metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis(4-methyl­benz­yl)(1,10-phenanthroline-κ2N,N′)tin(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 February 2010; accepted 11 February 2010; online 17 February 2010)

The tin(IV) atom in the title compound, [Sn(C8H9)2Cl2(C12H8N2)], is chelated by the N-heterocycle and bonded to two C atoms and two chloride ions in an SnC2Cl2N2 octa­hedral coordination environment with the C atoms trans to each other. The dihedral angles between the heterocycle ring system and the benzene rings of the 4-methyl­benzyl groups are 21.20 (12) and 28.71 (11)°.

Related literature

For the crystal structure of the 1,10-phenanthroline adduct with di(4-chloro­benz­yl)tin dichloride, see: Tan et al. (2009[Tan, C. L., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m717.]). For the direct synthesis of substituted dibenzyl­tin dichlorides, see: Sisido et al. (1961[Sisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538-541.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C8H9)2Cl2(C12H8N2)]

  • Mr = 580.10

  • Monoclinic, P 21 /c

  • a = 15.2180 (2) Å

  • b = 10.4325 (1) Å

  • c = 17.7990 (2) Å

  • β = 115.0779 (5)°

  • V = 2559.42 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.640, Tmax = 0.887

  • 23764 measured reflections

  • 5882 independent reflections

  • 5066 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.074

  • S = 1.05

  • 5882 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C1 2.164 (2)
Sn1—C9 2.179 (2)
Sn1—N2 2.3595 (18)
Sn1—N1 2.3780 (18)
Sn1—Cl1 2.5256 (6)
Sn1—Cl2 2.5295 (7)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structure of the 1,10-phenanthroline adduct with di(4-chlorobenzyl)tin dichloride, see: Tan et al. (2009). For the direct synthesis of substituted dibenzyltin dichlorides, see: Sisido et al. (1961).

Experimental top

Di(p-methylbenzyl)tin dichloride was synthesized by the reaction of p-methylbenzyl chloride and metallic tin (Sisido et al., 1961). The reactant (0.45 g, 1 mmol) and 1,10-phenanthroline (0.18 g, 1 mmol) were heated in chloroform (50 ml) for 1 hour. Faint-yellow, almost colourless, blocks of (I) separated from the cool solution after a day.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.93–0.96 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Dichloridobis(4-methylbenzyl)(1,10-phenanthroline-κ2N,N')tin(IV) top
Crystal data top
[Sn(C8H9)2Cl2(C12H8N2)]F(000) = 1168
Mr = 580.10Dx = 1.505 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9858 reflections
a = 15.2180 (2) Åθ = 2.3–28.3°
b = 10.4325 (1) ŵ = 1.23 mm1
c = 17.7990 (2) ÅT = 293 K
β = 115.0779 (5)°Block, colourless
V = 2559.42 (5) Å30.40 × 0.30 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
5882 independent reflections
Radiation source: fine-focus sealed tube5066 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.640, Tmax = 0.887k = 1313
23764 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.9608P]
where P = (Fo2 + 2Fc2)/3
5882 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Sn(C8H9)2Cl2(C12H8N2)]V = 2559.42 (5) Å3
Mr = 580.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.2180 (2) ŵ = 1.23 mm1
b = 10.4325 (1) ÅT = 293 K
c = 17.7990 (2) Å0.40 × 0.30 × 0.10 mm
β = 115.0779 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5882 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5066 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.887Rint = 0.023
23764 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.05Δρmax = 0.43 e Å3
5882 reflectionsΔρmin = 0.68 e Å3
300 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.258495 (11)0.590677 (12)0.707814 (8)0.03991 (6)
Cl10.28464 (5)0.52229 (7)0.85189 (4)0.06375 (17)
Cl20.22061 (7)0.82753 (6)0.70201 (5)0.0763 (2)
N10.24130 (14)0.58938 (17)0.56865 (11)0.0451 (4)
N20.28083 (14)0.38087 (17)0.66953 (12)0.0450 (4)
C10.41247 (18)0.6286 (3)0.75538 (14)0.0521 (5)
H1A0.42920.69560.79690.063*
H1B0.44760.55190.78270.063*
C20.44531 (17)0.6680 (2)0.69126 (13)0.0490 (5)
C30.4806 (2)0.5793 (3)0.65313 (16)0.0568 (6)
H30.48810.49430.67060.068*
C40.5051 (2)0.6148 (3)0.58943 (18)0.0673 (7)
H40.52960.55340.56560.081*
C50.49389 (19)0.7397 (3)0.56052 (16)0.0674 (8)
C60.4612 (2)0.8295 (3)0.60007 (18)0.0650 (7)
H60.45450.91450.58290.078*
C70.43823 (19)0.7948 (2)0.66475 (16)0.0561 (6)
H70.41770.85730.69100.067*
C80.5137 (3)0.7780 (5)0.4875 (2)0.1062 (15)
H8A0.45420.80410.44250.159*
H8B0.54050.70640.47050.159*
H8C0.55900.84790.50310.159*
C90.10328 (18)0.5559 (2)0.66245 (16)0.0528 (5)
H9A0.08180.59330.70170.063*
H9B0.07060.60160.61050.063*
C100.07041 (17)0.4214 (2)0.64869 (16)0.0518 (5)
C110.0640 (2)0.3462 (3)0.71101 (17)0.0671 (7)
H110.08040.38170.76320.081*
C120.0337 (2)0.2200 (3)0.6968 (2)0.0732 (8)
H120.03060.17230.73980.088*
C130.0078 (2)0.1629 (3)0.6200 (2)0.0702 (8)
C140.01504 (19)0.2365 (3)0.55829 (18)0.0606 (6)
H140.00080.20050.50630.073*
C150.04530 (17)0.3623 (3)0.57233 (15)0.0532 (5)
H150.04900.40920.52930.064*
C160.0291 (3)0.0259 (4)0.6033 (3)0.1090 (13)
H16A0.07680.01300.62460.164*
H16B0.02400.03220.63010.164*
H16C0.05790.01030.54460.164*
C170.22739 (18)0.6918 (3)0.52146 (15)0.0587 (6)
H170.22590.77200.54370.070*
C180.2148 (2)0.6835 (4)0.43852 (18)0.0781 (9)
H180.20760.75750.40730.094*
C190.2132 (2)0.5675 (4)0.40508 (18)0.0866 (11)
H190.20320.56110.34990.104*
C200.22645 (19)0.4558 (4)0.45285 (16)0.0673 (8)
C210.24283 (16)0.4721 (2)0.53616 (13)0.0470 (5)
C220.2244 (3)0.3269 (5)0.4227 (2)0.0911 (12)
H220.21310.31460.36760.109*
C230.2380 (3)0.2258 (4)0.4710 (2)0.0895 (12)
H230.23380.14440.44840.107*
C240.25889 (18)0.2374 (3)0.5567 (2)0.0661 (8)
C250.26192 (15)0.3617 (2)0.58928 (15)0.0466 (5)
C260.2746 (2)0.1346 (3)0.6110 (3)0.0806 (10)
H260.27210.05130.59160.097*
C270.2933 (2)0.1543 (2)0.6910 (2)0.0776 (9)
H270.30370.08540.72690.093*
C280.29680 (19)0.2795 (2)0.71911 (18)0.0591 (6)
H280.31090.29290.77470.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.05738 (10)0.03106 (8)0.03553 (9)0.00481 (6)0.02380 (7)0.00172 (5)
Cl10.0878 (4)0.0687 (4)0.0407 (3)0.0134 (3)0.0330 (3)0.0041 (3)
Cl20.1138 (6)0.0339 (3)0.1028 (6)0.0027 (3)0.0669 (5)0.0032 (3)
N10.0461 (10)0.0525 (11)0.0341 (9)0.0040 (8)0.0145 (8)0.0033 (7)
N20.0484 (10)0.0345 (8)0.0492 (10)0.0021 (7)0.0178 (8)0.0019 (8)
C10.0595 (14)0.0567 (13)0.0350 (11)0.0159 (11)0.0151 (10)0.0028 (10)
C20.0512 (12)0.0536 (13)0.0370 (10)0.0141 (10)0.0138 (9)0.0036 (9)
C30.0604 (15)0.0576 (15)0.0492 (13)0.0031 (11)0.0201 (11)0.0029 (10)
C40.0653 (16)0.086 (2)0.0521 (15)0.0013 (14)0.0265 (13)0.0106 (14)
C50.0528 (14)0.104 (2)0.0446 (13)0.0111 (15)0.0199 (11)0.0084 (14)
C60.0607 (15)0.0698 (17)0.0642 (16)0.0142 (13)0.0261 (13)0.0119 (14)
C70.0618 (14)0.0512 (14)0.0580 (14)0.0150 (11)0.0282 (12)0.0063 (11)
C80.085 (2)0.178 (5)0.068 (2)0.005 (3)0.0453 (18)0.036 (2)
C90.0527 (13)0.0535 (13)0.0542 (13)0.0024 (11)0.0247 (11)0.0005 (11)
C100.0438 (12)0.0594 (14)0.0518 (13)0.0039 (10)0.0198 (10)0.0023 (10)
C110.0654 (16)0.084 (2)0.0537 (14)0.0161 (15)0.0273 (12)0.0028 (14)
C120.0649 (16)0.083 (2)0.0739 (19)0.0168 (15)0.0317 (14)0.0190 (16)
C130.0601 (16)0.0616 (17)0.089 (2)0.0098 (13)0.0315 (15)0.0026 (15)
C140.0525 (13)0.0616 (15)0.0671 (16)0.0088 (12)0.0247 (12)0.0071 (13)
C150.0467 (12)0.0590 (14)0.0508 (13)0.0032 (11)0.0179 (10)0.0056 (11)
C160.129 (3)0.064 (2)0.150 (4)0.023 (2)0.075 (3)0.001 (2)
C170.0593 (14)0.0635 (15)0.0491 (13)0.0048 (12)0.0188 (11)0.0174 (11)
C180.0656 (17)0.115 (3)0.0493 (15)0.0040 (17)0.0203 (13)0.0327 (17)
C190.073 (2)0.151 (4)0.0376 (14)0.010 (2)0.0253 (13)0.0004 (18)
C200.0550 (14)0.110 (2)0.0410 (13)0.0119 (15)0.0244 (11)0.0197 (14)
C210.0416 (11)0.0619 (14)0.0388 (11)0.0079 (10)0.0182 (9)0.0116 (10)
C220.082 (2)0.134 (3)0.065 (2)0.024 (2)0.0394 (17)0.056 (2)
C230.081 (2)0.095 (3)0.100 (3)0.016 (2)0.046 (2)0.062 (2)
C240.0499 (13)0.0592 (16)0.091 (2)0.0072 (12)0.0309 (13)0.0364 (15)
C250.0384 (10)0.0470 (12)0.0549 (13)0.0060 (9)0.0202 (9)0.0162 (10)
C260.0644 (17)0.0374 (13)0.133 (3)0.0004 (12)0.0348 (19)0.0237 (17)
C270.0646 (17)0.0312 (12)0.120 (3)0.0017 (11)0.0232 (18)0.0057 (15)
C280.0574 (14)0.0413 (12)0.0707 (16)0.0045 (11)0.0195 (12)0.0080 (11)
Geometric parameters (Å, º) top
Sn1—C12.164 (2)C11—C121.382 (4)
Sn1—C92.179 (2)C11—H110.9300
Sn1—N22.3595 (18)C12—C131.387 (4)
Sn1—N12.3780 (18)C12—H120.9300
Sn1—Cl12.5256 (6)C13—C141.383 (4)
Sn1—Cl22.5295 (7)C13—C161.518 (5)
N1—C171.319 (3)C14—C151.378 (4)
N1—C211.357 (3)C14—H140.9300
N2—C281.332 (3)C15—H150.9300
N2—C251.347 (3)C16—H16A0.9600
C1—C21.485 (3)C16—H16B0.9600
C1—H1A0.9700C16—H16C0.9600
C1—H1B0.9700C17—C181.408 (4)
C2—C31.384 (4)C17—H170.9300
C2—C71.393 (3)C18—C191.345 (5)
C3—C41.386 (4)C18—H180.9300
C3—H30.9300C19—C201.406 (5)
C4—C51.384 (4)C19—H190.9300
C4—H40.9300C20—C211.406 (3)
C5—C61.385 (4)C20—C221.443 (5)
C5—C81.507 (4)C21—C251.440 (4)
C6—C71.385 (4)C22—C231.320 (6)
C6—H60.9300C22—H220.9300
C7—H70.9300C23—C241.426 (5)
C8—H8A0.9600C23—H230.9300
C8—H8B0.9600C24—C261.394 (5)
C8—H8C0.9600C24—C251.413 (3)
C9—C101.475 (3)C26—C271.345 (5)
C9—H9A0.9700C26—H260.9300
C9—H9B0.9700C27—C281.391 (4)
C10—C151.390 (4)C27—H270.9300
C10—C111.395 (4)C28—H280.9300
C1—Sn1—C9178.47 (9)C11—C10—C9122.4 (2)
C1—Sn1—N291.02 (9)C12—C11—C10121.4 (3)
C9—Sn1—N290.27 (8)C12—C11—H11119.3
C1—Sn1—N191.80 (7)C10—C11—H11119.3
C9—Sn1—N189.41 (8)C11—C12—C13121.5 (3)
N2—Sn1—N170.10 (6)C11—C12—H12119.2
C1—Sn1—Cl188.62 (6)C13—C12—H12119.2
C9—Sn1—Cl190.50 (7)C14—C13—C12117.4 (3)
N2—Sn1—Cl192.93 (5)C14—C13—C16121.0 (3)
N1—Sn1—Cl1163.03 (5)C12—C13—C16121.7 (3)
C1—Sn1—Cl291.59 (8)C13—C14—C15121.2 (3)
C9—Sn1—Cl287.42 (7)C13—C14—H14119.4
N2—Sn1—Cl2162.30 (5)C15—C14—H14119.4
N1—Sn1—Cl292.32 (5)C14—C15—C10122.1 (2)
Cl1—Sn1—Cl2104.63 (3)C14—C15—H15118.9
C17—N1—C21119.1 (2)C10—C15—H15118.9
C17—N1—Sn1125.14 (18)C13—C16—H16A109.5
C21—N1—Sn1115.77 (14)C13—C16—H16B109.5
C28—N2—C25118.8 (2)H16A—C16—H16B109.5
C28—N2—Sn1123.61 (17)C13—C16—H16C109.5
C25—N2—Sn1116.86 (15)H16A—C16—H16C109.5
C2—C1—Sn1114.29 (15)H16B—C16—H16C109.5
C2—C1—H1A108.7N1—C17—C18122.1 (3)
Sn1—C1—H1A108.7N1—C17—H17118.9
C2—C1—H1B108.7C18—C17—H17118.9
Sn1—C1—H1B108.7C19—C18—C17119.2 (3)
H1A—C1—H1B107.6C19—C18—H18120.4
C3—C2—C7117.3 (2)C17—C18—H18120.4
C3—C2—C1121.2 (2)C18—C19—C20120.5 (3)
C7—C2—C1121.4 (2)C18—C19—H19119.7
C4—C3—C2121.1 (3)C20—C19—H19119.7
C4—C3—H3119.4C21—C20—C19116.9 (3)
C2—C3—H3119.4C21—C20—C22118.1 (3)
C3—C4—C5121.5 (3)C19—C20—C22125.0 (3)
C3—C4—H4119.3N1—C21—C20122.1 (3)
C5—C4—H4119.3N1—C21—C25118.45 (19)
C4—C5—C6117.5 (2)C20—C21—C25119.4 (2)
C4—C5—C8122.1 (3)C23—C22—C20122.0 (3)
C6—C5—C8120.3 (3)C23—C22—H22119.0
C7—C6—C5121.1 (3)C20—C22—H22119.0
C7—C6—H6119.4C22—C23—C24122.1 (3)
C5—C6—H6119.4C22—C23—H23119.0
C6—C7—C2121.3 (3)C24—C23—H23119.0
C6—C7—H7119.4C26—C24—C25117.1 (3)
C2—C7—H7119.4C26—C24—C23124.8 (3)
C5—C8—H8A109.5C25—C24—C23118.1 (3)
C5—C8—H8B109.5N2—C25—C24121.8 (2)
H8A—C8—H8B109.5N2—C25—C21118.1 (2)
C5—C8—H8C109.5C24—C25—C21120.2 (2)
H8A—C8—H8C109.5C27—C26—C24120.8 (3)
H8B—C8—H8C109.5C27—C26—H26119.6
C10—C9—Sn1117.26 (17)C24—C26—H26119.6
C10—C9—H9A108.0C26—C27—C28118.9 (3)
Sn1—C9—H9A108.0C26—C27—H27120.5
C10—C9—H9B108.0C28—C27—H27120.5
Sn1—C9—H9B108.0N2—C28—C27122.6 (3)
H9A—C9—H9B107.2N2—C28—H28118.7
C15—C10—C11116.4 (2)C27—C28—H28118.7
C15—C10—C9121.1 (2)
C1—Sn1—N1—C1785.6 (2)C11—C12—C13—C141.1 (5)
C9—Sn1—N1—C1793.4 (2)C11—C12—C13—C16177.6 (3)
N2—Sn1—N1—C17176.1 (2)C12—C13—C14—C151.0 (4)
Cl1—Sn1—N1—C17176.82 (15)C16—C13—C14—C15177.7 (3)
Cl2—Sn1—N1—C176.02 (19)C13—C14—C15—C100.3 (4)
C1—Sn1—N1—C2196.79 (17)C11—C10—C15—C140.4 (4)
C9—Sn1—N1—C2184.15 (17)C9—C10—C15—C14179.6 (2)
N2—Sn1—N1—C216.36 (15)C21—N1—C17—C180.5 (4)
Cl1—Sn1—N1—C215.6 (3)Sn1—N1—C17—C18177.98 (19)
Cl2—Sn1—N1—C21171.54 (15)N1—C17—C18—C192.5 (4)
C1—Sn1—N2—C2890.9 (2)C17—C18—C19—C201.6 (5)
C9—Sn1—N2—C2888.3 (2)C18—C19—C20—C211.1 (5)
N1—Sn1—N2—C28177.6 (2)C18—C19—C20—C22178.9 (3)
Cl1—Sn1—N2—C282.21 (19)C17—N1—C21—C202.4 (3)
Cl2—Sn1—N2—C28170.65 (16)Sn1—N1—C21—C20175.29 (18)
C1—Sn1—N2—C2599.24 (16)C17—N1—C21—C25177.6 (2)
C9—Sn1—N2—C2581.58 (17)Sn1—N1—C21—C254.7 (3)
N1—Sn1—N2—C257.69 (15)C19—C20—C21—N13.2 (4)
Cl1—Sn1—N2—C25172.09 (15)C22—C20—C21—N1176.7 (2)
Cl2—Sn1—N2—C250.8 (3)C19—C20—C21—C25176.8 (2)
N2—Sn1—C1—C283.16 (19)C22—C20—C21—C253.3 (4)
N1—Sn1—C1—C213.03 (19)C21—C20—C22—C230.5 (5)
Cl1—Sn1—C1—C2176.07 (19)C19—C20—C22—C23179.6 (3)
Cl2—Sn1—C1—C279.34 (19)C20—C22—C23—C242.2 (6)
Sn1—C1—C2—C394.0 (3)C22—C23—C24—C26179.6 (3)
Sn1—C1—C2—C783.4 (2)C22—C23—C24—C252.0 (5)
C7—C2—C3—C41.9 (4)C28—N2—C25—C240.2 (3)
C1—C2—C3—C4175.6 (2)Sn1—N2—C25—C24170.55 (17)
C2—C3—C4—C51.0 (4)C28—N2—C25—C21178.7 (2)
C3—C4—C5—C62.8 (4)Sn1—N2—C25—C218.3 (3)
C3—C4—C5—C8175.7 (3)C26—C24—C25—N21.2 (4)
C4—C5—C6—C71.6 (4)C23—C24—C25—N2179.7 (2)
C8—C5—C6—C7176.9 (3)C26—C24—C25—C21177.7 (2)
C5—C6—C7—C21.3 (4)C23—C24—C25—C210.9 (3)
C3—C2—C7—C63.0 (4)N1—C21—C25—N22.4 (3)
C1—C2—C7—C6174.5 (2)C20—C21—C25—N2177.6 (2)
N2—Sn1—C9—C1016.46 (19)N1—C21—C25—C24176.5 (2)
N1—Sn1—C9—C1086.56 (19)C20—C21—C25—C243.5 (3)
Cl1—Sn1—C9—C1076.48 (19)C25—C24—C26—C271.0 (4)
Cl2—Sn1—C9—C10178.91 (19)C23—C24—C26—C27179.5 (3)
Sn1—C9—C10—C1590.4 (3)C24—C26—C27—C280.0 (5)
Sn1—C9—C10—C1188.7 (3)C25—N2—C28—C271.0 (4)
C15—C10—C11—C120.3 (4)Sn1—N2—C28—C27168.7 (2)
C9—C10—C11—C12179.5 (3)C26—C27—C28—N21.1 (5)
C10—C11—C12—C130.4 (5)

Experimental details

Crystal data
Chemical formula[Sn(C8H9)2Cl2(C12H8N2)]
Mr580.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.2180 (2), 10.4325 (1), 17.7990 (2)
β (°) 115.0779 (5)
V3)2559.42 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.640, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
23764, 5882, 5066
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.074, 1.05
No. of reflections5882
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.68

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—C12.164 (2)Sn1—N12.3780 (18)
Sn1—C92.179 (2)Sn1—Cl12.5256 (6)
Sn1—N22.3595 (18)Sn1—Cl22.5295 (7)
 

Acknowledgements

We thank the University of Malaya (RG020/09AFR and PS338/2009C) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538–541.  CrossRef Web of Science Google Scholar
First citationTan, C. L., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds