inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages i18-i19

Triclinic form of bis­­{di-μ-hydroxidobis[fac-aqua­tri­bromido­tin(IV)]} hepta­hydrate

aDepartamento de Quimica, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil, bDepartment of Chemistry, University of Aberdeen, Old Aberdeen, AB15 5NY, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900, Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 9 February 2010; accepted 14 February 2010; online 20 February 2010)

The asymmetric unit of the title hydrate, 2[Sn(H2O)2(OH)2Br6]·7H2O, comprises two [Br3(H2O)Sn(μ-OH)2SnBr3(OH2)] units, but three independent mol­ecules as two of these are disposed about inversion centres, and seven water mol­ecules. In common with the monoclinic polymorph [Howie et al. (2005[Howie, R. A., Skakle, J. M. S. & Wardell, J. L. (2005). Inorg. Chim. Acta, 358, 3283-3286.]). Inorg. Chim. Acta, 358, 3283–3286], each of the dinuclear species features a central Sn2O2 core, distorted octa­hedral Sn atom geometries defined by a Br3O3 donor set, and an anti-disposition of the coordinated water mol­ecules. In the crystal, Oh—H⋯Ow, Oa—H⋯Ow, Ow—H⋯Ow, and Ow—H⋯Br (h = hydroxyl, a = aqua, w = water) hydrogen-bonding inter­actions generate a three-dimensional network.

Related literature

For the structure of the monoclinic polymorph, see: Howie et al. (2005[Howie, R. A., Skakle, J. M. S. & Wardell, J. L. (2005). Inorg. Chim. Acta, 358, 3283-3286.]). For related di-μ-hydroxido-bis­[fac-trichlorido­aqua­tin(IV)] complexes, see: Barnes et al. (1980[Barnes, J. C., Sampson, H. A. & Weakley, T. J. R. (1980). J. Chem. Soc. Dalton Trans. pp. 949-954.]); Cameron et al. (1985[Cameron, T. S., Knop, O. & Vincent, B. R. (1985). Can. J. Chem. 63, 759-765.]); Shihada et al. (2004[Shihada, A.-F., Abushamleh, A. S. & Weller, F. (2004). Z. Anorg. Allg. Chem. 630, 841-847]); Müller et al. (2007[Müller, M., Lerner, H.-W. & Bolte, M. (2007). Acta Cryst. E63, m2765.]). For analysis of pseudo-symmetry, see: Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn2Br6(OH)2(H2O)2]2·7H2O

  • Mr = 1699.85

  • Triclinic, [P \overline 1]

  • a = 9.9652 (2) Å

  • b = 14.0027 (3) Å

  • c = 14.5230 (3) Å

  • α = 64.8591 (13)°

  • β = 69.9803 (13)°

  • γ = 75.0492 (15)°

  • V = 1708.54 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 16.97 mm−1

  • T = 120 K

  • 0.20 × 0.18 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.421, Tmax = 0.746

  • 36325 measured reflections

  • 7823 independent reflections

  • 5613 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.078

  • S = 1.05

  • 7823 reflections

  • 352 parameters

  • 36 restraints

  • H-atom parameters constrained

  • Δρmax = 1.06 e Å−3

  • Δρmin = −1.63 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—O3 2.078 (4)
Sn1—O2 2.082 (4)
Sn1—O1 2.140 (4)
Sn1—Br2 2.5078 (7)
Sn1—Br3 2.5100 (7)
Sn1—Br1 2.5830 (7)
Sn2—O2 2.070 (4)
Sn2—O3 2.082 (4)
Sn2—O4 2.176 (4)
Sn2—Br6 2.5062 (7)
Sn2—Br4 2.5180 (7)
Sn2—Br5 2.5726 (7)
Sn3—O6 2.080 (4)
Sn3—O6i 2.086 (4)
Sn3—O5 2.144 (4)
Sn3—Br9 2.5161 (6)
Sn3—Br7 2.5173 (7)
Sn3—Br8 2.5599 (7)
Sn4—O8 2.083 (4)
Sn4—O8ii 2.090 (4)
Sn4—O7 2.150 (4)
Sn4—Br11 2.5114 (7)
Sn4—Br12 2.5230 (6)
Sn4—Br10 2.5487 (7)
Sn2—O2—Sn1 108.35 (16)
Sn1—O3—Sn2 108.06 (16)
Sn3—O6—Sn3i 108.54 (17)
Sn4—O8—Sn4ii 107.99 (17)
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+2, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1a⋯O15 0.84 1.75 2.573 (6) 165
O1—H1b⋯Br5 0.84 2.50 3.290 (4) 157
O2—H2⋯O11 0.84 1.80 2.638 (6) 172
O3—H3⋯O14iii 0.84 1.87 2.657 (6) 156
O4—H4a⋯O12 0.84 1.85 2.692 (6) 175
O4—H4b⋯Br1 0.84 2.51 3.257 (4) 149
O5—H5a⋯O10iv 0.84 1.76 2.592 (4) 174
O5—H5b⋯Br8i 0.84 2.60 3.329 (5) 146
O6—H6⋯O9iv 0.84 1.93 2.764 (7) 169
O7—H7a⋯O13 0.84 1.76 2.600 (6) 172
O7—H7b⋯Br10ii 0.84 2.64 3.307 (5) 137
O8—H8⋯O9v 0.84 1.99 2.768 (7) 154
O9—H9a⋯O12 0.84 1.98 2.817 (7) 175
O9—H9b⋯Br4 0.84 2.71 3.522 (4) 162
O10—H10a⋯Br1vi 0.84 2.87 3.456 (3) 129
O10—H10b⋯O11 0.84 2.14 2.772 (5) 132
O11—H11a⋯O13 0.84 1.97 2.754 (7) 154
O11—H11b⋯Br1vii 0.84 2.78 3.387 (6) 130
O12—H12a⋯Br10viii 0.84 2.84 3.599 (6) 152
O12—H12b⋯Br8iii 0.84 3.04 3.745 (4) 143
O13—H13a⋯O14iv 0.84 1.93 2.748 (6) 165
O13—H13b⋯Br5 0.84 2.83 3.463 (4) 134
O14—H14a⋯O10iv 0.84 1.97 2.749 (5) 153
O14—H14b⋯Br5 0.84 2.71 3.405 (4) 141
O15—H15a⋯Br12ix 0.84 2.82 3.531 (4) 143
O15—H15b⋯Br8ix 0.84 2.86 3.636 (6) 154
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+2, -y+1, -z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v) x+1, y, z-1; (vi) x+1, y, z; (vii) -x+1, -y, -z+1; (viii) x-1, y, z+1; (ix) -x+1, -y+1, -z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The monoclinic (P21/c) polymorph of the title compound was originally isolated as an hydrolysis product during recrystallisation experiments (Howie et al., 2005). The present triclinic polymorph was isolated similarly as an hydrolysis product.

The crystallographic asymmetric unit of (I) comprises two formula units of [(H2O)Br3Sn(µ-OH)2SnBr3(OH2)] and seven water molecules of crystallisation. One of the [Br3(H2O)Sn(µ-OH)2SnBr3(OH2)] molecules occupies a general position, Fig. 1, whereas two are disposed about crystallographic centres of inversion, Figs 2 and 3. Nevertheless, the molecules are closely related in terms of overall geometry with differences relating primarily to variations in geometric parameters. Each dinuclear molecule features two Sn centres connected by symmetrically bridging hydroxyl groups, with two Br atoms lying in the plane of the central Sn2O2 core to form an equatorial Br4Sn2O2 framework. For each Sn atom, the third Br atom lies to one side of the plane and the coordinated water molecule to the other so that the water molecules are anti. The Sn–Ohydroxyl bond distances are systematically shorter than the Sn—Oaqua distances, and the Sn–Brequatorial bond distances are shorter than the Sn—Braxial bond distances. The elongation of the Sn—Braxial bond distances partially relates to the participation of these atoms in intramolecular Oaqua–H···Br hydrogen bonds which are systematically shorter than the intermolecular Owater–H···Br hydrogen bonds, Table 1. The observed trends for the dinuclear species match those found in the monoclinic polymorph (Howie et al., 2005) and other related di-µ-hydroxo-bis[fac-trichloroaquotin(IV)] complexes (Barnes et al, 1980; Cameron et al., 1985; Shihada et al., 2004; Müller et al., 2007).

Extensive hydrogen bonding is found in the crystal structure that link all components into a 3-D network. Each hydroxyl group forms a single Ohydroxyl–H···Owater hydrogen bond. In the case of the centrosymmetric molecules, i.e. containing the Sn3 and Sn4 atoms, single water molecules serve as bridges between them to form a supramolecular chain aligned along [1 1 0], Fig. 4 and Table 1. It is these Ohydroxyl–H···Owater hydrogen bonds that appear to be the major difference between the the triclinic and monoclinic forms. In the monoclinic form, one hydroxyl group forms a single Ohydroxyl–H···Owater hydrogen bond whereas the other forms two, with neither forming direct bridges between dinuclear molecules. In (I), each of the aqua molecules forms an intramolecular Oaqua–H···Br hydrogen bond as well as an Oaqua–H···Owater interaction, Table 1. Three of the lattice water molecules form two Owater–H···Br hydrogen bonds and the remaining four water molecules form a single Owater–H···Br hydrogen bond and an Owater–H···Owater hydrogen bond. A view of the unit cell contents is shown in Fig. 5.

Related literature top

For the structure of the monoclinic polymorph, see: Howie et al. (2005). For related di-µ-hydroxo-bis[fac-trichloroaquotin(IV)] complexes, see: Barnes et al. (1980); Cameron et al. (1985); Shihada et al. (2004); Müller et al. (2007). For analysis of pseudo-symmetry, see: Spek (2003).

Experimental top

Solutions of PrS(O)OCH2CH2S(O)OPr (210 mg, 1 mmol) in MeOH (15 ml) and SnBr4 (440 mg, 1 mmol) in MeOH (15 ml) were mixed. After maintaining the reaction mixture at room temperature for several days, the microcrystalline precipitate was collected. As the crystals were not suitable for X-ray study, they were redissolved in MeOH and the solution was maintained at room temperature. After two weeks, colourless blocks of (I) suitable for X-ray analysis were collected and found to be hydrolysed stannic bromide. On heating the crystals, decomposition slowly occurred, and hence no melting point was measured. Standing in a moist atmosphere resulted in the formation of a syrup.

Refinement top

The O-bound H atoms were located from difference maps and refined with O–H = 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.06 and 1.63 e Å-3, respectively, were located 2.28 Å and 0.82 Å from the H6 and Sn2 atoms, respectively. The ADDSYM routine in PLATON (Spek, 2003) suggested the possibility of additional (C) symmetry. However, in this pseudo-symmetric setting, the O9-water molecule has no symmetry equivalent in the structure.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the molecule occupying a general position in (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of the centrosymmetric molecule in (I) containing the Sn3 atom showing displacement ellipsoids at the 50% probability level. Symmetry operation i: 1-x, 2-y, -z.
[Figure 3] Fig. 3. The molecular structure of the centrosymmetric molecule in (I) containing the Sn4 atom showing displacement ellipsoids at the 50% probability level. Symmetry operation ii: 2-x, 1-y, -z.
[Figure 4] Fig. 4. A view of a supramolecular chain in (I), aligned along [110], whereby the centrosymmetric dinuclear molecules, i.e. containing the Sn3 and Sn4 atoms, are bridged by Ohydroxyl–H···Owater hydrogen bonds (orange dashed lines). Colour code: Sn, orange; Br, olive; O, red; and H, green.
[Figure 5] Fig. 5. View in projection down the a axis of the unit cell contents in (I). The O–H···O and O–H···Br interactions are shown as orange and blue dashed lines, respectively. Colour code: Sn, orange; Br, olive; O, red; and H, green.
bis{di-µ-hydroxidobis[fac-aquatribromidotin(IV)]} heptahydrate top
Crystal data top
[Sn2Br6(HO)2(H2O)2]2·7H2OZ = 2
Mr = 1699.85F(000) = 1532
Triclinic, P1Dx = 3.304 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9652 (2) ÅCell parameters from 22681 reflections
b = 14.0027 (3) Åθ = 2.9–27.5°
c = 14.5230 (3) ŵ = 16.97 mm1
α = 64.8591 (13)°T = 120 K
β = 69.9803 (13)°Block, colourless
γ = 75.0492 (15)°0.20 × 0.18 × 0.06 mm
V = 1708.54 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
7823 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode5613 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.045
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1818
Tmin = 0.421, Tmax = 0.746l = 1818
36325 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0218P)2 + 6.2493P]
where P = (Fo2 + 2Fc2)/3
7823 reflections(Δ/σ)max = 0.001
352 parametersΔρmax = 1.06 e Å3
36 restraintsΔρmin = 1.63 e Å3
Crystal data top
[Sn2Br6(HO)2(H2O)2]2·7H2Oγ = 75.0492 (15)°
Mr = 1699.85V = 1708.54 (6) Å3
Triclinic, P1Z = 2
a = 9.9652 (2) ÅMo Kα radiation
b = 14.0027 (3) ŵ = 16.97 mm1
c = 14.5230 (3) ÅT = 120 K
α = 64.8591 (13)°0.20 × 0.18 × 0.06 mm
β = 69.9803 (13)°
Data collection top
Nonius KappaCCD
diffractometer
7823 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
5613 reflections with I > 2σ(I)
Tmin = 0.421, Tmax = 0.746Rint = 0.045
36325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03536 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.05Δρmax = 1.06 e Å3
7823 reflectionsΔρmin = 1.63 e Å3
352 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.25914 (4)0.18193 (3)0.42146 (3)0.01129 (9)
Sn20.24278 (4)0.32001 (3)0.56732 (3)0.01112 (9)
Br10.14362 (6)0.02944 (5)0.58688 (4)0.01635 (13)
Br20.08773 (7)0.19732 (5)0.32194 (5)0.02494 (15)
Br30.47120 (6)0.06473 (5)0.35321 (4)0.01606 (13)
Br40.41823 (6)0.30744 (5)0.66344 (5)0.02016 (14)
Br50.35268 (6)0.47436 (4)0.40290 (4)0.01513 (13)
Br60.03158 (6)0.43028 (5)0.64553 (4)0.01642 (13)
O10.3524 (5)0.3139 (3)0.2907 (3)0.0247 (10)
H1A0.40130.31410.23070.037*
H1B0.36870.36370.30150.037*
O20.3683 (4)0.2055 (3)0.5078 (3)0.0115 (8)
H20.45870.19610.48790.017*
O30.1324 (4)0.2961 (3)0.4820 (3)0.0132 (8)
H30.04420.31640.50230.020*
O40.1573 (5)0.1822 (3)0.7003 (3)0.0202 (9)
H4A0.11620.19000.75820.030*
H4B0.15060.12560.69640.030*
Sn30.34919 (4)0.94137 (3)0.07239 (3)0.01027 (9)
Br70.32460 (6)0.74736 (5)0.17782 (4)0.01670 (13)
Br80.29454 (6)0.94221 (5)0.08785 (4)0.01846 (14)
Br90.09746 (6)1.02285 (5)0.13907 (5)0.01875 (14)
O50.4029 (4)0.9463 (4)0.2010 (3)0.0196 (9)
H5A0.34900.92840.26280.029*
H5B0.46230.98240.19630.029*
O60.5706 (4)0.9129 (3)0.0104 (3)0.0134 (8)
H60.63060.85750.02220.020*
Sn40.84937 (4)0.44058 (3)0.06715 (3)0.01050 (9)
Br100.80194 (6)0.44339 (5)0.09571 (4)0.01709 (13)
Br110.81979 (6)0.24771 (5)0.17183 (4)0.01730 (13)
Br120.59787 (6)0.52341 (5)0.13434 (4)0.01666 (13)
O70.8931 (4)0.4524 (4)0.1967 (3)0.0187 (9)
H7A0.83990.42820.25830.028*
H7B0.98020.44400.19550.028*
O81.0732 (4)0.4123 (3)0.0172 (3)0.0129 (8)
H81.11400.35410.01080.019*
O90.2294 (4)0.2630 (4)0.9291 (3)0.0220 (10)
H9A0.16290.24300.92130.033*
H9B0.29100.27440.87040.033*
O100.7781 (3)0.10636 (17)0.61362 (8)0.0187 (9)
H10A0.83900.05160.61740.028*
H10B0.79090.14200.54870.028*
O110.6517 (4)0.1932 (4)0.4475 (3)0.0203 (9)
H11A0.69480.24730.41620.030*
H11B0.67690.16110.40560.030*
O120.0169 (5)0.1982 (4)0.8889 (3)0.0230 (10)
H12A0.04730.25090.87860.034*
H12B0.01640.14380.93800.034*
O130.7169 (4)0.3949 (3)0.3846 (3)0.0198 (9)
H13A0.74300.37330.44010.030*
H13B0.65180.44720.38100.030*
O140.1530 (4)0.6926 (3)0.4532 (3)0.0198 (9)
H14A0.18440.75100.41390.030*
H14B0.17630.65340.41810.030*
O150.4686 (5)0.2973 (4)0.1094 (3)0.0310 (12)
H15A0.47390.35650.05910.047*
H15B0.54460.25600.09810.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01050 (19)0.0111 (2)0.01327 (19)0.00171 (15)0.00335 (15)0.00510 (15)
Sn20.01002 (19)0.0115 (2)0.01214 (19)0.00217 (15)0.00210 (15)0.00487 (15)
Br10.0138 (3)0.0120 (3)0.0189 (3)0.0042 (2)0.0015 (2)0.0049 (2)
Br20.0254 (3)0.0261 (4)0.0320 (4)0.0023 (3)0.0183 (3)0.0111 (3)
Br30.0142 (3)0.0179 (3)0.0168 (3)0.0013 (2)0.0012 (2)0.0098 (2)
Br40.0177 (3)0.0263 (4)0.0216 (3)0.0024 (2)0.0099 (2)0.0104 (3)
Br50.0135 (3)0.0120 (3)0.0165 (3)0.0038 (2)0.0001 (2)0.0042 (2)
Br60.0136 (3)0.0178 (3)0.0174 (3)0.0010 (2)0.0004 (2)0.0097 (2)
O10.036 (3)0.018 (3)0.017 (2)0.011 (2)0.0016 (19)0.0073 (19)
O20.0089 (19)0.011 (2)0.018 (2)0.0024 (16)0.0036 (16)0.0103 (16)
O30.0056 (18)0.017 (2)0.019 (2)0.0017 (16)0.0038 (16)0.0095 (17)
O40.032 (3)0.013 (2)0.014 (2)0.0097 (19)0.0004 (18)0.0052 (18)
Sn30.00835 (19)0.0102 (2)0.01140 (19)0.00138 (14)0.00144 (14)0.00403 (15)
Br70.0183 (3)0.0110 (3)0.0193 (3)0.0030 (2)0.0053 (2)0.0034 (2)
Br80.0174 (3)0.0256 (3)0.0156 (3)0.0059 (2)0.0051 (2)0.0084 (2)
Br90.0103 (3)0.0184 (3)0.0210 (3)0.0006 (2)0.0016 (2)0.0071 (2)
O50.020 (2)0.028 (3)0.013 (2)0.0127 (19)0.0002 (17)0.0071 (18)
O60.010 (2)0.008 (2)0.018 (2)0.0007 (15)0.0015 (16)0.0038 (16)
Sn40.00841 (19)0.0117 (2)0.01130 (19)0.00140 (14)0.00110 (14)0.00534 (15)
Br100.0162 (3)0.0242 (3)0.0150 (3)0.0041 (2)0.0046 (2)0.0099 (2)
Br110.0181 (3)0.0122 (3)0.0200 (3)0.0029 (2)0.0054 (2)0.0037 (2)
Br120.0104 (3)0.0172 (3)0.0183 (3)0.0006 (2)0.0012 (2)0.0074 (2)
O70.014 (2)0.029 (3)0.015 (2)0.0080 (19)0.0008 (17)0.0085 (19)
O80.0090 (19)0.010 (2)0.018 (2)0.0004 (16)0.0002 (16)0.0070 (17)
O90.019 (2)0.022 (2)0.021 (2)0.0041 (19)0.0007 (18)0.0075 (19)
O100.017 (2)0.019 (2)0.014 (2)0.0012 (17)0.0005 (16)0.0043 (17)
O110.016 (2)0.032 (3)0.017 (2)0.0057 (19)0.0008 (17)0.0138 (19)
O120.022 (2)0.022 (3)0.018 (2)0.0051 (19)0.0030 (18)0.0018 (19)
O130.016 (2)0.020 (3)0.019 (2)0.0022 (17)0.0028 (18)0.0050 (19)
O140.018 (2)0.021 (3)0.025 (2)0.0048 (19)0.0010 (18)0.0152 (19)
O150.038 (3)0.024 (3)0.019 (2)0.002 (2)0.001 (2)0.006 (2)
Geometric parameters (Å, º) top
Sn1—O32.078 (4)O6—Sn3i2.086 (4)
Sn1—O22.082 (4)O6—H60.840
Sn1—O12.140 (4)Sn4—O82.083 (4)
Sn1—Br22.5078 (7)Sn4—O8ii2.090 (4)
Sn1—Br32.5100 (7)Sn4—O72.150 (4)
Sn1—Br12.5830 (7)Sn4—Br112.5114 (7)
Sn2—O22.070 (4)Sn4—Br122.5230 (6)
Sn2—O32.082 (4)Sn4—Br102.5487 (7)
Sn2—O42.176 (4)O7—H7A0.840
Sn2—Br62.5062 (7)O7—H7B0.840
Sn2—Br42.5180 (7)O8—Sn4ii2.090 (4)
Sn2—Br52.5726 (7)O8—H80.840
O1—H1A0.840O9—H9A0.840
O1—H1B0.840O9—H9B0.840
O2—H20.840O10—H10A0.840
O3—H30.840O10—H10B0.840
O4—H4A0.840O11—H11A0.840
O4—H4B0.840O11—H11B0.840
Sn3—O62.080 (4)O12—H12A0.840
Sn3—O6i2.086 (4)O12—H12B0.840
Sn3—O52.144 (4)O13—H13A0.840
Sn3—Br92.5161 (6)O13—H13B0.840
Sn3—Br72.5173 (7)O14—H14A0.840
Sn3—Br82.5599 (7)O14—H14B0.840
O5—H5A0.840O15—H15A0.840
O5—H5B0.840O15—H15B0.840
O3—Sn1—O271.72 (14)O6i—Sn3—Br994.07 (10)
O3—Sn1—O184.91 (16)O5—Sn3—Br988.25 (12)
O2—Sn1—O186.80 (17)O6—Sn3—Br793.77 (11)
O3—Sn1—Br293.67 (11)O6i—Sn3—Br7163.58 (11)
O2—Sn1—Br2165.00 (10)O5—Sn3—Br788.16 (12)
O1—Sn1—Br288.57 (13)Br9—Sn3—Br799.89 (2)
O3—Sn1—Br3162.73 (11)O6—Sn3—Br892.68 (11)
O2—Sn1—Br392.64 (10)O6i—Sn3—Br893.59 (11)
O1—Sn1—Br386.98 (12)O5—Sn3—Br8177.00 (11)
Br2—Sn1—Br3101.35 (2)Br9—Sn3—Br893.09 (2)
O3—Sn1—Br191.90 (11)Br7—Sn3—Br894.25 (2)
O2—Sn1—Br190.45 (11)Sn3—O5—H5A123
O1—Sn1—Br1176.32 (12)Sn3—O5—H5B126
Br2—Sn1—Br193.48 (2)H5A—O5—H5B108
Br3—Sn1—Br195.61 (2)Sn3—O6—Sn3i108.54 (17)
O2—Sn2—O371.86 (14)Sn3—O6—H6133
O2—Sn2—O482.88 (15)Sn3i—O6—H6117
O3—Sn2—O487.66 (16)O8—Sn4—O8ii72.01 (17)
O2—Sn2—Br6162.69 (11)O8—Sn4—O782.89 (15)
O3—Sn2—Br694.12 (10)O8ii—Sn4—O783.46 (16)
O4—Sn2—Br686.53 (11)O8—Sn4—Br1194.42 (11)
O2—Sn2—Br493.57 (11)O8ii—Sn4—Br11165.70 (11)
O3—Sn2—Br4165.24 (11)O7—Sn4—Br1190.50 (12)
O4—Sn2—Br488.16 (12)O8—Sn4—Br12161.64 (11)
Br6—Sn2—Br499.75 (2)O8ii—Sn4—Br1293.07 (10)
O2—Sn2—Br593.23 (11)O7—Sn4—Br1284.86 (11)
O3—Sn2—Br590.43 (11)Br11—Sn4—Br1299.31 (2)
O4—Sn2—Br5176.04 (11)O8—Sn4—Br1096.35 (11)
Br6—Sn2—Br597.08 (2)O8ii—Sn4—Br1091.56 (11)
Br4—Sn2—Br592.83 (2)O7—Sn4—Br10174.96 (12)
Sn1—O1—H1A126Br11—Sn4—Br1094.52 (2)
Sn1—O1—H1B120Br12—Sn4—Br1094.66 (2)
H1A—O1—H1B111Sn4—O7—H7A120
Sn2—O2—Sn1108.35 (16)Sn4—O7—H7B117
Sn2—O2—H2126H7A—O7—H7B112
Sn1—O2—H2117Sn4—O8—Sn4ii107.99 (17)
Sn1—O3—Sn2108.06 (16)Sn4—O8—H8120
Sn1—O3—H3137Sn4ii—O8—H8127
Sn2—O3—H3109H9A—O9—H9B103
Sn2—O4—H4A117H10A—O10—H10B105
Sn2—O4—H4B125H11A—O11—H11B106
H4A—O4—H4B117H12A—O12—H12B112
O6—Sn3—O6i71.46 (17)H13A—O13—H13B111
O6—Sn3—O585.38 (16)H14A—O14—H14B109
O6i—Sn3—O583.63 (16)H15A—O15—H15B110
O6—Sn3—Br9164.73 (11)
O3—Sn2—O2—Sn10.38 (16)O2—Sn2—O3—Sn10.38 (16)
O4—Sn2—O2—Sn190.24 (19)O4—Sn2—O3—Sn183.65 (18)
Br6—Sn2—O2—Sn137.5 (5)Br6—Sn2—O3—Sn1169.99 (14)
Br4—Sn2—O2—Sn1177.94 (14)Br4—Sn2—O3—Sn110.0 (6)
Br5—Sn2—O2—Sn189.02 (15)Br5—Sn2—O3—Sn192.88 (15)
O3—Sn1—O2—Sn20.38 (16)O6i—Sn3—O6—Sn3i0.0
O1—Sn1—O2—Sn285.32 (19)O5—Sn3—O6—Sn3i84.82 (19)
Br2—Sn1—O2—Sn213.1 (5)Br9—Sn3—O6—Sn3i19.2 (5)
Br3—Sn1—O2—Sn2172.14 (14)Br7—Sn3—O6—Sn3i172.66 (15)
Br1—Sn1—O2—Sn292.23 (15)Br8—Sn3—O6—Sn3i92.89 (15)
O2—Sn1—O3—Sn20.37 (16)O8ii—Sn4—O8—Sn4ii0.0
O1—Sn1—O3—Sn287.9 (2)O7—Sn4—O8—Sn4ii85.40 (19)
Br2—Sn1—O3—Sn2176.16 (14)Br11—Sn4—O8—Sn4ii175.36 (14)
Br3—Sn1—O3—Sn225.6 (5)Br12—Sn4—O8—Sn4ii36.9 (4)
Br1—Sn1—O3—Sn290.23 (15)Br10—Sn4—O8—Sn4ii89.59 (15)
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1a···O150.841.752.573 (6)165
O1—H1b···Br50.842.503.290 (4)157
O2—H2···O110.841.802.638 (6)172
O3—H3···O14iii0.841.872.657 (6)156
O4—H4a···O120.841.852.692 (6)175
O4—H4b···Br10.842.513.257 (4)149
O5—H5a···O10iv0.841.762.592 (4)174
O5—H5b···Br8i0.842.603.329 (5)146
O6—H6···O9iv0.841.932.764 (7)169
O7—H7a···O130.841.762.600 (6)172
O7—H7b···Br10ii0.842.643.307 (5)137
O8—H8···O9v0.841.992.768 (7)154
O9—H9a···O120.841.982.817 (7)175
O9—H9b···Br40.842.713.522 (4)162
O10—H10a···Br1vi0.842.873.456 (3)129
O10—H10b···O110.842.142.772 (5)132
O11—H11a···O130.841.972.754 (7)154
O11—H11b···Br1vii0.842.783.387 (6)130
O12—H12a···Br10viii0.842.843.599 (6)152
O12—H12b···Br8iii0.843.043.745 (4)143
O13—H13a···O14iv0.841.932.748 (6)165
O13—H13b···Br50.842.833.463 (4)134
O14—H14a···O10iv0.841.972.749 (5)153
O14—H14b···Br50.842.713.405 (4)141
O15—H15a···Br12ix0.842.823.531 (4)143
O15—H15b···Br8ix0.842.863.636 (6)154
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x+1, y, z1; (vi) x+1, y, z; (vii) x+1, y, z+1; (viii) x1, y, z+1; (ix) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Sn2Br6(HO)2(H2O)2]2·7H2O
Mr1699.85
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.9652 (2), 14.0027 (3), 14.5230 (3)
α, β, γ (°)64.8591 (13), 69.9803 (13), 75.0492 (15)
V3)1708.54 (6)
Z2
Radiation typeMo Kα
µ (mm1)16.97
Crystal size (mm)0.20 × 0.18 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.421, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
36325, 7823, 5613
Rint0.045
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.078, 1.05
No. of reflections7823
No. of parameters352
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.06, 1.63

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Sn1—O32.078 (4)Sn3—O62.080 (4)
Sn1—O22.082 (4)Sn3—O6i2.086 (4)
Sn1—O12.140 (4)Sn3—O52.144 (4)
Sn1—Br22.5078 (7)Sn3—Br92.5161 (6)
Sn1—Br32.5100 (7)Sn3—Br72.5173 (7)
Sn1—Br12.5830 (7)Sn3—Br82.5599 (7)
Sn2—O22.070 (4)Sn4—O82.083 (4)
Sn2—O32.082 (4)Sn4—O8ii2.090 (4)
Sn2—O42.176 (4)Sn4—O72.150 (4)
Sn2—Br62.5062 (7)Sn4—Br112.5114 (7)
Sn2—Br42.5180 (7)Sn4—Br122.5230 (6)
Sn2—Br52.5726 (7)Sn4—Br102.5487 (7)
Sn2—O2—Sn1108.35 (16)Sn3—O6—Sn3i108.54 (17)
Sn1—O3—Sn2108.06 (16)Sn4—O8—Sn4ii107.99 (17)
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1a···O150.841.752.573 (6)165
O1—H1b···Br50.842.503.290 (4)157
O2—H2···O110.841.802.638 (6)172
O3—H3···O14iii0.841.872.657 (6)156
O4—H4a···O120.841.852.692 (6)175
O4—H4b···Br10.842.513.257 (4)149
O5—H5a···O10iv0.841.762.592 (4)174
O5—H5b···Br8i0.842.603.329 (5)146
O6—H6···O9iv0.841.932.764 (7)169
O7—H7a···O130.841.762.600 (6)172
O7—H7b···Br10ii0.842.643.307 (5)137
O8—H8···O9v0.841.992.768 (7)154
O9—H9a···O120.841.982.817 (7)175
O9—H9b···Br40.842.713.522 (4)162
O10—H10a···Br1vi0.842.873.456 (3)129
O10—H10b···O110.842.142.772 (5)132
O11—H11a···O130.841.972.754 (7)154
O11—H11b···Br1vii0.842.783.387 (6)130
O12—H12a···Br10viii0.842.843.599 (6)152
O12—H12b···Br8iii0.843.043.745 (4)143
O13—H13a···O14iv0.841.932.748 (6)165
O13—H13b···Br50.842.833.463 (4)134
O14—H14a···O10iv0.841.972.749 (5)153
O14—H14b···Br50.842.713.405 (4)141
O15—H15a···Br12ix0.842.823.531 (4)143
O15—H15b···Br8ix0.842.863.636 (6)154
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x+1, y, z1; (vi) x+1, y, z; (vii) x+1, y, z+1; (viii) x1, y, z+1; (ix) x+1, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from FAPEMIG and CAPES (Brazil).

References

First citationBarnes, J. C., Sampson, H. A. & Weakley, T. J. R. (1980). J. Chem. Soc. Dalton Trans. pp. 949–954.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCameron, T. S., Knop, O. & Vincent, B. R. (1985). Can. J. Chem. 63, 759–765.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHowie, R. A., Skakle, J. M. S. & Wardell, J. L. (2005). Inorg. Chim. Acta, 358, 3283–3286.  Web of Science CrossRef CAS Google Scholar
First citationMüller, M., Lerner, H.-W. & Bolte, M. (2007). Acta Cryst. E63, m2765.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShihada, A.-F., Abushamleh, A. S. & Weller, F. (2004). Z. Anorg. Allg. Chem. 630, 841–847  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages i18-i19
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds