organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl [1-(4-bromo­phen­yl)-1-hydr­­oxy-3-oxobut­yl](phen­yl)phosphinate monohydrate

aDepartment of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 2 February 2010; accepted 3 February 2010; online 10 February 2010)

In the title hydrate, C18H20BrO4P·H2O, a staggered conformation is found when the organic mol­ecule is viewed down the central P—C bond, with the oxo and hydroxyl groups being diagonally opposite; each of the central P and C atoms has an S-configuration. The crystal structure features supra­molecular double chains along the b axis mediated by Ohydrox­yl–H⋯Ooxo, Owater–H⋯Ooxo, and Owater–H⋯Owater hydrogen bonds.

Related literature

For background to the enanti­oselective synthesis of the biologically significant R-hydroxy­phosphinates, see: Samanta et al. (2010[Samanta, S., Perera, S. & Zhao, C.-G. (2010). J. Org. Chem., doi: 10.1021/jo9022099.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20BrO4P·H2O

  • Mr = 429.24

  • Monoclinic, P 21

  • a = 10.140 (2) Å

  • b = 5.7779 (12) Å

  • c = 16.691 (3) Å

  • β = 104.79 (3)°

  • V = 945.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.28 mm−1

  • T = 173 K

  • 0.30 × 0.11 × 0.08 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.607, Tmax = 1

  • 6979 measured reflections

  • 3568 independent reflections

  • 3382 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.094

  • S = 1.06

  • 3568 reflections

  • 236 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1408 Friedel pairs

  • Flack parameter: 0.015 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O2i 0.84 1.94 2.698 (4) 150
O1w—H1w⋯O2 0.84 2.03 2.855 (4) 168
O1w—H2w⋯O1wii 0.84 2.24 3.072 (6) 172
Symmetry codes: (i) x, y+1, z; (ii) [-x, y-{\script{1\over 2}}, -z+2].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The title hydrate, (I), was investigated as a part of on-going studies on the enantioselective synthesis of the biologically significant R-hydroxyphosphinates (Samanta et al., 2010). The crystal structure analysis of diastereoisomer in (I), Fig. 1, confirms the stereochemistry of the C1 atom to be S and that of the P2 atom to be likewise S. There are significant hydrogen bonding interactions in the structure and the solvent water molecules play a pivotal role in the supramolecular aggregation. Direct links between molecules are found through the agency of O1hydroxyl—H1o···O2oxo hydrogen bonds, Fig. 2 and Table 1. Chains thus formed along the b direction are linked into double chains via a central zig-zag arrangement of hydrogen bonded water molecules that are connected to phosphorous-oxide atoms, Fig. 2 and Table 1. The combination of these O—H···O interactions leads to the formation of 13-membered {···O PCOH···Ooxo···HOwaterH···OwaterH···OwaterH} synthons. These chains are connected into layers in the ab plane via C–H···O interactions, Table 1, involving a methyl-H and carbonyl-O atoms, Fig. 3.

Related literature top

For background to the enantioselective synthesis of the biologically significant R-hydroxyphosphinates, see: Samanta et al. (2010).

Experimental top

The title compound was prepared as described in the literature (Samanta et al., 2010). Crystals were obtained by dissolving the diastereomeric products obtained in the cross aldol reaction in a minimum amount of ethyl acetate and then diluting with hexane. The solution was kept in the open to allow solvent slow evaporation, and colourless blocks of (I) were obtained after 24 h.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95-0.99 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C). The methyl H-atoms were rotated to fit the electron density. The O–H H atoms were located from a difference map and refined with O–H = 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: pubCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the molecule in (I), showing displacement ellipsoids at the 50% probability level. The water molecule is not shown.
[Figure 2] Fig. 2. Supramolecular double chain along the b axis in (I) mediated by O–H···O hydrogen bonding (orange dashed lines). Colour scheme: Br, olive; P. pink; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. View in projection down the b axis of the unit cell contents in (I) highlighting the formation of layers in the ab plane. The O–H···O hydrogen bonding and C–H···O contacts are shown as orange and blue dashed lines, respectively. Colour scheme: Br, olive; P. pink; O, red; N, blue; C, grey; and H, green.
Ethyl [1-(4-bromophenyl)-1-hydroxy-3-oxobutyl](phenyl)phosphinate monohydrate top
Crystal data top
C18H20BrO4P·H2OF(000) = 440
Mr = 429.24Dx = 1.508 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ybCell parameters from 2824 reflections
a = 10.140 (2) Åθ = 2.5–30.2°
b = 5.7779 (12) ŵ = 2.28 mm1
c = 16.691 (3) ÅT = 173 K
β = 104.79 (3)°Block, colourless
V = 945.5 (3) Å30.30 × 0.11 × 0.08 mm
Z = 2
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3568 independent reflections
Radiation source: fine-focus sealed tube3382 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 26.5°, θmin = 2.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.607, Tmax = 1k = 76
6979 measured reflectionsl = 2017
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.386P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3568 reflectionsΔρmax = 0.31 e Å3
236 parametersΔρmin = 0.37 e Å3
5 restraintsAbsolute structure: Flack (1983), 1408 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (10)
Crystal data top
C18H20BrO4P·H2OV = 945.5 (3) Å3
Mr = 429.24Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.140 (2) ŵ = 2.28 mm1
b = 5.7779 (12) ÅT = 173 K
c = 16.691 (3) Å0.30 × 0.11 × 0.08 mm
β = 104.79 (3)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3568 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3382 reflections with I > 2σ(I)
Tmin = 0.607, Tmax = 1Rint = 0.042
6979 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.31 e Å3
S = 1.06Δρmin = 0.37 e Å3
3568 reflectionsAbsolute structure: Flack (1983), 1408 Friedel pairs
236 parametersAbsolute structure parameter: 0.015 (10)
5 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br140.57412 (4)0.25929 (15)0.62623 (3)0.04821 (16)
P20.00084 (10)0.0452 (2)0.76819 (6)0.0228 (2)
O10.1397 (3)0.4301 (5)0.76143 (18)0.0293 (6)
H1O0.09810.51360.78820.044*
O1W0.0072 (4)0.2519 (7)0.97010 (18)0.0583 (9)
H1W0.00230.25490.91910.087*
H2W0.00930.39170.98410.087*
O20.0088 (3)0.1965 (4)0.80037 (15)0.0291 (6)
O30.4175 (3)0.4060 (6)0.89220 (18)0.0380 (7)
O210.0871 (2)0.2144 (5)0.80840 (14)0.0259 (5)
C10.1642 (3)0.2055 (7)0.7962 (2)0.0220 (8)
C20.2089 (4)0.2109 (7)0.8912 (2)0.0276 (8)
H2A0.13470.28290.91130.033*
H2B0.21820.04910.91140.033*
C30.3397 (4)0.3364 (6)0.9309 (2)0.0283 (9)
C40.3666 (5)0.3686 (9)1.0232 (3)0.0445 (12)
H4A0.39410.22051.05110.067*
H4B0.28350.42401.03670.067*
H4C0.43980.48221.04190.067*
C110.2671 (4)0.0904 (6)0.7559 (2)0.0228 (8)
C120.3013 (4)0.1955 (7)0.6892 (2)0.0309 (9)
H120.26080.33970.66930.037*
C130.3937 (4)0.0940 (7)0.6509 (2)0.0296 (9)
H130.41780.16840.60590.035*
C140.4496 (4)0.1171 (7)0.6798 (2)0.0297 (9)
C150.4176 (4)0.2265 (7)0.7454 (2)0.0299 (9)
H150.45730.37180.76440.036*
C160.3267 (4)0.1221 (7)0.7834 (2)0.0262 (8)
H160.30460.19660.82900.031*
C210.0698 (4)0.0655 (7)0.6594 (2)0.0249 (8)
C220.0543 (4)0.1151 (7)0.6068 (2)0.0303 (9)
H220.00240.24810.62860.036*
C230.1158 (4)0.0985 (8)0.5218 (3)0.0336 (10)
H230.10610.22140.48590.040*
C240.1898 (4)0.0934 (7)0.4901 (3)0.0367 (10)
H240.23180.10190.43230.044*
C250.2041 (4)0.2751 (8)0.5410 (2)0.0389 (10)
H250.25470.40850.51820.047*
C260.1447 (4)0.2630 (8)0.6256 (2)0.0302 (8)
H260.15470.38780.66060.036*
C310.2290 (4)0.1602 (8)0.8061 (3)0.0384 (10)
H31A0.23370.01630.83750.046*
H31B0.28270.13760.74820.046*
C320.2844 (5)0.3569 (9)0.8440 (3)0.0504 (13)
H32A0.37970.32570.84310.076*
H32B0.27920.49830.81250.076*
H32C0.23090.37710.90140.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br140.0388 (2)0.0579 (3)0.0544 (3)0.0052 (2)0.0236 (2)0.0160 (2)
P20.0238 (5)0.0223 (5)0.0239 (5)0.0017 (4)0.0092 (4)0.0009 (4)
O10.0350 (16)0.0203 (13)0.0357 (16)0.0046 (12)0.0149 (13)0.0010 (11)
O1W0.086 (2)0.058 (2)0.0360 (17)0.006 (3)0.0257 (18)0.0023 (19)
O20.0414 (16)0.0215 (14)0.0278 (13)0.0016 (11)0.0150 (12)0.0025 (10)
O30.0343 (17)0.0476 (18)0.0342 (16)0.0089 (14)0.0123 (14)0.0023 (14)
O210.0224 (12)0.0297 (14)0.0284 (12)0.0014 (12)0.0116 (10)0.0040 (12)
C10.0196 (17)0.024 (2)0.0237 (17)0.0055 (15)0.0068 (14)0.0003 (15)
C20.0313 (19)0.030 (2)0.0242 (18)0.0019 (18)0.0116 (15)0.0036 (17)
C30.031 (2)0.0249 (19)0.029 (2)0.0062 (16)0.0062 (17)0.0001 (16)
C40.045 (3)0.058 (3)0.030 (2)0.009 (2)0.010 (2)0.009 (2)
C110.0190 (18)0.0242 (19)0.0243 (18)0.0002 (14)0.0040 (15)0.0031 (15)
C120.036 (2)0.033 (2)0.0255 (19)0.0036 (17)0.0092 (17)0.0021 (17)
C130.034 (2)0.033 (2)0.0239 (19)0.0012 (17)0.0110 (17)0.0008 (17)
C140.023 (2)0.035 (2)0.032 (2)0.0029 (17)0.0074 (17)0.0130 (18)
C150.0232 (19)0.028 (2)0.037 (2)0.0017 (17)0.0047 (16)0.0001 (18)
C160.026 (2)0.0239 (19)0.0293 (19)0.0006 (16)0.0093 (16)0.0020 (16)
C210.0227 (19)0.0254 (19)0.0264 (19)0.0001 (15)0.0059 (15)0.0036 (15)
C220.033 (2)0.026 (2)0.031 (2)0.0067 (17)0.0069 (18)0.0040 (17)
C230.039 (2)0.033 (2)0.028 (2)0.0032 (19)0.0086 (19)0.0100 (17)
C240.037 (2)0.044 (3)0.027 (2)0.000 (2)0.0024 (18)0.0053 (19)
C250.043 (2)0.039 (3)0.031 (2)0.007 (2)0.0025 (18)0.002 (2)
C260.036 (2)0.027 (2)0.0284 (18)0.0062 (19)0.0099 (16)0.0020 (18)
C310.031 (2)0.045 (3)0.044 (2)0.0021 (18)0.018 (2)0.0023 (19)
C320.037 (3)0.057 (3)0.064 (3)0.017 (2)0.024 (2)0.004 (3)
Geometric parameters (Å, º) top
Br14—C141.909 (4)C13—C141.379 (6)
P2—O21.491 (2)C13—H130.9500
P2—O211.584 (3)C14—C151.373 (5)
P2—C211.778 (4)C15—C161.383 (5)
P2—C11.850 (4)C15—H150.9500
O1—C11.418 (5)C16—H160.9500
O1—H1O0.8400C21—C221.397 (5)
O1W—H1W0.8400C21—C261.407 (5)
O1W—H2W0.8400C22—C231.400 (6)
O3—C31.209 (5)C22—H220.9500
O21—C311.464 (5)C23—C241.368 (6)
C1—C111.531 (5)C23—H230.9500
C1—C21.534 (4)C24—C251.382 (6)
C2—C31.508 (5)C24—H240.9500
C2—H2A0.9900C25—C261.388 (5)
C2—H2B0.9900C25—H250.9500
C3—C41.506 (5)C26—H260.9500
C4—H4A0.9800C31—C321.479 (6)
C4—H4B0.9800C31—H31A0.9900
C4—H4C0.9800C31—H31B0.9900
C11—C121.388 (5)C32—H32A0.9800
C11—C161.393 (5)C32—H32B0.9800
C12—C131.392 (5)C32—H32C0.9800
C12—H120.9500
O2—P2—O21114.20 (15)C13—C14—C15121.8 (4)
O2—P2—C21113.59 (17)C13—C14—Br14118.6 (3)
O21—P2—C21105.60 (16)C15—C14—Br14119.6 (3)
O2—P2—C1114.53 (16)C14—C15—C16119.0 (4)
O21—P2—C198.54 (15)C14—C15—H15120.5
C21—P2—C1109.05 (17)C16—C15—H15120.5
C1—O1—H1O111.5C15—C16—C11121.2 (4)
H1W—O1W—H2W104.7C15—C16—H16119.4
C31—O21—P2120.9 (2)C11—C16—H16119.4
O1—C1—C11106.6 (3)C22—C21—C26119.3 (3)
O1—C1—C2112.3 (3)C22—C21—P2120.8 (3)
C11—C1—C2114.1 (3)C26—C21—P2119.9 (3)
O1—C1—P2107.6 (2)C21—C22—C23119.5 (4)
C11—C1—P2109.7 (2)C21—C22—H22120.2
C2—C1—P2106.3 (2)C23—C22—H22120.2
C3—C2—C1117.3 (3)C24—C23—C22120.4 (4)
C3—C2—H2A108.0C24—C23—H23119.8
C1—C2—H2A108.0C22—C23—H23119.8
C3—C2—H2B108.0C23—C24—C25120.7 (4)
C1—C2—H2B108.0C23—C24—H24119.6
H2A—C2—H2B107.2C25—C24—H24119.6
O3—C3—C2123.1 (3)C24—C25—C26120.1 (4)
O3—C3—C4122.2 (4)C24—C25—H25120.0
C2—C3—C4114.7 (4)C26—C25—H25120.0
C3—C4—H4A109.5C25—C26—C21119.9 (4)
C3—C4—H4B109.5C25—C26—H26120.1
H4A—C4—H4B109.5C21—C26—H26120.1
C3—C4—H4C109.5O21—C31—C32107.6 (4)
H4A—C4—H4C109.5O21—C31—H31A110.2
H4B—C4—H4C109.5C32—C31—H31A110.2
C12—C11—C16118.3 (3)O21—C31—H31B110.2
C12—C11—C1120.0 (3)C32—C31—H31B110.2
C16—C11—C1121.7 (3)H31A—C31—H31B108.5
C11—C12—C13121.3 (4)C31—C32—H32A109.5
C11—C12—H12119.4C31—C32—H32B109.5
C13—C12—H12119.4H32A—C32—H32B109.5
C14—C13—C12118.5 (4)C31—C32—H32C109.5
C14—C13—H13120.8H32A—C32—H32C109.5
C12—C13—H13120.8H32B—C32—H32C109.5
O2—P2—O21—C3155.9 (3)C1—C11—C12—C13179.5 (3)
C21—P2—O21—C3169.7 (3)C11—C12—C13—C141.1 (6)
C1—P2—O21—C31177.7 (3)C12—C13—C14—C150.8 (5)
O2—P2—C1—O1179.9 (2)C12—C13—C14—Br14179.0 (3)
O21—P2—C1—O158.3 (2)C13—C14—C15—C160.1 (6)
C21—P2—C1—O151.5 (3)Br14—C14—C15—C16179.7 (3)
O2—P2—C1—C1164.5 (3)C14—C15—C16—C110.4 (6)
O21—P2—C1—C11173.9 (2)C12—C11—C16—C150.1 (5)
C21—P2—C1—C1164.1 (3)C1—C11—C16—C15178.8 (3)
O2—P2—C1—C259.4 (3)O2—P2—C21—C2229.9 (4)
O21—P2—C1—C262.2 (3)O21—P2—C21—C22155.8 (3)
C21—P2—C1—C2172.1 (2)C1—P2—C21—C2299.1 (3)
O1—C1—C2—C361.6 (4)O2—P2—C21—C26148.7 (3)
C11—C1—C2—C359.9 (5)O21—P2—C21—C2622.8 (4)
P2—C1—C2—C3179.0 (3)C1—P2—C21—C2682.3 (3)
C1—C2—C3—O39.4 (6)C26—C21—C22—C231.3 (6)
C1—C2—C3—C4170.7 (4)P2—C21—C22—C23177.3 (3)
O1—C1—C11—C129.3 (4)C21—C22—C23—C240.5 (6)
C2—C1—C11—C12133.8 (4)C22—C23—C24—C250.6 (7)
P2—C1—C11—C12107.0 (3)C23—C24—C25—C260.9 (7)
O1—C1—C11—C16171.9 (3)C24—C25—C26—C210.1 (6)
C2—C1—C11—C1647.4 (5)C22—C21—C26—C251.0 (6)
P2—C1—C11—C1671.8 (4)P2—C21—C26—C25177.6 (3)
C16—C11—C12—C130.7 (5)P2—O21—C31—C32176.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.841.942.698 (4)150
O1w—H1w···O20.842.032.855 (4)168
O1w—H2w···O1wii0.842.243.072 (6)172
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC18H20BrO4P·H2O
Mr429.24
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)10.140 (2), 5.7779 (12), 16.691 (3)
β (°) 104.79 (3)
V3)945.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.28
Crystal size (mm)0.30 × 0.11 × 0.08
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.607, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
6979, 3568, 3382
Rint0.042
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.094, 1.06
No. of reflections3568
No. of parameters236
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.37
Absolute structureFlack (1983), 1408 Friedel pairs
Absolute structure parameter0.015 (10)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006), pubCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.841.942.698 (4)150
O1w—H1w···O20.842.032.855 (4)168
O1w—H2w···O1wii0.842.243.072 (6)172
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+2.
 

Footnotes

Data reported in this paper were previously deposited with the CCDC (No. 628997).

Additional correspondence author: cong.zhao@utsa.edu.

Acknowledgements

The authors thank the NIH-NIGMS (grant No. 1SC1GM082718-01 A1) for financial support of this research and the Welch Foundation (grant No. AX-1593) for financial support for preliminary aspects of this research.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSamanta, S., Perera, S. & Zhao, C.-G. (2010). J. Org. Chem., doi: 10.1021/jo9022099.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds