organic compounds
2,6-Diethylanilinium perchlorate
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: wajda_sta@yahoo.fr
The 10H16N+·ClO4−, contains two cations and two anions. The atoms of one of the ethyl side chains of one of the cations are disordered over two sets of sites in a 0.531 (13):0.469 (13) ratio. In the crystal, the components are linked by N—H⋯O and bifurcated N—H⋯(O,O) hydrogen bonds and weaker C—H⋯O interactions, such that the organic cations alternate with the perchlorate anions, forming ribbons in the a-axis direction.
of the title molecular salt, CRelated literature
For background to the physical properties and potential applications of molecular salts, see: Czarnecki et al. (1994); Mylrajan & Srinivasan (1991); Toumi Akriche et al. (2010); Xiao et al. (2005). For the graph-set notation of hydrogen-bond networks, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810004654/hb5332sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810004654/hb5332Isup2.hkl
An ethalonic 2,6-diethylaniline solution (5 mmol, in 5 ml) was added to an aqueous perchloric acid solution (0.5 M, 10 ml) at room temperature (293 K). Slow evaporation of the obtained mixture led to the formation of small crystals of the title compound. These were recrystallised from a mixture of water / ethanol (80% / 20%) to yield colourless blocks of (I).
All H atoms were positioned geometrically (C—H = 0.93–0.97Å, N—H = 0.89Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. A view of the packing of (I) along the a axis. | |
Fig. 2. The molecular structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level. |
C10H16N+·ClO4− | F(000) = 1056 |
Mr = 249.69 | Dx = 1.356 Mg m−3 |
Monoclinic, P21/c | Ag Kα radiation, λ = 0.56085 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 15.105 (3) Å | θ = 9–11° |
b = 21.192 (5) Å | µ = 0.17 mm−1 |
c = 7.718 (6) Å | T = 293 K |
β = 98.10 (3)° | Block, colourless |
V = 2446 (2) Å3 | 0.50 × 0.40 × 0.20 mm |
Z = 8 |
Enraf–Nonius TurboCAD-4 diffractometer | Rint = 0.052 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 2.2° |
Graphite monochromator | h = −25→5 |
non–profiled ω scans | k = −35→0 |
15750 measured reflections | l = −12→12 |
11941 independent reflections | 2 standard reflections every 120 min |
2954 reflections with I > 2σ(I) | intensity decay: 5% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.089 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.278 | H-atom parameters not refined |
S = 0.91 | w = 1/[σ2(Fo2) + (0.1095P)2 + ] where P = (Fo2 + 2Fc2)/3 |
11941 reflections | (Δ/σ)max < 0.001 |
304 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
C10H16N+·ClO4− | V = 2446 (2) Å3 |
Mr = 249.69 | Z = 8 |
Monoclinic, P21/c | Ag Kα radiation, λ = 0.56085 Å |
a = 15.105 (3) Å | µ = 0.17 mm−1 |
b = 21.192 (5) Å | T = 293 K |
c = 7.718 (6) Å | 0.50 × 0.40 × 0.20 mm |
β = 98.10 (3)° |
Enraf–Nonius TurboCAD-4 diffractometer | Rint = 0.052 |
15750 measured reflections | 2 standard reflections every 120 min |
11941 independent reflections | intensity decay: 5% |
2954 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.089 | 0 restraints |
wR(F2) = 0.278 | H-atom parameters not refined |
S = 0.91 | Δρmax = 0.36 e Å−3 |
11941 reflections | Δρmin = −0.36 e Å−3 |
304 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C7A | −0.0545 (10) | 0.6898 (8) | 0.139 (3) | 0.094 (7) | 0.469 (13) |
H7A1 | 0.0024 | 0.7060 | 0.1960 | 0.112* | 0.469 (13) |
H7A2 | −0.0600 | 0.7012 | 0.0165 | 0.112* | 0.469 (13) |
C7B | −0.0813 (12) | 0.6774 (8) | 0.089 (2) | 0.106 (6) | 0.531 (13) |
H7B1 | −0.0280 | 0.7030 | 0.1180 | 0.127* | 0.531 (13) |
H7B2 | −0.0885 | 0.6726 | −0.0373 | 0.127* | 0.531 (13) |
C8A | −0.1146 (10) | 0.7157 (9) | 0.204 (3) | 0.126 (4) | 0.469 (13) |
H8A1 | −0.1124 | 0.7604 | 0.1839 | 0.188* | 0.469 (13) |
H8A2 | −0.1072 | 0.7076 | 0.3273 | 0.188* | 0.469 (13) |
H8A3 | −0.1713 | 0.6995 | 0.1504 | 0.188* | 0.469 (13) |
C8B | −0.1498 (9) | 0.7177 (8) | 0.116 (3) | 0.126 (4) | 0.531 (13) |
H8B1 | −0.1429 | 0.7570 | 0.0571 | 0.188* | 0.531 (13) |
H8B2 | −0.1481 | 0.7251 | 0.2387 | 0.188* | 0.531 (13) |
H8B3 | −0.2061 | 0.6990 | 0.0695 | 0.188* | 0.531 (13) |
N2 | 0.37636 (18) | 0.68014 (13) | 0.7366 (3) | 0.0541 (7) | |
H2A | 0.3312 | 0.6531 | 0.7121 | 0.081* | |
H2B | 0.3754 | 0.7078 | 0.6497 | 0.081* | |
H2C | 0.3709 | 0.7005 | 0.8355 | 0.081* | |
O3 | 0.1026 (2) | 0.65755 (15) | 0.8694 (4) | 0.1012 (11) | |
O1 | 0.18825 (19) | 0.63681 (13) | 0.6498 (4) | 0.0866 (9) | |
O7 | 0.3499 (2) | 0.68975 (12) | 0.0880 (3) | 0.0791 (8) | |
N1 | 0.1070 (2) | 0.63278 (14) | 0.2448 (4) | 0.0658 (8) | |
H1A | 0.1561 | 0.6116 | 0.2870 | 0.099* | |
H1B | 0.0970 | 0.6629 | 0.3201 | 0.099* | |
H1C | 0.1141 | 0.6502 | 0.1428 | 0.099* | |
O2 | 0.1721 (2) | 0.73912 (12) | 0.7426 (5) | 0.1005 (11) | |
O5 | 0.3253 (3) | 0.66497 (17) | 0.3658 (4) | 0.1196 (14) | |
O8 | 0.4341 (2) | 0.61129 (16) | 0.2440 (6) | 0.1222 (14) | |
O6 | 0.2856 (2) | 0.59355 (16) | 0.1434 (5) | 0.1159 (12) | |
O4 | 0.0539 (2) | 0.6843 (2) | 0.5835 (5) | 0.1218 (13) | |
Cl1 | 0.12968 (6) | 0.68032 (4) | 0.71443 (11) | 0.0502 (2) | |
Cl2 | 0.35009 (6) | 0.63848 (4) | 0.21107 (12) | 0.0580 (3) | |
C1 | 0.0299 (2) | 0.58913 (16) | 0.2194 (4) | 0.0544 (9) | |
C3 | −0.0302 (3) | 0.48757 (18) | 0.2325 (5) | 0.0674 (11) | |
H3 | −0.0236 | 0.4448 | 0.2587 | 0.081* | |
C2 | 0.0446 (3) | 0.52653 (16) | 0.2615 (4) | 0.0562 (9) | |
C4 | −0.1126 (3) | 0.5099 (2) | 0.1672 (5) | 0.0786 (12) | |
H4 | −0.1612 | 0.4825 | 0.1497 | 0.094* | |
C6 | −0.0529 (3) | 0.6145 (2) | 0.1543 (6) | 0.0713 (11) | |
C9 | 0.1350 (3) | 0.50228 (19) | 0.3346 (5) | 0.0723 (11) | |
H9A | 0.1554 | 0.5253 | 0.4414 | 0.087* | |
H9B | 0.1758 | 0.5118 | 0.2518 | 0.087* | |
C10 | 0.1413 (3) | 0.43215 (19) | 0.3754 (6) | 0.0896 (14) | |
H10A | 0.2019 | 0.4216 | 0.4210 | 0.134* | |
H10B | 0.1231 | 0.4085 | 0.2703 | 0.134* | |
H10C | 0.1030 | 0.4221 | 0.4606 | 0.134* | |
C5 | −0.1239 (3) | 0.5723 (2) | 0.1274 (6) | 0.0850 (13) | |
H5 | −0.1804 | 0.5869 | 0.0813 | 0.102* | |
C11 | 0.4615 (2) | 0.64544 (17) | 0.7574 (4) | 0.0548 (9) | |
C16 | 0.5406 (3) | 0.6799 (2) | 0.7952 (5) | 0.0634 (10) | |
C12 | 0.4577 (3) | 0.58089 (18) | 0.7432 (5) | 0.0647 (10) | |
C20 | 0.3702 (4) | 0.4774 (3) | 0.7116 (8) | 0.125 (2) | |
H20A | 0.3098 | 0.4624 | 0.6854 | 0.187* | |
H20B | 0.3956 | 0.4630 | 0.8258 | 0.187* | |
H20C | 0.4049 | 0.4616 | 0.6260 | 0.187* | |
C13 | 0.5396 (3) | 0.5487 (2) | 0.7667 (6) | 0.0885 (14) | |
H13 | 0.5405 | 0.5049 | 0.7598 | 0.106* | |
C19 | 0.3704 (3) | 0.5457 (2) | 0.7082 (7) | 0.0876 (14) | |
H19A | 0.3333 | 0.5600 | 0.7930 | 0.105* | |
H19B | 0.3411 | 0.5587 | 0.5938 | 0.105* | |
C17 | 0.5385 (3) | 0.7511 (2) | 0.8118 (6) | 0.0765 (11) | |
H17A | 0.5014 | 0.7616 | 0.9005 | 0.092* | |
H17B | 0.5093 | 0.7682 | 0.7017 | 0.092* | |
C15 | 0.6199 (3) | 0.6456 (3) | 0.8166 (6) | 0.0883 (14) | |
H15 | 0.6745 | 0.6663 | 0.8425 | 0.106* | |
C14 | 0.6174 (3) | 0.5811 (3) | 0.7994 (7) | 0.0945 (15) | |
H14 | 0.6710 | 0.5589 | 0.8106 | 0.113* | |
C18 | 0.6274 (4) | 0.7845 (3) | 0.8577 (8) | 0.120 (2) | |
H18A | 0.6176 | 0.8292 | 0.8628 | 0.180* | |
H18B | 0.6649 | 0.7755 | 0.7700 | 0.180* | |
H18C | 0.6562 | 0.7699 | 0.9694 | 0.180* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C7A | 0.044 (6) | 0.062 (9) | 0.168 (16) | 0.000 (6) | −0.007 (7) | 0.039 (9) |
C7B | 0.119 (14) | 0.088 (8) | 0.130 (11) | −0.023 (9) | 0.083 (11) | −0.023 (8) |
C8A | 0.050 (8) | 0.135 (6) | 0.187 (16) | 0.045 (7) | −0.002 (6) | 0.010 (9) |
C8B | 0.050 (8) | 0.135 (6) | 0.187 (16) | 0.045 (7) | −0.002 (6) | 0.010 (9) |
N2 | 0.0530 (17) | 0.0584 (16) | 0.0511 (16) | 0.0024 (14) | 0.0081 (14) | −0.0052 (13) |
O3 | 0.146 (3) | 0.103 (2) | 0.0636 (17) | −0.043 (2) | 0.0447 (19) | −0.0017 (16) |
O1 | 0.0757 (19) | 0.0764 (18) | 0.114 (2) | 0.0053 (15) | 0.0331 (18) | −0.0259 (16) |
O7 | 0.107 (2) | 0.0746 (17) | 0.0590 (15) | −0.0023 (16) | 0.0237 (16) | 0.0112 (13) |
N1 | 0.077 (2) | 0.0641 (19) | 0.0620 (18) | −0.0194 (16) | 0.0293 (16) | −0.0043 (14) |
O2 | 0.128 (3) | 0.0523 (16) | 0.129 (3) | −0.0247 (17) | 0.044 (2) | −0.0107 (16) |
O5 | 0.181 (4) | 0.136 (3) | 0.0490 (16) | 0.062 (3) | 0.041 (2) | 0.0098 (17) |
O8 | 0.073 (2) | 0.082 (2) | 0.216 (4) | 0.0294 (18) | 0.034 (2) | 0.020 (2) |
O6 | 0.108 (3) | 0.091 (2) | 0.149 (3) | −0.036 (2) | 0.022 (2) | −0.002 (2) |
O4 | 0.083 (2) | 0.165 (3) | 0.107 (3) | 0.030 (2) | −0.020 (2) | −0.002 (2) |
Cl1 | 0.0526 (5) | 0.0464 (4) | 0.0535 (5) | −0.0003 (4) | 0.0142 (4) | −0.0012 (4) |
Cl2 | 0.0594 (6) | 0.0571 (5) | 0.0608 (5) | 0.0063 (5) | 0.0198 (4) | 0.0041 (4) |
C1 | 0.062 (2) | 0.057 (2) | 0.0494 (18) | −0.0151 (18) | 0.0236 (17) | −0.0073 (15) |
C3 | 0.086 (3) | 0.056 (2) | 0.064 (2) | −0.022 (2) | 0.021 (2) | −0.0045 (17) |
C2 | 0.072 (3) | 0.055 (2) | 0.0449 (18) | −0.0150 (18) | 0.0206 (18) | −0.0058 (15) |
C4 | 0.076 (3) | 0.091 (3) | 0.071 (3) | −0.033 (3) | 0.017 (2) | 0.001 (2) |
C6 | 0.076 (3) | 0.068 (3) | 0.078 (3) | −0.004 (2) | 0.036 (2) | 0.009 (2) |
C9 | 0.076 (3) | 0.072 (3) | 0.071 (3) | −0.010 (2) | 0.017 (2) | 0.004 (2) |
C10 | 0.104 (4) | 0.075 (3) | 0.089 (3) | 0.004 (3) | 0.012 (3) | 0.012 (2) |
C5 | 0.065 (3) | 0.111 (4) | 0.082 (3) | −0.006 (3) | 0.020 (2) | 0.013 (3) |
C11 | 0.060 (2) | 0.067 (2) | 0.0380 (17) | 0.0130 (19) | 0.0068 (16) | −0.0003 (15) |
C16 | 0.058 (2) | 0.079 (3) | 0.053 (2) | 0.007 (2) | 0.0057 (18) | −0.0018 (18) |
C12 | 0.068 (3) | 0.065 (2) | 0.062 (2) | 0.009 (2) | 0.009 (2) | 0.0027 (18) |
C20 | 0.101 (4) | 0.105 (4) | 0.163 (6) | 0.001 (3) | −0.001 (4) | 0.017 (4) |
C13 | 0.082 (3) | 0.075 (3) | 0.110 (4) | 0.025 (3) | 0.020 (3) | 0.007 (3) |
C19 | 0.077 (3) | 0.063 (3) | 0.121 (4) | 0.010 (2) | 0.006 (3) | −0.002 (2) |
C17 | 0.060 (3) | 0.090 (3) | 0.078 (3) | −0.007 (2) | 0.007 (2) | −0.013 (2) |
C15 | 0.057 (3) | 0.114 (4) | 0.091 (3) | 0.009 (3) | −0.001 (2) | 0.004 (3) |
C14 | 0.066 (3) | 0.100 (4) | 0.119 (4) | 0.024 (3) | 0.017 (3) | 0.009 (3) |
C18 | 0.095 (4) | 0.118 (4) | 0.145 (5) | −0.031 (3) | 0.010 (4) | −0.024 (4) |
C7A—C8A | 1.22 (3) | C2—C9 | 1.493 (5) |
C7A—C6 | 1.599 (17) | C4—C5 | 1.363 (6) |
C7A—H7A1 | 0.9700 | C4—H4 | 0.9300 |
C7A—H7A2 | 0.9700 | C6—C5 | 1.390 (6) |
C7B—C8B | 1.38 (2) | C9—C10 | 1.520 (5) |
C7B—C6 | 1.468 (19) | C9—H9A | 0.9700 |
C7B—H7B1 | 0.9700 | C9—H9B | 0.9700 |
C7B—H7B2 | 0.9700 | C10—H10A | 0.9600 |
C8A—H8A1 | 0.9600 | C10—H10B | 0.9600 |
C8A—H8A2 | 0.9600 | C10—H10C | 0.9600 |
C8A—H8A3 | 0.9600 | C5—H5 | 0.9300 |
C8B—H8B1 | 0.9600 | C11—C12 | 1.373 (5) |
C8B—H8B2 | 0.9600 | C11—C16 | 1.395 (5) |
C8B—H8B3 | 0.9600 | C16—C15 | 1.392 (6) |
N2—C11 | 1.471 (4) | C16—C17 | 1.515 (6) |
N2—H2A | 0.8900 | C12—C13 | 1.402 (5) |
N2—H2B | 0.8900 | C12—C19 | 1.506 (6) |
N2—H2C | 0.8900 | C20—C19 | 1.446 (6) |
O3—Cl1 | 1.404 (3) | C20—H20A | 0.9600 |
O1—Cl1 | 1.416 (3) | C20—H20B | 0.9600 |
O7—Cl2 | 1.443 (3) | C20—H20C | 0.9600 |
N1—C1 | 1.478 (4) | C13—C14 | 1.354 (6) |
N1—H1A | 0.8900 | C13—H13 | 0.9300 |
N1—H1B | 0.8900 | C19—H19A | 0.9700 |
N1—H1C | 0.8900 | C19—H19B | 0.9700 |
O2—Cl1 | 1.404 (3) | C17—C18 | 1.515 (6) |
O5—Cl2 | 1.417 (3) | C17—H17A | 0.9700 |
O8—Cl2 | 1.385 (3) | C17—H17B | 0.9700 |
O6—Cl2 | 1.409 (3) | C15—C14 | 1.374 (6) |
O4—Cl1 | 1.418 (3) | C15—H15 | 0.9300 |
C1—C2 | 1.376 (5) | C14—H14 | 0.9300 |
C1—C6 | 1.389 (5) | C18—H18A | 0.9600 |
C3—C4 | 1.360 (6) | C18—H18B | 0.9600 |
C3—C2 | 1.391 (5) | C18—H18C | 0.9600 |
C3—H3 | 0.9300 | ||
C8A—C7A—C6 | 115.0 (16) | C5—C6—C7B | 110.6 (8) |
C8A—C7A—H7A1 | 108.5 | C1—C6—C7A | 114.6 (6) |
C6—C7A—H7A1 | 108.5 | C5—C6—C7A | 128.9 (7) |
C8A—C7A—H7A2 | 108.5 | C7B—C6—C7A | 21.4 (10) |
C6—C7A—H7A2 | 108.5 | C2—C9—C10 | 116.3 (4) |
H7A1—C7A—H7A2 | 107.5 | C2—C9—H9A | 108.2 |
C8B—C7B—C6 | 134.4 (14) | C10—C9—H9A | 108.2 |
C8B—C7B—H7B1 | 103.6 | C2—C9—H9B | 108.2 |
C6—C7B—H7B1 | 103.6 | C10—C9—H9B | 108.2 |
C8B—C7B—H7B2 | 103.6 | H9A—C9—H9B | 107.4 |
C6—C7B—H7B2 | 103.6 | C9—C10—H10A | 109.5 |
H7B1—C7B—H7B2 | 105.3 | C9—C10—H10B | 109.5 |
C7A—C8A—H8A1 | 109.5 | H10A—C10—H10B | 109.5 |
C7A—C8A—H8A2 | 109.5 | C9—C10—H10C | 109.5 |
H8A1—C8A—H8A2 | 109.5 | H10A—C10—H10C | 109.5 |
C7A—C8A—H8A3 | 109.5 | H10B—C10—H10C | 109.5 |
H8A1—C8A—H8A3 | 109.5 | C4—C5—C6 | 121.4 (5) |
H8A2—C8A—H8A3 | 109.5 | C4—C5—H5 | 119.3 |
C7B—C8B—H8B1 | 109.5 | C6—C5—H5 | 119.3 |
C7B—C8B—H8B2 | 109.5 | C12—C11—C16 | 124.3 (4) |
H8B1—C8B—H8B2 | 109.5 | C12—C11—N2 | 117.6 (3) |
C7B—C8B—H8B3 | 109.5 | C16—C11—N2 | 118.1 (3) |
H8B1—C8B—H8B3 | 109.5 | C15—C16—C11 | 116.7 (4) |
H8B2—C8B—H8B3 | 109.5 | C15—C16—C17 | 122.5 (4) |
C11—N2—H2A | 109.5 | C11—C16—C17 | 120.8 (3) |
C11—N2—H2B | 109.5 | C11—C12—C13 | 116.7 (4) |
H2A—N2—H2B | 109.5 | C11—C12—C19 | 122.3 (4) |
C11—N2—H2C | 109.5 | C13—C12—C19 | 121.0 (4) |
H2A—N2—H2C | 109.5 | C19—C20—H20A | 109.5 |
H2B—N2—H2C | 109.5 | C19—C20—H20B | 109.5 |
C1—N1—H1A | 109.5 | H20A—C20—H20B | 109.5 |
C1—N1—H1B | 109.5 | C19—C20—H20C | 109.5 |
H1A—N1—H1B | 109.5 | H20A—C20—H20C | 109.5 |
C1—N1—H1C | 109.5 | H20B—C20—H20C | 109.5 |
H1A—N1—H1C | 109.5 | C14—C13—C12 | 120.3 (4) |
H1B—N1—H1C | 109.5 | C14—C13—H13 | 119.9 |
O3—Cl1—O2 | 110.8 (2) | C12—C13—H13 | 119.9 |
O3—Cl1—O1 | 110.4 (2) | C20—C19—C12 | 119.8 (4) |
O2—Cl1—O1 | 109.79 (19) | C20—C19—H19A | 107.4 |
O3—Cl1—O4 | 108.9 (2) | C12—C19—H19A | 107.4 |
O2—Cl1—O4 | 111.2 (2) | C20—C19—H19B | 107.4 |
O1—Cl1—O4 | 105.6 (2) | C12—C19—H19B | 107.4 |
O8—Cl2—O6 | 110.8 (2) | H19A—C19—H19B | 106.9 |
O8—Cl2—O5 | 110.8 (3) | C16—C17—C18 | 117.2 (4) |
O6—Cl2—O5 | 109.2 (2) | C16—C17—H17A | 108.0 |
O8—Cl2—O7 | 110.6 (2) | C18—C17—H17A | 108.0 |
O6—Cl2—O7 | 109.1 (2) | C16—C17—H17B | 108.0 |
O5—Cl2—O7 | 106.27 (19) | C18—C17—H17B | 108.0 |
C2—C1—C6 | 124.4 (3) | H17A—C17—H17B | 107.2 |
C2—C1—N1 | 118.4 (3) | C14—C15—C16 | 119.7 (5) |
C6—C1—N1 | 117.3 (3) | C14—C15—H15 | 120.1 |
C4—C3—C2 | 122.2 (4) | C16—C15—H15 | 120.1 |
C4—C3—H3 | 118.9 | C13—C14—C15 | 122.3 (5) |
C2—C3—H3 | 118.9 | C13—C14—H14 | 118.8 |
C1—C2—C3 | 115.8 (4) | C15—C14—H14 | 118.8 |
C1—C2—C9 | 121.9 (3) | C17—C18—H18A | 109.5 |
C3—C2—C9 | 122.3 (3) | C17—C18—H18B | 109.5 |
C3—C4—C5 | 120.0 (4) | H18A—C18—H18B | 109.5 |
C3—C4—H4 | 120.0 | C17—C18—H18C | 109.5 |
C5—C4—H4 | 120.0 | H18A—C18—H18C | 109.5 |
C1—C6—C5 | 116.2 (4) | H18B—C18—H18C | 109.5 |
C1—C6—C7B | 132.9 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O6 | 0.89 | 2.41 | 3.029 (4) | 127 |
N1—H1B···O4 | 0.89 | 2.27 | 3.043 (5) | 146 |
N1—H1B···O2i | 0.89 | 2.48 | 2.889 (4) | 109 |
N1—H1C···O3ii | 0.89 | 2.10 | 2.935 (4) | 157 |
N1—H1C···O2i | 0.89 | 2.58 | 2.889 (4) | 101 |
N2—H2A···O1 | 0.89 | 2.17 | 2.971 (4) | 149 |
N2—H2B···O5 | 0.89 | 2.39 | 2.875 (4) | 114 |
N2—H2B···O7iii | 0.89 | 2.24 | 2.991 (4) | 141 |
N2—H2C···O7iv | 0.89 | 2.03 | 2.805 (3) | 144 |
C3—H3···O3v | 0.93 | 2.60 | 3.321 (5) | 134 |
C13—H13···O8vi | 0.93 | 2.49 | 3.418 (6) | 172 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, y, z−1; (iii) x, −y+3/2, z+1/2; (iv) x, y, z+1; (v) −x, −y+1, −z+1; (vi) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C10H16N+·ClO4− |
Mr | 249.69 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 15.105 (3), 21.192 (5), 7.718 (6) |
β (°) | 98.10 (3) |
V (Å3) | 2446 (2) |
Z | 8 |
Radiation type | Ag Kα, λ = 0.56085 Å |
µ (mm−1) | 0.17 |
Crystal size (mm) | 0.50 × 0.40 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius TurboCAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15750, 11941, 2954 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.836 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.089, 0.278, 0.91 |
No. of reflections | 11941 |
No. of parameters | 304 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.36, −0.36 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O6 | 0.89 | 2.41 | 3.029 (4) | 127 |
N1—H1B···O4 | 0.89 | 2.27 | 3.043 (5) | 146 |
N1—H1B···O2i | 0.89 | 2.48 | 2.889 (4) | 109 |
N1—H1C···O3ii | 0.89 | 2.10 | 2.935 (4) | 157 |
N1—H1C···O2i | 0.89 | 2.58 | 2.889 (4) | 101 |
N2—H2A···O1 | 0.89 | 2.17 | 2.971 (4) | 149 |
N2—H2B···O5 | 0.89 | 2.39 | 2.875 (4) | 114 |
N2—H2B···O7iii | 0.89 | 2.24 | 2.991 (4) | 141 |
N2—H2C···O7iv | 0.89 | 2.03 | 2.805 (3) | 144 |
C3—H3···O3v | 0.93 | 2.60 | 3.321 (5) | 134 |
C13—H13···O8vi | 0.93 | 2.49 | 3.418 (6) | 172 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, y, z−1; (iii) x, −y+3/2, z+1/2; (iv) x, y, z+1; (v) −x, −y+1, −z+1; (vi) −x+1, −y+1, −z+1. |
References
Bernstein, J., David, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Czarnecki, P., Nawrocik, W., Pajak, Z. & Wasicki, J. (1994). Phys. Rev. B, 49, 1511–1512. CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Mylrajan, M. & Srinivasan, T. K. K. (1991). J. Raman Spectrosc. 22, 53–55. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Toumi Akriche, S., Rzaigui, M., Al-Hokbany, N. & Mahfouz, R. M. (2010). Acta Cryst. E66, o300. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xiao, D., An, H., Wang, E. & Xu, L. (2005). J. Mol. Struct. 738, 217–225. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A special attention is focused on the synthesis of hybrid class of inorganic-organic materials because of their interesting architectures and wide variety of physical properties. Organic substructure of these compounds is usually responsible for their molecular hyperpolarizability, electric permittivity and spontaneous polarization. The inorganic part determines thermal and mechanical stability of the crystals. The combination of these various features attributed to both organic and inorganic substructures may lead to interesting materials (Xiao et al., 2005). In particular, the association of the perchlorate anions to organic molecules could lead to materials having phase transitions, non-symmetric structures, characteristic H-bonds (Czarnecki et al., 1994; Mylrajan & Srinivasan, 1991). Among the crystals comprising perchlorate anions, the most interesting are non-centrosymmetric, due to non linear optical(ONL) properties. A pronounced second harmonic generation was found in L-leucinium perchlorate (SHG efficiency d eff= 0.44 x d eff KDP). In this paper, we report single-crystal X-ray study of 2,6-diethylanilinium perchlorate (I). Crystal structure of this latter is depicted in the figure 1. The asymmetric unit, built of two 2,6-diethylanilinium cations and two perchlorate anions, has the geometrical configuration shown in the figure 2. These four components establish between them H-bonds to form a tetra-membered ring. This ring form two slightly corrugated ribbons parallel to the a direction at y = 1/4 and 3/4. Each ribbon is built of an alternance of both inorganic and organic entities.
The first Cl(1)O4- is surrounded by three N(1)H3+cations, to build a ribbon extended in the a direction, and generating R24(8) graph-set motifs.Whereas the second Cl(2)O4-, surrounded by two N(2)H3+cations, leads to R24(10) graph-set motifs which form another ribbon extended in the same direction. Both parallel ribbons are attached together by N—H···O hydrogen bonds. The organic molecules are anchored on these ribbons so that to leave spacious channels (13.9 Å x 3.3 Å) parallel to the a axis. The Cl—O distances indicate rather slight distortion of the two perchlorate anions from the tetrahedral symmetry. The shortest Cl—O bond equals to 1.384 (3) Å, whereas the longest one to 1.444 (3) Å, the angles vary from 105.6 (2)° to 111.2 (2)° that are standard values for perchlorate ions (Toumi Akriche, S. et al. 2010). In this organisation, the components display different interactions (electrostatic, H-bonds, Van derWalls) to keep the three-dimensional network stability.