol) in absolute ethanol was heated under reflux for 4–5 h in the presence of 1–2 drops of glacial acetic acid. The reaction mixture was allowed to cool to room temperature for 1 h. The light-yellow precipitate was filtered off and washed several times using absolute ethanol, and was purified by recrystallization from hot absolute ethanol and dried under vacuum over P2O5. Colourless prisms of (I) were obtained by slow evaporation of acetone solution at room temperature. Yield: 1.66 g, 88.0%. m.p. = 494–496 K. IR (KBr): νOH (3561–3391), νNH 3230, νCN 1619, νN—N 963, νCS 857 cm-1.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O- and N-bound H-atoms were located in a difference Fourier map and were refined with O–H and N–H restraints of 0.84 (10) Å and 0.88 (10) Å, respectively, and with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular 2-D array in (I) mediated by O—H···O (orange dashed lines), N—H···O (blue dashed lines) and O—H···S (green dashed lines) hydrogen bonds. Colour code: S, yellow; O, red; N, blue; C, grey; H, green.
1,5-Bis[(E)-1-(2-hydroxyphenyl)ethylidene]thiocarbonohydrazide monohydrate top
Crystal data top
C17H18N4O2S·H2OF(000) = 760
Mr = 360.43Dx = 1.386 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4324 reflections
a = 15.8654 (3) Åθ = 2.9–27.4°
b = 7.3938 (1) ŵ = 0.21 mm1
c = 16.3697 (3) ÅT = 100 K
β = 115.922 (1)°Prism, colourless
V = 1727.06 (5) Å30.44 × 0.13 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3968 independent reflections
Radiation source: sealed tube3136 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.905, Tmax = 1k = 98
15464 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.7503P]
where P = (Fo2 + 2Fc2)/3
3968 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.35 e Å3
7 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H18N4O2S·H2OV = 1727.06 (5) Å3
Mr = 360.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.8654 (3) ŵ = 0.21 mm1
b = 7.3938 (1) ÅT = 100 K
c = 16.3697 (3) Å0.44 × 0.13 × 0.07 mm
β = 115.922 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3968 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3136 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 1Rint = 0.033
15464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0387 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
3968 reflectionsΔρmin = 0.27 e Å3
246 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.65089 (3)0.17338 (6)0.56929 (3)0.02002 (12)
O10.65341 (7)0.31213 (16)0.77557 (8)0.0213 (3)
H1O0.6224 (14)0.300 (3)0.7201 (15)0.032*
O20.70052 (8)0.01110 (17)0.38996 (7)0.0225 (3)
H2O0.6629 (14)0.041 (3)0.4040 (14)0.034*
O30.82009 (8)0.13214 (18)0.86971 (9)0.0240 (3)
H3O0.7673 (15)0.180 (3)0.8392 (15)0.036*
H4O0.8143 (14)0.022 (3)0.8646 (15)0.036*
N10.47863 (9)0.29267 (19)0.53363 (9)0.0179 (3)
H1N0.4205 (13)0.313 (2)0.4972 (12)0.022*
N20.51214 (9)0.33207 (18)0.62387 (8)0.0166 (3)
N30.49527 (9)0.19563 (19)0.41174 (9)0.0179 (3)
H3N0.4365 (13)0.229 (3)0.3827 (13)0.021*
N40.54462 (9)0.12100 (18)0.36967 (9)0.0172 (3)
C10.53819 (10)0.2217 (2)0.50290 (11)0.0170 (3)
C20.45776 (10)0.4008 (2)0.65560 (10)0.0158 (3)
C30.35589 (10)0.4419 (2)0.59818 (11)0.0203 (3)
H3A0.34990.56030.56930.030*
H3B0.32270.44330.63650.030*
H3C0.32870.34880.55130.030*
C40.50342 (10)0.4407 (2)0.75353 (10)0.0163 (3)
C50.59838 (11)0.3942 (2)0.80910 (11)0.0175 (3)
C60.63916 (11)0.4332 (2)0.90125 (11)0.0206 (3)
H60.70240.39970.93790.025*
C70.58878 (11)0.5202 (2)0.94020 (11)0.0225 (4)
H70.61750.54681.00330.027*
C80.49609 (11)0.5689 (2)0.88708 (11)0.0223 (4)
H80.46130.62950.91360.027*
C90.45484 (11)0.5287 (2)0.79543 (11)0.0191 (3)
H90.39130.56190.75980.023*
C100.50214 (11)0.0843 (2)0.28371 (10)0.0172 (3)
C110.39945 (11)0.1186 (2)0.22693 (11)0.0235 (4)
H11A0.36470.08690.26180.035*
H11B0.37710.04450.17180.035*
H11C0.38960.24680.21010.035*
C120.56124 (11)0.0036 (2)0.24484 (10)0.0178 (3)
C130.65610 (11)0.0429 (2)0.29941 (11)0.0187 (3)
C140.70852 (11)0.1286 (2)0.26121 (11)0.0227 (4)
H140.77130.16340.29900.027*
C150.67062 (12)0.1635 (2)0.16938 (12)0.0242 (4)
H150.70730.22120.14400.029*
C160.57851 (12)0.1140 (2)0.11390 (11)0.0247 (4)
H160.55230.13600.05040.030*
C170.52543 (12)0.0331 (2)0.15140 (11)0.0217 (4)
H170.46240.00100.11280.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01439 (18)0.0259 (2)0.01724 (19)0.00368 (15)0.00456 (14)0.00086 (17)
O10.0168 (5)0.0242 (6)0.0187 (6)0.0036 (5)0.0039 (5)0.0026 (5)
O20.0162 (5)0.0326 (7)0.0167 (6)0.0010 (5)0.0054 (5)0.0034 (5)
O30.0144 (5)0.0226 (7)0.0283 (6)0.0009 (5)0.0031 (5)0.0023 (6)
N10.0135 (6)0.0230 (8)0.0150 (6)0.0015 (5)0.0042 (5)0.0006 (6)
N20.0165 (6)0.0166 (7)0.0148 (6)0.0005 (5)0.0049 (5)0.0007 (5)
N30.0142 (6)0.0210 (7)0.0162 (6)0.0020 (5)0.0046 (5)0.0002 (6)
N40.0170 (6)0.0167 (7)0.0176 (6)0.0003 (5)0.0075 (5)0.0003 (5)
C10.0168 (7)0.0155 (8)0.0180 (8)0.0017 (6)0.0069 (6)0.0014 (6)
C20.0152 (7)0.0135 (8)0.0181 (7)0.0021 (6)0.0066 (6)0.0014 (6)
C30.0165 (7)0.0247 (9)0.0182 (8)0.0006 (6)0.0062 (6)0.0005 (7)
C40.0162 (7)0.0139 (8)0.0179 (7)0.0031 (6)0.0066 (6)0.0008 (6)
C50.0175 (7)0.0130 (8)0.0212 (8)0.0013 (6)0.0078 (6)0.0005 (6)
C60.0179 (7)0.0185 (9)0.0200 (8)0.0027 (6)0.0032 (6)0.0014 (7)
C70.0253 (8)0.0226 (9)0.0177 (8)0.0057 (7)0.0075 (7)0.0023 (7)
C80.0247 (8)0.0211 (9)0.0243 (8)0.0022 (7)0.0136 (7)0.0031 (7)
C90.0167 (7)0.0194 (8)0.0209 (8)0.0015 (6)0.0081 (6)0.0008 (7)
C100.0186 (7)0.0132 (8)0.0176 (7)0.0033 (6)0.0058 (6)0.0015 (6)
C110.0193 (8)0.0236 (9)0.0226 (8)0.0014 (6)0.0046 (7)0.0001 (7)
C120.0212 (8)0.0136 (8)0.0170 (7)0.0025 (6)0.0069 (6)0.0014 (6)
C130.0206 (7)0.0181 (8)0.0172 (7)0.0049 (6)0.0080 (6)0.0006 (6)
C140.0190 (8)0.0249 (9)0.0243 (8)0.0027 (6)0.0096 (7)0.0006 (7)
C150.0319 (9)0.0202 (9)0.0263 (9)0.0032 (7)0.0181 (7)0.0024 (7)
C160.0360 (9)0.0202 (9)0.0169 (8)0.0018 (7)0.0105 (7)0.0019 (7)
C170.0248 (8)0.0168 (8)0.0186 (8)0.0003 (6)0.0050 (7)0.0008 (7)
Geometric parameters (Å, º) top
S1—C11.6754 (15)C6—C71.380 (2)
O1—C51.3606 (19)C6—H60.9500
O1—H1O0.83 (2)C7—C81.389 (2)
O2—C131.3550 (19)C7—H70.9500
O2—H2O0.82 (2)C8—C91.382 (2)
O3—H3O0.84 (2)C8—H80.9500
O3—H4O0.82 (2)C9—H90.9500
N1—C11.355 (2)C10—C121.470 (2)
N1—N21.3649 (18)C10—C111.503 (2)
N1—H1N0.865 (18)C11—H11A0.9800
N2—C21.290 (2)C11—H11B0.9800
N3—C11.356 (2)C11—H11C0.9800
N3—N41.3650 (18)C12—C171.406 (2)
N3—H3N0.876 (18)C12—C131.416 (2)
N4—C101.2956 (19)C13—C141.392 (2)
C2—C41.472 (2)C14—C151.378 (2)
C2—C31.503 (2)C14—H140.9500
C3—H3A0.9800C15—C161.391 (2)
C3—H3B0.9800C15—H150.9500
C3—H3C0.9800C16—C171.377 (2)
C4—C91.396 (2)C16—H160.9500
C4—C51.420 (2)C17—H170.9500
C5—C61.387 (2)
C5—O1—H1O108.2 (14)C8—C7—H7120.0
C13—O2—H2O107.0 (14)C9—C8—C7119.54 (16)
H3O—O3—H4O109 (2)C9—C8—H8120.2
C1—N1—N2118.65 (13)C7—C8—H8120.2
C1—N1—H1N121.2 (12)C8—C9—C4122.18 (14)
N2—N1—H1N120.2 (12)C8—C9—H9118.9
C2—N2—N1120.48 (12)C4—C9—H9118.9
C1—N3—N4119.32 (13)N4—C10—C12115.31 (13)
C1—N3—H3N117.4 (12)N4—C10—C11123.03 (15)
N4—N3—H3N123.3 (12)C12—C10—C11121.65 (14)
C10—N4—N3119.45 (13)C10—C11—H11A109.5
N1—C1—N3111.55 (13)C10—C11—H11B109.5
N1—C1—S1124.15 (12)H11A—C11—H11B109.5
N3—C1—S1124.30 (12)C10—C11—H11C109.5
N2—C2—C4114.84 (13)H11A—C11—H11C109.5
N2—C2—C3123.59 (14)H11B—C11—H11C109.5
C4—C2—C3121.55 (14)C17—C12—C13116.86 (15)
C2—C3—H3A109.5C17—C12—C10121.22 (14)
C2—C3—H3B109.5C13—C12—C10121.91 (14)
H3A—C3—H3B109.5O2—C13—C14116.31 (14)
C2—C3—H3C109.5O2—C13—C12123.28 (15)
H3A—C3—H3C109.5C14—C13—C12120.40 (15)
H3B—C3—H3C109.5C15—C14—C13120.93 (15)
C9—C4—C5117.19 (14)C15—C14—H14119.5
C9—C4—C2120.92 (13)C13—C14—H14119.5
C5—C4—C2121.88 (14)C14—C15—C16119.74 (16)
O1—C5—C6117.06 (14)C14—C15—H15120.1
O1—C5—C4122.53 (14)C16—C15—H15120.1
C6—C5—C4120.40 (15)C17—C16—C15119.75 (15)
C7—C6—C5120.68 (15)C17—C16—H16120.1
C7—C6—H6119.7C15—C16—H16120.1
C5—C6—H6119.7C16—C17—C12122.27 (15)
C6—C7—C8120.00 (15)C16—C17—H17118.9
C6—C7—H7120.0C12—C17—H17118.9
C1—N1—N2—C2179.58 (14)C7—C8—C9—C40.4 (3)
C1—N3—N4—C10175.22 (15)C5—C4—C9—C80.4 (2)
N2—N1—C1—N3178.03 (13)C2—C4—C9—C8179.56 (15)
N2—N1—C1—S11.7 (2)N3—N4—C10—C12179.77 (13)
N4—N3—C1—N1178.53 (13)N3—N4—C10—C110.5 (2)
N4—N3—C1—S11.8 (2)N4—C10—C12—C17176.26 (15)
N1—N2—C2—C4178.58 (13)C11—C10—C12—C174.5 (2)
N1—N2—C2—C30.2 (2)N4—C10—C12—C134.6 (2)
N2—C2—C4—C9174.83 (15)C11—C10—C12—C13174.62 (15)
C3—C2—C4—C94.0 (2)C17—C12—C13—O2178.25 (15)
N2—C2—C4—C54.3 (2)C10—C12—C13—O22.6 (2)
C3—C2—C4—C5176.85 (15)C17—C12—C13—C142.9 (2)
C9—C4—C5—O1178.43 (14)C10—C12—C13—C14176.31 (15)
C2—C4—C5—O10.8 (2)O2—C13—C14—C15178.53 (15)
C9—C4—C5—C61.0 (2)C12—C13—C14—C152.5 (3)
C2—C4—C5—C6179.76 (15)C13—C14—C15—C160.5 (3)
O1—C5—C6—C7178.47 (15)C14—C15—C16—C171.0 (3)
C4—C5—C6—C71.0 (2)C15—C16—C17—C120.6 (3)
C5—C6—C7—C80.3 (3)C13—C12—C17—C161.4 (2)
C6—C7—C8—C90.4 (3)C10—C12—C17—C16177.81 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.83 (2)1.79 (2)2.5191 (17)147 (2)
O1—H1O···S10.83 (2)2.86 (2)3.5126 (13)138 (2)
O2—H2O···N40.82 (2)1.81 (2)2.542 (2)148 (2)
O2—H2O···S10.82 (2)2.96 (2)3.6220 (15)139 (2)
O3—H3O···O10.84 (2)1.91 (2)2.7525 (18)174 (2)
O3—H4O···S1i0.82 (2)2.76 (2)3.5089 (14)154 (2)
N1—H1N···O3ii0.87 (2)2.04 (2)2.8169 (19)150 (2)
N3—H3N···O3ii0.88 (2)2.04 (2)2.854 (2)154 (2)
C11—H11C···Cg1iii0.982.613.4497 (17)144
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H18N4O2S·H2O
Mr360.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)15.8654 (3), 7.3938 (1), 16.3697 (3)
β (°) 115.922 (1)
V3)1727.06 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.44 × 0.13 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.905, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
15464, 3968, 3136
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.03
No. of reflections3968
No. of parameters246
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.83 (2)1.79 (2)2.5191 (17)147 (2)
O1—H1O···S10.83 (2)2.86 (2)3.5126 (13)138 (2)
O2—H2O···N40.82 (2)1.81 (2)2.542 (2)148 (2)
O2—H2O···S10.82 (2)2.96 (2)3.6220 (15)139 (2)
O3—H3O···O10.84 (2)1.91 (2)2.7525 (18)174 (2)
O3—H4O···S1i0.82 (2)2.76 (2)3.5089 (14)154 (2)
N1—H1N···O3ii0.87 (2)2.037 (18)2.8169 (19)149.5 (19)
N3—H3N···O3ii0.88 (2)2.04 (2)2.854 (2)153.8 (18)
C11—H11C···Cg1iii0.982.613.4497 (17)144
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author: maaffan@frst.unimas.my.

Acknowledgements

The authors express their gratitude to the Ministry of Science, Technology and Innovation (MOSTI) for a research grant (No. 06-01-09-SF0046), and to Universiti Malaysia Sarawak (UNIMAS) for financial support.

References

First citationAffan, M. A., Foo, S. W., Jusoh, I., Hanapi, S. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 5031–5037.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGielen, M. & Tiekink, E. R. T. (2005). Editors. Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine, pp. 421–439. Chichester: John Wiley & Sons.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Affan, M. A., Foo, S. W. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o2951.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds