organic compounds
Bis(oxonium) tetrakis(o-toluidinium) cyclohexaphosphate
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: houda.marouani@fsb.rnu.tn
In the title compound, 4C7H10N+·2H3O+·P6O186−, the complete cyclohexaphosphate anion is generated by crystallographic inversion symmetry. In the crystal, the H3O+ ions and the [P6O18]6− anions are linked by O—H⋯O hydrogen bonds, generating infinite layers lying parallel to the ab plane at z = 1/2. These layers are interconnected by the organic cations, which establish N—H⋯O hydrogen bonds with the [P6O18]6− anions.
Related literature
For further synthetic details, see: Schülke & Kayser (1985). For related structures, see: Amri et al. (2008); Larafa et al. (1997); Akriche & Rzaigui (2000); Selmi et al. (2009); Khemiri et al. (2009). For a discussion on hydrogen bonding, see: Brown (1976); Blessing (1986). For tetrahedral distortions, see: Baur (1974).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810006537/hb5337sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810006537/hb5337Isup2.hkl
The title compound has been prepared in two steps. In the first one, we prepare Li6P6O18.6H2O according to the process described by Schülke and Kayser (Schülke & Kayser, 1985). From this lithium salt, we prepare an aqueous solution of cyclohexaphosphate acid H6P6O18 by passing a solution of Li6P6O18.6H2O (5 g in 100 ml) through an ion- exchange resin in its H-state (Amberlite IR 120). In the second step, at 20 ml of the aqueous solution of H6P6O18 freshly prepared, we add drop by drop a solution of o-toluidine (30 mmol in 20 ml of ethanol) under continuous stirring.
In order to avoid the hydrolysis of the ring anion the above reaction is performed at room temperature. The so-obtained solution is then slowly evaporated until1 the formation of pink prisms of (I). The title compound is stable for months under normal conditions of temperature and relative humidity.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Symmetry code: i: -x, -y, -z. | |
Fig. 2. Projection of the structure of (I) along the a axis. |
4C7H10N+·2H3O+·P6O186− | Z = 1 |
Mr = 944.51 | F(000) = 492 |
Triclinic, P1 | Dx = 1.576 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.344 (3) Å | Cell parameters from 25 reflections |
b = 10.360 (2) Å | θ = 10–12° |
c = 11.537 (2) Å | µ = 0.36 mm−1 |
α = 95.35 (4)° | T = 293 K |
β = 92.23 (3)° | Prism, pink |
γ = 116.00 (5)° | 0.25 × 0.20 × 0.15 mm |
V = 995.4 (4) Å3 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.025 |
Radiation source: fine-focus sealed tube | θmax = 30.0°, θmin = 3.0° |
Graphite monochromator | h = −13→13 |
non–profiled ω scans | k = −14→14 |
6038 measured reflections | l = 0→16 |
5773 independent reflections | 2 standard reflections every 120 min |
3061 reflections with I > 2σ(I) | intensity decay: 10% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0495P)2 + 0.1583P] where P = (Fo2 + 2Fc2)/3 |
5773 reflections | (Δ/σ)max < 0.001 |
278 parameters | Δρmax = 0.33 e Å−3 |
6 restraints | Δρmin = −0.38 e Å−3 |
4C7H10N+·2H3O+·P6O186− | γ = 116.00 (5)° |
Mr = 944.51 | V = 995.4 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.344 (3) Å | Mo Kα radiation |
b = 10.360 (2) Å | µ = 0.36 mm−1 |
c = 11.537 (2) Å | T = 293 K |
α = 95.35 (4)° | 0.25 × 0.20 × 0.15 mm |
β = 92.23 (3)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.025 |
6038 measured reflections | 2 standard reflections every 120 min |
5773 independent reflections | intensity decay: 10% |
3061 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.052 | 6 restraints |
wR(F2) = 0.114 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.33 e Å−3 |
5773 reflections | Δρmin = −0.38 e Å−3 |
278 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.19977 (8) | −0.14917 (7) | 0.55334 (6) | 0.02334 (15) | |
P2 | −0.14713 (8) | −0.25078 (7) | 0.56200 (6) | 0.02236 (15) | |
P3 | 0.28988 (8) | 0.16136 (7) | 0.62215 (6) | 0.02600 (16) | |
O1 | 0.2843 (2) | −0.2032 (2) | 0.62940 (17) | 0.0356 (5) | |
O2 | 0.1635 (2) | −0.2086 (2) | 0.42722 (15) | 0.0313 (4) | |
O3 | 0.2961 (2) | 0.0217 (2) | 0.55757 (19) | 0.0398 (5) | |
O4 | 0.0375 (2) | −0.1674 (2) | 0.60834 (15) | 0.0285 (4) | |
O5 | −0.2360 (2) | −0.2181 (2) | 0.65479 (16) | 0.0306 (4) | |
O6 | −0.1935 (2) | −0.40394 (19) | 0.51838 (17) | 0.0372 (5) | |
O7 | −0.1447 (2) | −0.1662 (2) | 0.45304 (16) | 0.0293 (4) | |
O8 | 0.2395 (2) | 0.1384 (2) | 0.74021 (16) | 0.0401 (5) | |
O9 | 0.4383 (2) | 0.2884 (2) | 0.6012 (2) | 0.0453 (6) | |
O10 | 0.7313 (2) | 0.3898 (2) | 0.64060 (18) | 0.0321 (4) | |
N1 | 0.9215 (3) | 0.0733 (2) | 0.74960 (18) | 0.0291 (5) | |
H1A | 1.0242 | 0.0929 | 0.7486 | 0.044* | |
H1B | 0.8992 | 0.1265 | 0.7023 | 0.044* | |
H1C | 0.8609 | −0.0201 | 0.7255 | 0.044* | |
N2 | 0.4244 (3) | 0.6264 (2) | 0.6809 (2) | 0.0320 (5) | |
H2A | 0.3811 | 0.5381 | 0.6413 | 0.048* | |
H2B | 0.5279 | 0.6711 | 0.6701 | 0.048* | |
H2C | 0.3755 | 0.6766 | 0.6555 | 0.048* | |
C1 | 0.8890 (3) | 0.1076 (3) | 0.8692 (2) | 0.0269 (5) | |
C2 | 0.7377 (3) | 0.0942 (3) | 0.8895 (2) | 0.0303 (6) | |
C3 | 0.7148 (4) | 0.1246 (3) | 1.0057 (3) | 0.0382 (7) | |
H3 | 0.6155 | 0.1174 | 1.0236 | 0.046* | |
C4 | 0.8337 (4) | 0.1648 (3) | 1.0948 (3) | 0.0428 (8) | |
H4 | 0.8136 | 0.1824 | 1.1715 | 0.051* | |
C5 | 0.9816 (4) | 0.1791 (4) | 1.0705 (3) | 0.0453 (8) | |
H5 | 1.0629 | 0.2084 | 1.1304 | 0.054* | |
C6 | 1.0098 (4) | 0.1498 (3) | 0.9566 (3) | 0.0392 (7) | |
H6 | 1.1098 | 0.1585 | 0.9394 | 0.047* | |
C7 | 0.6060 (4) | 0.0507 (4) | 0.7933 (3) | 0.0455 (8) | |
H7A | 0.6445 | 0.1115 | 0.7325 | 0.068* | |
H7B | 0.5172 | 0.0613 | 0.8240 | 0.068* | |
H7C | 0.5724 | −0.0484 | 0.7620 | 0.068* | |
C8 | 0.4056 (3) | 0.6151 (3) | 0.8077 (2) | 0.0311 (6) | |
C9 | 0.2550 (4) | 0.5396 (3) | 0.8433 (3) | 0.0357 (7) | |
C10 | 0.2453 (4) | 0.5348 (3) | 0.9631 (3) | 0.0445 (8) | |
H10 | 0.1461 | 0.4832 | 0.9906 | 0.053* | |
C11 | 0.3771 (5) | 0.6038 (4) | 1.0416 (3) | 0.0489 (8) | |
H11 | 0.3667 | 0.5987 | 1.1211 | 0.059* | |
C12 | 0.5246 (4) | 0.6802 (4) | 1.0034 (3) | 0.0536 (9) | |
H12 | 0.6139 | 0.7282 | 1.0571 | 0.064* | |
C13 | 0.5409 (4) | 0.6862 (3) | 0.8859 (3) | 0.0414 (7) | |
H13 | 0.6408 | 0.7370 | 0.8592 | 0.050* | |
C14 | 0.1088 (4) | 0.4694 (4) | 0.7588 (3) | 0.0517 (9) | |
H14A | 0.0923 | 0.5425 | 0.7232 | 0.078* | |
H14B | 0.0177 | 0.4154 | 0.7996 | 0.078* | |
H14C | 0.1226 | 0.4054 | 0.6995 | 0.078* | |
H110 | 0.6282 (11) | 0.348 (3) | 0.633 (3) | 0.057 (11)* | |
H210 | 0.770 (4) | 0.331 (3) | 0.617 (3) | 0.088 (15)* | |
H310 | 0.767 (4) | 0.464 (2) | 0.603 (3) | 0.079 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0218 (3) | 0.0296 (4) | 0.0229 (3) | 0.0147 (3) | 0.0036 (3) | 0.0058 (3) |
P2 | 0.0215 (3) | 0.0218 (3) | 0.0225 (3) | 0.0082 (3) | 0.0057 (3) | 0.0030 (3) |
P3 | 0.0185 (3) | 0.0275 (4) | 0.0299 (4) | 0.0086 (3) | 0.0005 (3) | 0.0025 (3) |
O1 | 0.0377 (11) | 0.0476 (12) | 0.0310 (11) | 0.0275 (10) | −0.0009 (9) | 0.0066 (9) |
O2 | 0.0350 (10) | 0.0473 (12) | 0.0210 (9) | 0.0265 (9) | 0.0047 (8) | 0.0049 (8) |
O3 | 0.0369 (11) | 0.0293 (10) | 0.0565 (14) | 0.0154 (9) | 0.0238 (10) | 0.0090 (9) |
O4 | 0.0213 (9) | 0.0425 (11) | 0.0216 (9) | 0.0142 (8) | 0.0045 (7) | 0.0026 (8) |
O5 | 0.0236 (9) | 0.0344 (10) | 0.0308 (10) | 0.0099 (8) | 0.0107 (8) | 0.0020 (8) |
O6 | 0.0477 (13) | 0.0247 (10) | 0.0369 (12) | 0.0136 (9) | 0.0109 (10) | 0.0026 (9) |
O7 | 0.0198 (9) | 0.0364 (10) | 0.0312 (10) | 0.0102 (8) | 0.0027 (7) | 0.0139 (8) |
O8 | 0.0379 (11) | 0.0550 (14) | 0.0246 (10) | 0.0191 (10) | −0.0039 (9) | 0.0024 (9) |
O9 | 0.0206 (10) | 0.0385 (12) | 0.0654 (16) | 0.0028 (9) | −0.0009 (10) | 0.0085 (11) |
O10 | 0.0235 (10) | 0.0306 (11) | 0.0408 (12) | 0.0106 (9) | 0.0030 (9) | 0.0052 (9) |
N1 | 0.0302 (12) | 0.0319 (12) | 0.0253 (12) | 0.0140 (10) | 0.0049 (9) | 0.0024 (9) |
N2 | 0.0292 (12) | 0.0334 (13) | 0.0324 (13) | 0.0128 (10) | 0.0054 (10) | 0.0041 (10) |
C1 | 0.0327 (14) | 0.0254 (13) | 0.0225 (13) | 0.0129 (11) | 0.0047 (11) | 0.0026 (10) |
C2 | 0.0348 (15) | 0.0285 (14) | 0.0277 (14) | 0.0133 (12) | 0.0053 (12) | 0.0063 (11) |
C3 | 0.0427 (17) | 0.0471 (18) | 0.0327 (16) | 0.0249 (15) | 0.0159 (13) | 0.0113 (13) |
C4 | 0.066 (2) | 0.0483 (19) | 0.0228 (15) | 0.0332 (17) | 0.0109 (14) | 0.0035 (13) |
C5 | 0.052 (2) | 0.057 (2) | 0.0261 (16) | 0.0254 (17) | −0.0059 (14) | 0.0004 (14) |
C6 | 0.0339 (15) | 0.0509 (19) | 0.0329 (16) | 0.0194 (14) | 0.0021 (13) | 0.0026 (14) |
C7 | 0.0324 (16) | 0.063 (2) | 0.0357 (17) | 0.0160 (16) | 0.0044 (13) | 0.0086 (15) |
C8 | 0.0341 (15) | 0.0313 (14) | 0.0317 (15) | 0.0176 (12) | 0.0047 (12) | 0.0057 (12) |
C9 | 0.0398 (16) | 0.0298 (15) | 0.0350 (16) | 0.0135 (13) | 0.0053 (13) | 0.0025 (12) |
C10 | 0.057 (2) | 0.0418 (18) | 0.0396 (18) | 0.0242 (16) | 0.0180 (16) | 0.0109 (14) |
C11 | 0.069 (2) | 0.052 (2) | 0.0338 (18) | 0.0326 (19) | 0.0072 (17) | 0.0085 (15) |
C12 | 0.048 (2) | 0.071 (2) | 0.0391 (19) | 0.0263 (19) | −0.0116 (16) | 0.0009 (17) |
C13 | 0.0350 (16) | 0.0500 (19) | 0.0409 (18) | 0.0202 (15) | 0.0024 (13) | 0.0073 (15) |
C14 | 0.0348 (17) | 0.049 (2) | 0.052 (2) | 0.0033 (15) | 0.0034 (15) | −0.0024 (16) |
P1—O1 | 1.461 (2) | C2—C3 | 1.395 (4) |
P1—O2 | 1.491 (2) | C2—C7 | 1.504 (4) |
P1—O3 | 1.591 (2) | C3—C4 | 1.374 (4) |
P1—O4 | 1.6075 (19) | C3—H3 | 0.9300 |
P2—O6 | 1.480 (2) | C4—C5 | 1.367 (5) |
P2—O5 | 1.4830 (19) | C4—H4 | 0.9300 |
P2—O7 | 1.5931 (19) | C5—C6 | 1.383 (4) |
P2—O4 | 1.594 (2) | C5—H5 | 0.9300 |
P3—O8 | 1.465 (2) | C6—H6 | 0.9300 |
P3—O9 | 1.483 (2) | C7—H7A | 0.9600 |
P3—O3 | 1.590 (2) | C7—H7B | 0.9600 |
P3—O7i | 1.6035 (19) | C7—H7C | 0.9600 |
O7—P3i | 1.6035 (19) | C8—C9 | 1.378 (4) |
O10—H110 | 0.862 (10) | C8—C13 | 1.388 (4) |
O10—H210 | 0.863 (10) | C9—C10 | 1.393 (4) |
O10—H310 | 0.864 (10) | C9—C14 | 1.496 (4) |
N1—C1 | 1.470 (3) | C10—C11 | 1.367 (5) |
N1—H1A | 0.8900 | C10—H10 | 0.9300 |
N1—H1B | 0.8900 | C11—C12 | 1.369 (5) |
N1—H1C | 0.8900 | C11—H11 | 0.9300 |
N2—C8 | 1.489 (3) | C12—C13 | 1.375 (5) |
N2—H2A | 0.8900 | C12—H12 | 0.9300 |
N2—H2B | 0.8900 | C13—H13 | 0.9300 |
N2—H2C | 0.8900 | C14—H14A | 0.9600 |
C1—C6 | 1.370 (4) | C14—H14B | 0.9600 |
C1—C2 | 1.390 (4) | C14—H14C | 0.9600 |
O1—P1—O2 | 118.49 (11) | C4—C3—C2 | 122.3 (3) |
O1—P1—O3 | 110.27 (13) | C4—C3—H3 | 118.8 |
O2—P1—O3 | 106.30 (12) | C2—C3—H3 | 118.8 |
O1—P1—O4 | 108.90 (11) | C5—C4—C3 | 120.0 (3) |
O2—P1—O4 | 109.44 (11) | C5—C4—H4 | 120.0 |
O3—P1—O4 | 102.21 (11) | C3—C4—H4 | 120.0 |
O6—P2—O5 | 118.69 (12) | C4—C5—C6 | 119.7 (3) |
O6—P2—O7 | 108.57 (12) | C4—C5—H5 | 120.1 |
O5—P2—O7 | 110.85 (11) | C6—C5—H5 | 120.1 |
O6—P2—O4 | 111.40 (12) | C1—C6—C5 | 119.4 (3) |
O5—P2—O4 | 106.38 (11) | C1—C6—H6 | 120.3 |
O7—P2—O4 | 99.21 (11) | C5—C6—H6 | 120.3 |
O8—P3—O9 | 121.31 (13) | C2—C7—H7A | 109.5 |
O8—P3—O3 | 111.13 (13) | C2—C7—H7B | 109.5 |
O9—P3—O3 | 107.21 (12) | H7A—C7—H7B | 109.5 |
O8—P3—O7i | 106.23 (11) | C2—C7—H7C | 109.5 |
O9—P3—O7i | 107.42 (12) | H7A—C7—H7C | 109.5 |
O3—P3—O7i | 101.72 (12) | H7B—C7—H7C | 109.5 |
P3—O3—P1 | 137.49 (13) | C9—C8—C13 | 122.6 (3) |
P2—O4—P1 | 133.83 (12) | C9—C8—N2 | 119.2 (2) |
P2—O7—P3i | 129.82 (12) | C13—C8—N2 | 118.2 (3) |
H110—O10—H210 | 112 (2) | C8—C9—C10 | 116.4 (3) |
H110—O10—H310 | 110 (2) | C8—C9—C14 | 122.2 (3) |
H210—O10—H310 | 110 (2) | C10—C9—C14 | 121.4 (3) |
C1—N1—H1A | 109.5 | C11—C10—C9 | 122.0 (3) |
C1—N1—H1B | 109.5 | C11—C10—H10 | 119.0 |
H1A—N1—H1B | 109.5 | C9—C10—H10 | 119.0 |
C1—N1—H1C | 109.5 | C10—C11—C12 | 120.2 (3) |
H1A—N1—H1C | 109.5 | C10—C11—H11 | 119.9 |
H1B—N1—H1C | 109.5 | C12—C11—H11 | 119.9 |
C8—N2—H2A | 109.5 | C11—C12—C13 | 120.1 (3) |
C8—N2—H2B | 109.5 | C11—C12—H12 | 120.0 |
H2A—N2—H2B | 109.5 | C13—C12—H12 | 120.0 |
C8—N2—H2C | 109.5 | C12—C13—C8 | 118.8 (3) |
H2A—N2—H2C | 109.5 | C12—C13—H13 | 120.6 |
H2B—N2—H2C | 109.5 | C8—C13—H13 | 120.6 |
C6—C1—C2 | 122.8 (3) | C9—C14—H14A | 109.5 |
C6—C1—N1 | 118.0 (2) | C9—C14—H14B | 109.5 |
C2—C1—N1 | 119.1 (2) | H14A—C14—H14B | 109.5 |
C1—C2—C3 | 115.7 (3) | C9—C14—H14C | 109.5 |
C1—C2—C7 | 122.8 (3) | H14A—C14—H14C | 109.5 |
C3—C2—C7 | 121.5 (3) | H14B—C14—H14C | 109.5 |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H110···O9 | 0.86 (1) | 1.62 (1) | 2.469 (3) | 170 (3) |
O10—H210···O2ii | 0.86 (1) | 1.69 (1) | 2.550 (3) | 177 (3) |
O10—H310···O6iii | 0.86 (1) | 1.67 (1) | 2.524 (3) | 171 (3) |
N1—H1A···O8iv | 0.89 | 1.86 | 2.753 (3) | 177 |
N1—H1B···O2ii | 0.89 | 1.98 | 2.853 (3) | 168 |
N1—H1C···O5iv | 0.89 | 1.92 | 2.800 (3) | 169 |
N2—H2A···O6i | 0.89 | 2.35 | 3.085 (4) | 140 |
N2—H2B···O5iii | 0.89 | 2.02 | 2.904 (3) | 176 |
N2—H2C···O1v | 0.89 | 1.83 | 2.710 (3) | 170 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | 4C7H10N+·2H3O+·P6O186− |
Mr | 944.51 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 9.344 (3), 10.360 (2), 11.537 (2) |
α, β, γ (°) | 95.35 (4), 92.23 (3), 116.00 (5) |
V (Å3) | 995.4 (4) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.36 |
Crystal size (mm) | 0.25 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6038, 5773, 3061 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.114, 1.01 |
No. of reflections | 5773 |
No. of parameters | 278 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.38 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H110···O9 | 0.862 (10) | 1.616 (12) | 2.469 (3) | 170 (3) |
O10—H210···O2i | 0.863 (10) | 1.688 (10) | 2.550 (3) | 177 (3) |
O10—H310···O6ii | 0.864 (10) | 1.668 (12) | 2.524 (3) | 171 (3) |
N1—H1A···O8iii | 0.89 | 1.86 | 2.753 (3) | 177.3 |
N1—H1B···O2i | 0.89 | 1.98 | 2.853 (3) | 168.0 |
N1—H1C···O5iii | 0.89 | 1.92 | 2.800 (3) | 168.7 |
N2—H2A···O6iv | 0.89 | 2.35 | 3.085 (4) | 139.7 |
N2—H2B···O5ii | 0.89 | 2.02 | 2.904 (3) | 176.2 |
N2—H2C···O1v | 0.89 | 1.83 | 2.710 (3) | 169.9 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) −x, −y, −z+1; (v) x, y+1, z. |
References
Akriche, S. & Rzaigui, M. (2000). Solid State Sci. 2, 397–403. CSD CrossRef CAS Google Scholar
Amri, O., Abid, S. & Rzaigui, M. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 1996–2005. Web of Science CSD CrossRef Google Scholar
Baur, W. H. (1974). Acta Cryst. B30, 1195–1215. CrossRef CAS IUCr Journals Web of Science Google Scholar
Blessing, R. H. (1986). Acta Cryst. B42, 613–621. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. (1976). Acta Cryst. A32, 24–31. CrossRef IUCr Journals Web of Science Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Google Scholar
Khemiri, H., Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, o1152. Web of Science CSD CrossRef IUCr Journals Google Scholar
Larafa, K., Mahjoub, A., Rzaigui, M. & Durif, A. (1997). Eur. J. Solid State Inorg. Chem. 34, 481–494. CAS Google Scholar
Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175. Google Scholar
Selmi, A., Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, m1487. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Many cyclohexaphosphates of organic cations and inorganic cations (mono, bi and trivalent) have been synthesized and structurally characterized. But the association of the oxonium cation to this kind of material is very rare. On the other hand, there is only one cyclohexaphosphate of mixed cation (organic-oxonium) (Amri, et al., 2008). In this work, we report the preparation and the structural investigation of a new organic oxonium cyclohexaphospohate, (o-CH3C6H4NH3)4(H3O)2P6O18, (I).
The title compound is built up from P6O186- anion, four organic o-toluidinium and two oxonium cations (Fig. 1). The half of the anion, two organic and one oxonium cations constitute the asymmetric unit of (I). The atomic arrangement of the title compound is characterized by the existence of inorganic layers, built by P6O186- ring anions and oxonium cations. Each cyclohexaphosphate group is connected to its adjacent neighbours by six oxonium ions through strong O—H···O hydrogen bonds (Table 1) (H···O = 1.66 Å) (Blessing, 1986); (Brown, 1976). The same phenomenon has been observed for (C10H13NH3)4(H3O)2P6O18.3H2O (Amri, et al., 2008).
It is worth noting that the H3O+ ions exhibit a pyramidal geometry. These layers formed by P6O18 groups and oxonium ions cross the unit cell parallel to the (a, b) plane at z = 1/2 (Fig. 2). Between these layers, separated by a distance of 11.537 (2) Å, organic cations establish hydrogen bonds to interconnect the different anions. The N(1)H3 groups produce the internal P6O18 ring cohesion through hydrogen bonds involving external oxygen atoms of each PO4 tetrahedron. The other N(2)H3 groups, link three different rings and so contribute to the interlayer cohesion of this compound. Inside such a structure, the phosphoric ring has an -1 internal symmetry. It develops around the inversion centre located at (0, 0, 1/2), so it is built up by only three independent tetrahedra. The calculated average values of the distortion indices (Baur, 1974) corresponding to the different angles and distances in the PO4 tetrahedra [DI (OPO) = 0.038; DI (PO) = 0.039; and DI (OO) = 0.012], show a pronounced distortion of the PO distances and OPO angles if compared to OO distances. So, the PO4 group can be considered as a rigid regular arrangement of oxygen atoms, with the phosphorus atom slightly displaced from the gravity centre.
In this atomic arrangement exist two independent o-toluidinium cations. Interatomic bond lengths and angles of these groups spread respectively within the ranges [1.367 (5)-1.504 (4) Å] and [115.7 (3)-122.8 (3)°]. The aromatic rings are planar with an average deviation of 0.000189 Å and form a dihedral angle of 28.53°. These values are similar to those obtained for the same organic group in other compounds (Larafa, et al. 1997); (Akriche & Rzaigui, 2000); (Selmi, et al., 2009); (Khemiri et al., 2009).