inorganic compounds
Triclinic form of bis{di-μ-hydroxidobis[fac-aquatribromidotin(IV)]} heptahydrate
aDepartamento de Quimica, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil, bDepartment of Chemistry, University of Aberdeen, Old Aberdeen, AB15 5NY, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900, Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: Edward.Tiekink@gmail.com
The 2O)2(OH)2Br6]·7H2O, comprises two [Br3(H2O)Sn(μ-OH)2SnBr3(OH2)] units, but three independent molecules as two of these are disposed about inversion centres, and seven water molecules. In common with the monoclinic polymorph [Howie et al. (2005). Inorg. Chim. Acta, 358, 3283–3286], each of the dinuclear species features a central Sn2O2 core, distorted octahedral Sn atom geometries defined by a Br3O3 donor set, and an anti-disposition of the coordinated water molecules. In the crystal, Oh—H⋯Ow, Oa—H⋯Ow, Ow—H⋯Ow, and Ow—H⋯Br (h = hydroxyl, a = aqua, w = water) hydrogen-bonding interactions generate a three-dimensional network.
of the title hydrate, 2[Sn(HRelated literature
For the structure of the monoclinic polymorph, see: Howie et al. (2005). For related di-μ-hydroxido-bis[fac-trichloridoaquatin(IV)] complexes, see: Barnes et al. (1980); Cameron et al. (1985); Shihada et al. (2004); Müller et al. (2007). For analysis of pseudo-symmetry, see: Spek (2003).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536810006021/hb5334sup1.cif
contains datablocks general, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810006021/hb5334Isup2.hkl
Solutions of PrS(═O)OCH2CH2S(═O)OPr (210 mg, 1 mmol) in MeOH (15 ml) and SnBr4 (440 mg, 1 mmol) in MeOH (15 ml) were mixed. After maintaining the reaction mixture at room temperature for several days, the microcrystalline precipitate was collected. As the crystals were not suitable for X-ray study, they were redissolved in MeOH and the solution was maintained at room temperature. After two weeks, colourless blocks of (I) suitable for X-ray analysis were collected and found to be hydrolysed stannic bromide. On heating the crystals, decomposition slowly occurred, and hence no melting point was measured. Standing in a moist atmosphere resulted in the formation of a syrup.
The O-bound H atoms were located from difference maps and refined with O–H = 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.06 and 1.63 e Å-3, respectively, were located 2.28 Å and 0.82 Å from the H6 and Sn2 atoms, respectively. The ADDSYM routine in PLATON (Spek, 2003) suggested the possibility of additional (C) symmetry. However, in this pseudo-symmetric setting, the O9-water molecule has no symmetry equivalent in the structure.
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the molecule occupying a general position in (I) showing displacement ellipsoids at the 50% probability level. | |
Fig. 2. The molecular structure of the centrosymmetric molecule in (I) containing the Sn3 atom showing displacement ellipsoids at the 50% probability level. Symmetry operation i: 1-x, 2-y, -z. | |
Fig. 3. The molecular structure of the centrosymmetric molecule in (I) containing the Sn4 atom showing displacement ellipsoids at the 50% probability level. Symmetry operation ii: 2-x, 1-y, -z. | |
Fig. 4. A view of a supramolecular chain in (I), aligned along [110], whereby the centrosymmetric dinuclear molecules, i.e. containing the Sn3 and Sn4 atoms, are bridged by Ohydroxyl–H···Owater hydrogen bonds (orange dashed lines). Colour code: Sn, orange; Br, olive; O, red; and H, green. | |
Fig. 5. View in projection down the a axis of the unit cell contents in (I). The O–H···O and O–H···Br interactions are shown as orange and blue dashed lines, respectively. Colour code: Sn, orange; Br, olive; O, red; and H, green. |
[Sn2Br6(HO)2(H2O)2]2·7H2O | Z = 2 |
Mr = 1699.85 | F(000) = 1532 |
Triclinic, P1 | Dx = 3.304 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.9652 (2) Å | Cell parameters from 22681 reflections |
b = 14.0027 (3) Å | θ = 2.9–27.5° |
c = 14.5230 (3) Å | µ = 16.97 mm−1 |
α = 64.8591 (13)° | T = 120 K |
β = 69.9803 (13)° | Block, colourless |
γ = 75.0492 (15)° | 0.20 × 0.18 × 0.06 mm |
V = 1708.54 (6) Å3 |
Nonius KappaCCD diffractometer | 7823 independent reflections |
Radiation source: Enraf Nonius FR591 rotating anode | 5613 reflections with I > 2σ(I) |
10 cm confocal mirrors monochromator | Rint = 0.045 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ϕ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −18→18 |
Tmin = 0.421, Tmax = 0.746 | l = −18→18 |
36325 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0218P)2 + 6.2493P] where P = (Fo2 + 2Fc2)/3 |
7823 reflections | (Δ/σ)max = 0.001 |
352 parameters | Δρmax = 1.06 e Å−3 |
36 restraints | Δρmin = −1.63 e Å−3 |
[Sn2Br6(HO)2(H2O)2]2·7H2O | γ = 75.0492 (15)° |
Mr = 1699.85 | V = 1708.54 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.9652 (2) Å | Mo Kα radiation |
b = 14.0027 (3) Å | µ = 16.97 mm−1 |
c = 14.5230 (3) Å | T = 120 K |
α = 64.8591 (13)° | 0.20 × 0.18 × 0.06 mm |
β = 69.9803 (13)° |
Nonius KappaCCD diffractometer | 7823 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 5613 reflections with I > 2σ(I) |
Tmin = 0.421, Tmax = 0.746 | Rint = 0.045 |
36325 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 36 restraints |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.05 | Δρmax = 1.06 e Å−3 |
7823 reflections | Δρmin = −1.63 e Å−3 |
352 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.25914 (4) | 0.18193 (3) | 0.42146 (3) | 0.01129 (9) | |
Sn2 | 0.24278 (4) | 0.32001 (3) | 0.56732 (3) | 0.01112 (9) | |
Br1 | 0.14362 (6) | 0.02944 (5) | 0.58688 (4) | 0.01635 (13) | |
Br2 | 0.08773 (7) | 0.19732 (5) | 0.32194 (5) | 0.02494 (15) | |
Br3 | 0.47120 (6) | 0.06473 (5) | 0.35321 (4) | 0.01606 (13) | |
Br4 | 0.41823 (6) | 0.30744 (5) | 0.66344 (5) | 0.02016 (14) | |
Br5 | 0.35268 (6) | 0.47436 (4) | 0.40290 (4) | 0.01513 (13) | |
Br6 | 0.03158 (6) | 0.43028 (5) | 0.64553 (4) | 0.01642 (13) | |
O1 | 0.3524 (5) | 0.3139 (3) | 0.2907 (3) | 0.0247 (10) | |
H1A | 0.4013 | 0.3141 | 0.2307 | 0.037* | |
H1B | 0.3687 | 0.3637 | 0.3015 | 0.037* | |
O2 | 0.3683 (4) | 0.2055 (3) | 0.5078 (3) | 0.0115 (8) | |
H2 | 0.4587 | 0.1961 | 0.4879 | 0.017* | |
O3 | 0.1324 (4) | 0.2961 (3) | 0.4820 (3) | 0.0132 (8) | |
H3 | 0.0442 | 0.3164 | 0.5023 | 0.020* | |
O4 | 0.1573 (5) | 0.1822 (3) | 0.7003 (3) | 0.0202 (9) | |
H4A | 0.1162 | 0.1900 | 0.7582 | 0.030* | |
H4B | 0.1506 | 0.1256 | 0.6964 | 0.030* | |
Sn3 | 0.34919 (4) | 0.94137 (3) | 0.07239 (3) | 0.01027 (9) | |
Br7 | 0.32460 (6) | 0.74736 (5) | 0.17782 (4) | 0.01670 (13) | |
Br8 | 0.29454 (6) | 0.94221 (5) | −0.08785 (4) | 0.01846 (14) | |
Br9 | 0.09746 (6) | 1.02285 (5) | 0.13907 (5) | 0.01875 (14) | |
O5 | 0.4029 (4) | 0.9463 (4) | 0.2010 (3) | 0.0196 (9) | |
H5A | 0.3490 | 0.9284 | 0.2628 | 0.029* | |
H5B | 0.4623 | 0.9824 | 0.1963 | 0.029* | |
O6 | 0.5706 (4) | 0.9129 (3) | 0.0104 (3) | 0.0134 (8) | |
H6 | 0.6306 | 0.8575 | 0.0222 | 0.020* | |
Sn4 | 0.84937 (4) | 0.44058 (3) | 0.06715 (3) | 0.01050 (9) | |
Br10 | 0.80194 (6) | 0.44339 (5) | −0.09571 (4) | 0.01709 (13) | |
Br11 | 0.81979 (6) | 0.24771 (5) | 0.17183 (4) | 0.01730 (13) | |
Br12 | 0.59787 (6) | 0.52341 (5) | 0.13434 (4) | 0.01666 (13) | |
O7 | 0.8931 (4) | 0.4524 (4) | 0.1967 (3) | 0.0187 (9) | |
H7A | 0.8399 | 0.4282 | 0.2583 | 0.028* | |
H7B | 0.9802 | 0.4440 | 0.1955 | 0.028* | |
O8 | 1.0732 (4) | 0.4123 (3) | 0.0172 (3) | 0.0129 (8) | |
H8 | 1.1140 | 0.3541 | 0.0108 | 0.019* | |
O9 | 0.2294 (4) | 0.2630 (4) | 0.9291 (3) | 0.0220 (10) | |
H9A | 0.1629 | 0.2430 | 0.9213 | 0.033* | |
H9B | 0.2910 | 0.2744 | 0.8704 | 0.033* | |
O10 | 0.7781 (3) | 0.10636 (17) | 0.61362 (8) | 0.0187 (9) | |
H10A | 0.8390 | 0.0516 | 0.6174 | 0.028* | |
H10B | 0.7909 | 0.1420 | 0.5487 | 0.028* | |
O11 | 0.6517 (4) | 0.1932 (4) | 0.4475 (3) | 0.0203 (9) | |
H11A | 0.6948 | 0.2473 | 0.4162 | 0.030* | |
H11B | 0.6769 | 0.1611 | 0.4056 | 0.030* | |
O12 | 0.0169 (5) | 0.1982 (4) | 0.8889 (3) | 0.0230 (10) | |
H12A | −0.0473 | 0.2509 | 0.8786 | 0.034* | |
H12B | −0.0164 | 0.1438 | 0.9380 | 0.034* | |
O13 | 0.7169 (4) | 0.3949 (3) | 0.3846 (3) | 0.0198 (9) | |
H13A | 0.7430 | 0.3733 | 0.4401 | 0.030* | |
H13B | 0.6518 | 0.4472 | 0.3810 | 0.030* | |
O14 | 0.1530 (4) | 0.6926 (3) | 0.4532 (3) | 0.0198 (9) | |
H14A | 0.1844 | 0.7510 | 0.4139 | 0.030* | |
H14B | 0.1763 | 0.6534 | 0.4181 | 0.030* | |
O15 | 0.4686 (5) | 0.2973 (4) | 0.1094 (3) | 0.0310 (12) | |
H15A | 0.4739 | 0.3565 | 0.0591 | 0.047* | |
H15B | 0.5446 | 0.2560 | 0.0981 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.01050 (19) | 0.0111 (2) | 0.01327 (19) | −0.00171 (15) | −0.00335 (15) | −0.00510 (15) |
Sn2 | 0.01002 (19) | 0.0115 (2) | 0.01214 (19) | −0.00217 (15) | −0.00210 (15) | −0.00487 (15) |
Br1 | 0.0138 (3) | 0.0120 (3) | 0.0189 (3) | −0.0042 (2) | 0.0015 (2) | −0.0049 (2) |
Br2 | 0.0254 (3) | 0.0261 (4) | 0.0320 (4) | −0.0023 (3) | −0.0183 (3) | −0.0111 (3) |
Br3 | 0.0142 (3) | 0.0179 (3) | 0.0168 (3) | −0.0013 (2) | −0.0012 (2) | −0.0098 (2) |
Br4 | 0.0177 (3) | 0.0263 (4) | 0.0216 (3) | −0.0024 (2) | −0.0099 (2) | −0.0104 (3) |
Br5 | 0.0135 (3) | 0.0120 (3) | 0.0165 (3) | −0.0038 (2) | 0.0001 (2) | −0.0042 (2) |
Br6 | 0.0136 (3) | 0.0178 (3) | 0.0174 (3) | −0.0010 (2) | −0.0004 (2) | −0.0097 (2) |
O1 | 0.036 (3) | 0.018 (3) | 0.017 (2) | −0.011 (2) | 0.0016 (19) | −0.0073 (19) |
O2 | 0.0089 (19) | 0.011 (2) | 0.018 (2) | 0.0024 (16) | −0.0036 (16) | −0.0103 (16) |
O3 | 0.0056 (18) | 0.017 (2) | 0.019 (2) | 0.0017 (16) | −0.0038 (16) | −0.0095 (17) |
O4 | 0.032 (3) | 0.013 (2) | 0.014 (2) | −0.0097 (19) | 0.0004 (18) | −0.0052 (18) |
Sn3 | 0.00835 (19) | 0.0102 (2) | 0.01140 (19) | −0.00138 (14) | −0.00144 (14) | −0.00403 (15) |
Br7 | 0.0183 (3) | 0.0110 (3) | 0.0193 (3) | −0.0030 (2) | −0.0053 (2) | −0.0034 (2) |
Br8 | 0.0174 (3) | 0.0256 (3) | 0.0156 (3) | −0.0059 (2) | −0.0051 (2) | −0.0084 (2) |
Br9 | 0.0103 (3) | 0.0184 (3) | 0.0210 (3) | 0.0006 (2) | 0.0016 (2) | −0.0071 (2) |
O5 | 0.020 (2) | 0.028 (3) | 0.013 (2) | −0.0127 (19) | −0.0002 (17) | −0.0071 (18) |
O6 | 0.010 (2) | 0.008 (2) | 0.018 (2) | 0.0007 (15) | −0.0015 (16) | −0.0038 (16) |
Sn4 | 0.00841 (19) | 0.0117 (2) | 0.01130 (19) | −0.00140 (14) | −0.00110 (14) | −0.00534 (15) |
Br10 | 0.0162 (3) | 0.0242 (3) | 0.0150 (3) | −0.0041 (2) | −0.0046 (2) | −0.0099 (2) |
Br11 | 0.0181 (3) | 0.0122 (3) | 0.0200 (3) | −0.0029 (2) | −0.0054 (2) | −0.0037 (2) |
Br12 | 0.0104 (3) | 0.0172 (3) | 0.0183 (3) | −0.0006 (2) | 0.0012 (2) | −0.0074 (2) |
O7 | 0.014 (2) | 0.029 (3) | 0.015 (2) | −0.0080 (19) | −0.0008 (17) | −0.0085 (19) |
O8 | 0.0090 (19) | 0.010 (2) | 0.018 (2) | −0.0004 (16) | −0.0002 (16) | −0.0070 (17) |
O9 | 0.019 (2) | 0.022 (2) | 0.021 (2) | −0.0041 (19) | −0.0007 (18) | −0.0075 (19) |
O10 | 0.017 (2) | 0.019 (2) | 0.014 (2) | −0.0012 (17) | −0.0005 (16) | −0.0043 (17) |
O11 | 0.016 (2) | 0.032 (3) | 0.017 (2) | −0.0057 (19) | −0.0008 (17) | −0.0138 (19) |
O12 | 0.022 (2) | 0.022 (3) | 0.018 (2) | −0.0051 (19) | −0.0030 (18) | −0.0018 (19) |
O13 | 0.016 (2) | 0.020 (3) | 0.019 (2) | −0.0022 (17) | −0.0028 (18) | −0.0050 (19) |
O14 | 0.018 (2) | 0.021 (3) | 0.025 (2) | −0.0048 (19) | −0.0010 (18) | −0.0152 (19) |
O15 | 0.038 (3) | 0.024 (3) | 0.019 (2) | 0.002 (2) | −0.001 (2) | −0.006 (2) |
Sn1—O3 | 2.078 (4) | O6—Sn3i | 2.086 (4) |
Sn1—O2 | 2.082 (4) | O6—H6 | 0.840 |
Sn1—O1 | 2.140 (4) | Sn4—O8 | 2.083 (4) |
Sn1—Br2 | 2.5078 (7) | Sn4—O8ii | 2.090 (4) |
Sn1—Br3 | 2.5100 (7) | Sn4—O7 | 2.150 (4) |
Sn1—Br1 | 2.5830 (7) | Sn4—Br11 | 2.5114 (7) |
Sn2—O2 | 2.070 (4) | Sn4—Br12 | 2.5230 (6) |
Sn2—O3 | 2.082 (4) | Sn4—Br10 | 2.5487 (7) |
Sn2—O4 | 2.176 (4) | O7—H7A | 0.840 |
Sn2—Br6 | 2.5062 (7) | O7—H7B | 0.840 |
Sn2—Br4 | 2.5180 (7) | O8—Sn4ii | 2.090 (4) |
Sn2—Br5 | 2.5726 (7) | O8—H8 | 0.840 |
O1—H1A | 0.840 | O9—H9A | 0.840 |
O1—H1B | 0.840 | O9—H9B | 0.840 |
O2—H2 | 0.840 | O10—H10A | 0.840 |
O3—H3 | 0.840 | O10—H10B | 0.840 |
O4—H4A | 0.840 | O11—H11A | 0.840 |
O4—H4B | 0.840 | O11—H11B | 0.840 |
Sn3—O6 | 2.080 (4) | O12—H12A | 0.840 |
Sn3—O6i | 2.086 (4) | O12—H12B | 0.840 |
Sn3—O5 | 2.144 (4) | O13—H13A | 0.840 |
Sn3—Br9 | 2.5161 (6) | O13—H13B | 0.840 |
Sn3—Br7 | 2.5173 (7) | O14—H14A | 0.840 |
Sn3—Br8 | 2.5599 (7) | O14—H14B | 0.840 |
O5—H5A | 0.840 | O15—H15A | 0.840 |
O5—H5B | 0.840 | O15—H15B | 0.840 |
O3—Sn1—O2 | 71.72 (14) | O6i—Sn3—Br9 | 94.07 (10) |
O3—Sn1—O1 | 84.91 (16) | O5—Sn3—Br9 | 88.25 (12) |
O2—Sn1—O1 | 86.80 (17) | O6—Sn3—Br7 | 93.77 (11) |
O3—Sn1—Br2 | 93.67 (11) | O6i—Sn3—Br7 | 163.58 (11) |
O2—Sn1—Br2 | 165.00 (10) | O5—Sn3—Br7 | 88.16 (12) |
O1—Sn1—Br2 | 88.57 (13) | Br9—Sn3—Br7 | 99.89 (2) |
O3—Sn1—Br3 | 162.73 (11) | O6—Sn3—Br8 | 92.68 (11) |
O2—Sn1—Br3 | 92.64 (10) | O6i—Sn3—Br8 | 93.59 (11) |
O1—Sn1—Br3 | 86.98 (12) | O5—Sn3—Br8 | 177.00 (11) |
Br2—Sn1—Br3 | 101.35 (2) | Br9—Sn3—Br8 | 93.09 (2) |
O3—Sn1—Br1 | 91.90 (11) | Br7—Sn3—Br8 | 94.25 (2) |
O2—Sn1—Br1 | 90.45 (11) | Sn3—O5—H5A | 123 |
O1—Sn1—Br1 | 176.32 (12) | Sn3—O5—H5B | 126 |
Br2—Sn1—Br1 | 93.48 (2) | H5A—O5—H5B | 108 |
Br3—Sn1—Br1 | 95.61 (2) | Sn3—O6—Sn3i | 108.54 (17) |
O2—Sn2—O3 | 71.86 (14) | Sn3—O6—H6 | 133 |
O2—Sn2—O4 | 82.88 (15) | Sn3i—O6—H6 | 117 |
O3—Sn2—O4 | 87.66 (16) | O8—Sn4—O8ii | 72.01 (17) |
O2—Sn2—Br6 | 162.69 (11) | O8—Sn4—O7 | 82.89 (15) |
O3—Sn2—Br6 | 94.12 (10) | O8ii—Sn4—O7 | 83.46 (16) |
O4—Sn2—Br6 | 86.53 (11) | O8—Sn4—Br11 | 94.42 (11) |
O2—Sn2—Br4 | 93.57 (11) | O8ii—Sn4—Br11 | 165.70 (11) |
O3—Sn2—Br4 | 165.24 (11) | O7—Sn4—Br11 | 90.50 (12) |
O4—Sn2—Br4 | 88.16 (12) | O8—Sn4—Br12 | 161.64 (11) |
Br6—Sn2—Br4 | 99.75 (2) | O8ii—Sn4—Br12 | 93.07 (10) |
O2—Sn2—Br5 | 93.23 (11) | O7—Sn4—Br12 | 84.86 (11) |
O3—Sn2—Br5 | 90.43 (11) | Br11—Sn4—Br12 | 99.31 (2) |
O4—Sn2—Br5 | 176.04 (11) | O8—Sn4—Br10 | 96.35 (11) |
Br6—Sn2—Br5 | 97.08 (2) | O8ii—Sn4—Br10 | 91.56 (11) |
Br4—Sn2—Br5 | 92.83 (2) | O7—Sn4—Br10 | 174.96 (12) |
Sn1—O1—H1A | 126 | Br11—Sn4—Br10 | 94.52 (2) |
Sn1—O1—H1B | 120 | Br12—Sn4—Br10 | 94.66 (2) |
H1A—O1—H1B | 111 | Sn4—O7—H7A | 120 |
Sn2—O2—Sn1 | 108.35 (16) | Sn4—O7—H7B | 117 |
Sn2—O2—H2 | 126 | H7A—O7—H7B | 112 |
Sn1—O2—H2 | 117 | Sn4—O8—Sn4ii | 107.99 (17) |
Sn1—O3—Sn2 | 108.06 (16) | Sn4—O8—H8 | 120 |
Sn1—O3—H3 | 137 | Sn4ii—O8—H8 | 127 |
Sn2—O3—H3 | 109 | H9A—O9—H9B | 103 |
Sn2—O4—H4A | 117 | H10A—O10—H10B | 105 |
Sn2—O4—H4B | 125 | H11A—O11—H11B | 106 |
H4A—O4—H4B | 117 | H12A—O12—H12B | 112 |
O6—Sn3—O6i | 71.46 (17) | H13A—O13—H13B | 111 |
O6—Sn3—O5 | 85.38 (16) | H14A—O14—H14B | 109 |
O6i—Sn3—O5 | 83.63 (16) | H15A—O15—H15B | 110 |
O6—Sn3—Br9 | 164.73 (11) | ||
O3—Sn2—O2—Sn1 | 0.38 (16) | O2—Sn2—O3—Sn1 | −0.38 (16) |
O4—Sn2—O2—Sn1 | 90.24 (19) | O4—Sn2—O3—Sn1 | −83.65 (18) |
Br6—Sn2—O2—Sn1 | 37.5 (5) | Br6—Sn2—O3—Sn1 | −169.99 (14) |
Br4—Sn2—O2—Sn1 | 177.94 (14) | Br4—Sn2—O3—Sn1 | −10.0 (6) |
Br5—Sn2—O2—Sn1 | −89.02 (15) | Br5—Sn2—O3—Sn1 | 92.88 (15) |
O3—Sn1—O2—Sn2 | −0.38 (16) | O6i—Sn3—O6—Sn3i | 0.0 |
O1—Sn1—O2—Sn2 | 85.32 (19) | O5—Sn3—O6—Sn3i | −84.82 (19) |
Br2—Sn1—O2—Sn2 | 13.1 (5) | Br9—Sn3—O6—Sn3i | −19.2 (5) |
Br3—Sn1—O2—Sn2 | 172.14 (14) | Br7—Sn3—O6—Sn3i | −172.66 (15) |
Br1—Sn1—O2—Sn2 | −92.23 (15) | Br8—Sn3—O6—Sn3i | 92.89 (15) |
O2—Sn1—O3—Sn2 | 0.37 (16) | O8ii—Sn4—O8—Sn4ii | 0.0 |
O1—Sn1—O3—Sn2 | −87.9 (2) | O7—Sn4—O8—Sn4ii | −85.40 (19) |
Br2—Sn1—O3—Sn2 | −176.16 (14) | Br11—Sn4—O8—Sn4ii | −175.36 (14) |
Br3—Sn1—O3—Sn2 | −25.6 (5) | Br12—Sn4—O8—Sn4ii | −36.9 (4) |
Br1—Sn1—O3—Sn2 | 90.23 (15) | Br10—Sn4—O8—Sn4ii | 89.59 (15) |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1a···O15 | 0.84 | 1.75 | 2.573 (6) | 165 |
O1—H1b···Br5 | 0.84 | 2.50 | 3.290 (4) | 157 |
O2—H2···O11 | 0.84 | 1.80 | 2.638 (6) | 172 |
O3—H3···O14iii | 0.84 | 1.87 | 2.657 (6) | 156 |
O4—H4a···O12 | 0.84 | 1.85 | 2.692 (6) | 175 |
O4—H4b···Br1 | 0.84 | 2.51 | 3.257 (4) | 149 |
O5—H5a···O10iv | 0.84 | 1.76 | 2.592 (4) | 174 |
O5—H5b···Br8i | 0.84 | 2.60 | 3.329 (5) | 146 |
O6—H6···O9iv | 0.84 | 1.93 | 2.764 (7) | 169 |
O7—H7a···O13 | 0.84 | 1.76 | 2.600 (6) | 172 |
O7—H7b···Br10ii | 0.84 | 2.64 | 3.307 (5) | 137 |
O8—H8···O9v | 0.84 | 1.99 | 2.768 (7) | 154 |
O9—H9a···O12 | 0.84 | 1.98 | 2.817 (7) | 175 |
O9—H9b···Br4 | 0.84 | 2.71 | 3.522 (4) | 162 |
O10—H10a···Br1vi | 0.84 | 2.87 | 3.456 (3) | 129 |
O10—H10b···O11 | 0.84 | 2.14 | 2.772 (5) | 132 |
O11—H11a···O13 | 0.84 | 1.97 | 2.754 (7) | 154 |
O11—H11b···Br1vii | 0.84 | 2.78 | 3.387 (6) | 130 |
O12—H12a···Br10viii | 0.84 | 2.84 | 3.599 (6) | 152 |
O12—H12b···Br8iii | 0.84 | 3.04 | 3.745 (4) | 143 |
O13—H13a···O14iv | 0.84 | 1.93 | 2.748 (6) | 165 |
O13—H13b···Br5 | 0.84 | 2.83 | 3.463 (4) | 134 |
O14—H14a···O10iv | 0.84 | 1.97 | 2.749 (5) | 153 |
O14—H14b···Br5 | 0.84 | 2.71 | 3.405 (4) | 141 |
O15—H15a···Br12ix | 0.84 | 2.82 | 3.531 (4) | 143 |
O15—H15b···Br8ix | 0.84 | 2.86 | 3.636 (6) | 154 |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+2, −y+1, −z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) x+1, y, z−1; (vi) x+1, y, z; (vii) −x+1, −y, −z+1; (viii) x−1, y, z+1; (ix) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Sn2Br6(HO)2(H2O)2]2·7H2O |
Mr | 1699.85 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 9.9652 (2), 14.0027 (3), 14.5230 (3) |
α, β, γ (°) | 64.8591 (13), 69.9803 (13), 75.0492 (15) |
V (Å3) | 1708.54 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 16.97 |
Crystal size (mm) | 0.20 × 0.18 × 0.06 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.421, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 36325, 7823, 5613 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.078, 1.05 |
No. of reflections | 7823 |
No. of parameters | 352 |
No. of restraints | 36 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.06, −1.63 |
Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Sn1—O3 | 2.078 (4) | Sn3—O6 | 2.080 (4) |
Sn1—O2 | 2.082 (4) | Sn3—O6i | 2.086 (4) |
Sn1—O1 | 2.140 (4) | Sn3—O5 | 2.144 (4) |
Sn1—Br2 | 2.5078 (7) | Sn3—Br9 | 2.5161 (6) |
Sn1—Br3 | 2.5100 (7) | Sn3—Br7 | 2.5173 (7) |
Sn1—Br1 | 2.5830 (7) | Sn3—Br8 | 2.5599 (7) |
Sn2—O2 | 2.070 (4) | Sn4—O8 | 2.083 (4) |
Sn2—O3 | 2.082 (4) | Sn4—O8ii | 2.090 (4) |
Sn2—O4 | 2.176 (4) | Sn4—O7 | 2.150 (4) |
Sn2—Br6 | 2.5062 (7) | Sn4—Br11 | 2.5114 (7) |
Sn2—Br4 | 2.5180 (7) | Sn4—Br12 | 2.5230 (6) |
Sn2—Br5 | 2.5726 (7) | Sn4—Br10 | 2.5487 (7) |
Sn2—O2—Sn1 | 108.35 (16) | Sn3—O6—Sn3i | 108.54 (17) |
Sn1—O3—Sn2 | 108.06 (16) | Sn4—O8—Sn4ii | 107.99 (17) |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1a···O15 | 0.84 | 1.75 | 2.573 (6) | 165 |
O1—H1b···Br5 | 0.84 | 2.50 | 3.290 (4) | 157 |
O2—H2···O11 | 0.84 | 1.80 | 2.638 (6) | 172 |
O3—H3···O14iii | 0.84 | 1.87 | 2.657 (6) | 156 |
O4—H4a···O12 | 0.84 | 1.85 | 2.692 (6) | 175 |
O4—H4b···Br1 | 0.84 | 2.51 | 3.257 (4) | 149 |
O5—H5a···O10iv | 0.84 | 1.76 | 2.592 (4) | 174 |
O5—H5b···Br8i | 0.84 | 2.60 | 3.329 (5) | 146 |
O6—H6···O9iv | 0.84 | 1.93 | 2.764 (7) | 169 |
O7—H7a···O13 | 0.84 | 1.76 | 2.600 (6) | 172 |
O7—H7b···Br10ii | 0.84 | 2.64 | 3.307 (5) | 137 |
O8—H8···O9v | 0.84 | 1.99 | 2.768 (7) | 154 |
O9—H9a···O12 | 0.84 | 1.98 | 2.817 (7) | 175 |
O9—H9b···Br4 | 0.84 | 2.71 | 3.522 (4) | 162 |
O10—H10a···Br1vi | 0.84 | 2.87 | 3.456 (3) | 129 |
O10—H10b···O11 | 0.84 | 2.14 | 2.772 (5) | 132 |
O11—H11a···O13 | 0.84 | 1.97 | 2.754 (7) | 154 |
O11—H11b···Br1vii | 0.84 | 2.78 | 3.387 (6) | 130 |
O12—H12a···Br10viii | 0.84 | 2.84 | 3.599 (6) | 152 |
O12—H12b···Br8iii | 0.84 | 3.04 | 3.745 (4) | 143 |
O13—H13a···O14iv | 0.84 | 1.93 | 2.748 (6) | 165 |
O13—H13b···Br5 | 0.84 | 2.83 | 3.463 (4) | 134 |
O14—H14a···O10iv | 0.84 | 1.97 | 2.749 (5) | 153 |
O14—H14b···Br5 | 0.84 | 2.71 | 3.405 (4) | 141 |
O15—H15a···Br12ix | 0.84 | 2.82 | 3.531 (4) | 143 |
O15—H15b···Br8ix | 0.84 | 2.86 | 3.636 (6) | 154 |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+2, −y+1, −z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) x+1, y, z−1; (vi) x+1, y, z; (vii) −x+1, −y, −z+1; (viii) x−1, y, z+1; (ix) −x+1, −y+1, −z. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from FAPEMIG and CAPES (Brazil).
References
Barnes, J. C., Sampson, H. A. & Weakley, T. J. R. (1980). J. Chem. Soc. Dalton Trans. pp. 949–954. CSD CrossRef Web of Science Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cameron, T. S., Knop, O. & Vincent, B. R. (1985). Can. J. Chem. 63, 759–765. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Howie, R. A., Skakle, J. M. S. & Wardell, J. L. (2005). Inorg. Chim. Acta, 358, 3283–3286. Web of Science CrossRef CAS Google Scholar
Müller, M., Lerner, H.-W. & Bolte, M. (2007). Acta Cryst. E63, m2765. Web of Science CSD CrossRef IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shihada, A.-F., Abushamleh, A. S. & Weller, F. (2004). Z. Anorg. Allg. Chem. 630, 841–847 Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The monoclinic (P21/c) polymorph of the title compound was originally isolated as an hydrolysis product during recrystallisation experiments (Howie et al., 2005). The present triclinic polymorph was isolated similarly as an hydrolysis product.
The crystallographic asymmetric unit of (I) comprises two formula units of [(H2O)Br3Sn(µ-OH)2SnBr3(OH2)] and seven water molecules of crystallisation. One of the [Br3(H2O)Sn(µ-OH)2SnBr3(OH2)] molecules occupies a general position, Fig. 1, whereas two are disposed about crystallographic centres of inversion, Figs 2 and 3. Nevertheless, the molecules are closely related in terms of overall geometry with differences relating primarily to variations in geometric parameters. Each dinuclear molecule features two Sn centres connected by symmetrically bridging hydroxyl groups, with two Br atoms lying in the plane of the central Sn2O2 core to form an equatorial Br4Sn2O2 framework. For each Sn atom, the third Br atom lies to one side of the plane and the coordinated water molecule to the other so that the water molecules are anti. The Sn–Ohydroxyl bond distances are systematically shorter than the Sn—Oaqua distances, and the Sn–Brequatorial bond distances are shorter than the Sn—Braxial bond distances. The elongation of the Sn—Braxial bond distances partially relates to the participation of these atoms in intramolecular Oaqua–H···Br hydrogen bonds which are systematically shorter than the intermolecular Owater–H···Br hydrogen bonds, Table 1. The observed trends for the dinuclear species match those found in the monoclinic polymorph (Howie et al., 2005) and other related di-µ-hydroxo-bis[fac-trichloroaquotin(IV)] complexes (Barnes et al, 1980; Cameron et al., 1985; Shihada et al., 2004; Müller et al., 2007).
Extensive hydrogen bonding is found in the crystal structure that link all components into a 3-D network. Each hydroxyl group forms a single Ohydroxyl–H···Owater hydrogen bond. In the case of the centrosymmetric molecules, i.e. containing the Sn3 and Sn4 atoms, single water molecules serve as bridges between them to form a supramolecular chain aligned along [1 1 0], Fig. 4 and Table 1. It is these Ohydroxyl–H···Owater hydrogen bonds that appear to be the major difference between the the triclinic and monoclinic forms. In the monoclinic form, one hydroxyl group forms a single Ohydroxyl–H···Owater hydrogen bond whereas the other forms two, with neither forming direct bridges between dinuclear molecules. In (I), each of the aqua molecules forms an intramolecular Oaqua–H···Br hydrogen bond as well as an Oaqua–H···Owater interaction, Table 1. Three of the lattice water molecules form two Owater–H···Br hydrogen bonds and the remaining four water molecules form a single Owater–H···Br hydrogen bond and an Owater–H···Owater hydrogen bond. A view of the unit cell contents is shown in Fig. 5.