organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(oxonium) tetra­kis(o-toluidinium) cyclo­hexa­phosphate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: houda.marouani@fsb.rnu.tn

(Received 16 February 2010; accepted 19 February 2010; online 27 February 2010)

In the title compound, 4C7H10N+·2H3O+·P6O186−, the complete cyclo­hexa­phosphate anion is generated by crystallographic inversion symmetry. In the crystal, the H3O+ ions and the [P6O18]6− anions are linked by O—H⋯O hydrogen bonds, generating infinite layers lying parallel to the ab plane at z = 1/2. These layers are inter­connected by the organic cations, which establish N—H⋯O hydrogen bonds with the [P6O18]6− anions.

Related literature

For further synthetic details, see: Schülke & Kayser (1985[Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167-175.]). For related structures, see: Amri et al. (2008[Amri, O., Abid, S. & Rzaigui, M. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 1996-2005.]); Larafa et al. (1997[Larafa, K., Mahjoub, A., Rzaigui, M. & Durif, A. (1997). Eur. J. Solid State Inorg. Chem. 34, 481-494.]); Akriche & Rzaigui (2000[Akriche, S. & Rzaigui, M. (2000). Solid State Sci. 2, 397-403.]); Selmi et al. (2009[Selmi, A., Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, m1487.]); Khemiri et al. (2009[Khemiri, H., Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, o1152.]). For a discussion on hydrogen bonding, see: Brown (1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]); Blessing (1986[Blessing, R. H. (1986). Acta Cryst. B42, 613-621.]). For tetra­hedral distortions, see: Baur (1974[Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.]).

[Scheme 1]

Experimental

Crystal data
  • 4C7H10N+·2H3O+·P6O186−

  • Mr = 944.51

  • Triclinic, [P \overline 1]

  • a = 9.344 (3) Å

  • b = 10.360 (2) Å

  • c = 11.537 (2) Å

  • α = 95.35 (4)°

  • β = 92.23 (3)°

  • γ = 116.00 (5)°

  • V = 995.4 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 6038 measured reflections

  • 5773 independent reflections

  • 3061 reflections with I > 2σ(I)

  • Rint = 0.025

  • 2 standard reflections every 120 min intensity decay: 10%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.114

  • S = 1.01

  • 5773 reflections

  • 278 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H110⋯O9 0.86 (1) 1.62 (1) 2.469 (3) 170 (3)
O10—H210⋯O2i 0.86 (1) 1.69 (1) 2.550 (3) 177 (3)
O10—H310⋯O6ii 0.86 (1) 1.67 (1) 2.524 (3) 171 (3)
N1—H1A⋯O8iii 0.89 1.86 2.753 (3) 177
N1—H1B⋯O2i 0.89 1.98 2.853 (3) 168
N1—H1C⋯O5iii 0.89 1.92 2.800 (3) 169
N2—H2A⋯O6iv 0.89 2.35 3.085 (4) 140
N2—H2B⋯O5ii 0.89 2.02 2.904 (3) 176
N2—H2C⋯O1v 0.89 1.83 2.710 (3) 170
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) -x, -y, -z+1; (v) x, y+1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Many cyclohexaphosphates of organic cations and inorganic cations (mono, bi and trivalent) have been synthesized and structurally characterized. But the association of the oxonium cation to this kind of material is very rare. On the other hand, there is only one cyclohexaphosphate of mixed cation (organic-oxonium) (Amri, et al., 2008). In this work, we report the preparation and the structural investigation of a new organic oxonium cyclohexaphospohate, (o-CH3C6H4NH3)4(H3O)2P6O18, (I).

The title compound is built up from P6O186- anion, four organic o-toluidinium and two oxonium cations (Fig. 1). The half of the anion, two organic and one oxonium cations constitute the asymmetric unit of (I). The atomic arrangement of the title compound is characterized by the existence of inorganic layers, built by P6O186- ring anions and oxonium cations. Each cyclohexaphosphate group is connected to its adjacent neighbours by six oxonium ions through strong O—H···O hydrogen bonds (Table 1) (H···O = 1.66 Å) (Blessing, 1986); (Brown, 1976). The same phenomenon has been observed for (C10H13NH3)4(H3O)2P6O18.3H2O (Amri, et al., 2008).

It is worth noting that the H3O+ ions exhibit a pyramidal geometry. These layers formed by P6O18 groups and oxonium ions cross the unit cell parallel to the (a, b) plane at z = 1/2 (Fig. 2). Between these layers, separated by a distance of 11.537 (2) Å, organic cations establish hydrogen bonds to interconnect the different anions. The N(1)H3 groups produce the internal P6O18 ring cohesion through hydrogen bonds involving external oxygen atoms of each PO4 tetrahedron. The other N(2)H3 groups, link three different rings and so contribute to the interlayer cohesion of this compound. Inside such a structure, the phosphoric ring has an -1 internal symmetry. It develops around the inversion centre located at (0, 0, 1/2), so it is built up by only three independent tetrahedra. The calculated average values of the distortion indices (Baur, 1974) corresponding to the different angles and distances in the PO4 tetrahedra [DI (OPO) = 0.038; DI (PO) = 0.039; and DI (OO) = 0.012], show a pronounced distortion of the PO distances and OPO angles if compared to OO distances. So, the PO4 group can be considered as a rigid regular arrangement of oxygen atoms, with the phosphorus atom slightly displaced from the gravity centre.

In this atomic arrangement exist two independent o-toluidinium cations. Interatomic bond lengths and angles of these groups spread respectively within the ranges [1.367 (5)-1.504 (4) Å] and [115.7 (3)-122.8 (3)°]. The aromatic rings are planar with an average deviation of 0.000189 Å and form a dihedral angle of 28.53°. These values are similar to those obtained for the same organic group in other compounds (Larafa, et al. 1997); (Akriche & Rzaigui, 2000); (Selmi, et al., 2009); (Khemiri et al., 2009).

Related literature top

For further synthetic details, see: Schülke & Kayser (1985). For related structures, see: Amri et al. (2008); Larafa et al. (1997); Akriche et al. (2000); Selmi et al. (2009); Khemiri et al. (2009). For a discussion on hydrogen bonding, see: Brown (1976); Blessing (1986). For tetrahedral distortions, see: Baur (1974).

Experimental top

The title compound has been prepared in two steps. In the first one, we prepare Li6P6O18.6H2O according to the process described by Schülke and Kayser (Schülke & Kayser, 1985). From this lithium salt, we prepare an aqueous solution of cyclohexaphosphate acid H6P6O18 by passing a solution of Li6P6O18.6H2O (5 g in 100 ml) through an ion- exchange resin in its H-state (Amberlite IR 120). In the second step, at 20 ml of the aqueous solution of H6P6O18 freshly prepared, we add drop by drop a solution of o-toluidine (30 mmol in 20 ml of ethanol) under continuous stirring.

In order to avoid the hydrolysis of the ring anion the above reaction is performed at room temperature. The so-obtained solution is then slowly evaporated until1 the formation of pink prisms of (I). The title compound is stable for months under normal conditions of temperature and relative humidity.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Symmetry code: i: -x, -y, -z.
[Figure 2] Fig. 2. Projection of the structure of (I) along the a axis.
Bis(oxonium) tetrakis(o-toluidinium) cyclohexaphosphate top
Crystal data top
4C7H10N+·2H3O+·P6O186Z = 1
Mr = 944.51F(000) = 492
Triclinic, P1Dx = 1.576 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.344 (3) ÅCell parameters from 25 reflections
b = 10.360 (2) Åθ = 10–12°
c = 11.537 (2) ŵ = 0.36 mm1
α = 95.35 (4)°T = 293 K
β = 92.23 (3)°Prism, pink
γ = 116.00 (5)°0.25 × 0.20 × 0.15 mm
V = 995.4 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.025
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 3.0°
Graphite monochromatorh = 1313
non–profiled ω scansk = 1414
6038 measured reflectionsl = 016
5773 independent reflections2 standard reflections every 120 min
3061 reflections with I > 2σ(I) intensity decay: 10%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.1583P]
where P = (Fo2 + 2Fc2)/3
5773 reflections(Δ/σ)max < 0.001
278 parametersΔρmax = 0.33 e Å3
6 restraintsΔρmin = 0.38 e Å3
Crystal data top
4C7H10N+·2H3O+·P6O186γ = 116.00 (5)°
Mr = 944.51V = 995.4 (4) Å3
Triclinic, P1Z = 1
a = 9.344 (3) ÅMo Kα radiation
b = 10.360 (2) ŵ = 0.36 mm1
c = 11.537 (2) ÅT = 293 K
α = 95.35 (4)°0.25 × 0.20 × 0.15 mm
β = 92.23 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.025
6038 measured reflections2 standard reflections every 120 min
5773 independent reflections intensity decay: 10%
3061 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0526 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.33 e Å3
5773 reflectionsΔρmin = 0.38 e Å3
278 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.19977 (8)0.14917 (7)0.55334 (6)0.02334 (15)
P20.14713 (8)0.25078 (7)0.56200 (6)0.02236 (15)
P30.28988 (8)0.16136 (7)0.62215 (6)0.02600 (16)
O10.2843 (2)0.2032 (2)0.62940 (17)0.0356 (5)
O20.1635 (2)0.2086 (2)0.42722 (15)0.0313 (4)
O30.2961 (2)0.0217 (2)0.55757 (19)0.0398 (5)
O40.0375 (2)0.1674 (2)0.60834 (15)0.0285 (4)
O50.2360 (2)0.2181 (2)0.65479 (16)0.0306 (4)
O60.1935 (2)0.40394 (19)0.51838 (17)0.0372 (5)
O70.1447 (2)0.1662 (2)0.45304 (16)0.0293 (4)
O80.2395 (2)0.1384 (2)0.74021 (16)0.0401 (5)
O90.4383 (2)0.2884 (2)0.6012 (2)0.0453 (6)
O100.7313 (2)0.3898 (2)0.64060 (18)0.0321 (4)
N10.9215 (3)0.0733 (2)0.74960 (18)0.0291 (5)
H1A1.02420.09290.74860.044*
H1B0.89920.12650.70230.044*
H1C0.86090.02010.72550.044*
N20.4244 (3)0.6264 (2)0.6809 (2)0.0320 (5)
H2A0.38110.53810.64130.048*
H2B0.52790.67110.67010.048*
H2C0.37550.67660.65550.048*
C10.8890 (3)0.1076 (3)0.8692 (2)0.0269 (5)
C20.7377 (3)0.0942 (3)0.8895 (2)0.0303 (6)
C30.7148 (4)0.1246 (3)1.0057 (3)0.0382 (7)
H30.61550.11741.02360.046*
C40.8337 (4)0.1648 (3)1.0948 (3)0.0428 (8)
H40.81360.18241.17150.051*
C50.9816 (4)0.1791 (4)1.0705 (3)0.0453 (8)
H51.06290.20841.13040.054*
C61.0098 (4)0.1498 (3)0.9566 (3)0.0392 (7)
H61.10980.15850.93940.047*
C70.6060 (4)0.0507 (4)0.7933 (3)0.0455 (8)
H7A0.64450.11150.73250.068*
H7B0.51720.06130.82400.068*
H7C0.57240.04840.76200.068*
C80.4056 (3)0.6151 (3)0.8077 (2)0.0311 (6)
C90.2550 (4)0.5396 (3)0.8433 (3)0.0357 (7)
C100.2453 (4)0.5348 (3)0.9631 (3)0.0445 (8)
H100.14610.48320.99060.053*
C110.3771 (5)0.6038 (4)1.0416 (3)0.0489 (8)
H110.36670.59871.12110.059*
C120.5246 (4)0.6802 (4)1.0034 (3)0.0536 (9)
H120.61390.72821.05710.064*
C130.5409 (4)0.6862 (3)0.8859 (3)0.0414 (7)
H130.64080.73700.85920.050*
C140.1088 (4)0.4694 (4)0.7588 (3)0.0517 (9)
H14A0.09230.54250.72320.078*
H14B0.01770.41540.79960.078*
H14C0.12260.40540.69950.078*
H1100.6282 (11)0.348 (3)0.633 (3)0.057 (11)*
H2100.770 (4)0.331 (3)0.617 (3)0.088 (15)*
H3100.767 (4)0.464 (2)0.603 (3)0.079 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0218 (3)0.0296 (4)0.0229 (3)0.0147 (3)0.0036 (3)0.0058 (3)
P20.0215 (3)0.0218 (3)0.0225 (3)0.0082 (3)0.0057 (3)0.0030 (3)
P30.0185 (3)0.0275 (4)0.0299 (4)0.0086 (3)0.0005 (3)0.0025 (3)
O10.0377 (11)0.0476 (12)0.0310 (11)0.0275 (10)0.0009 (9)0.0066 (9)
O20.0350 (10)0.0473 (12)0.0210 (9)0.0265 (9)0.0047 (8)0.0049 (8)
O30.0369 (11)0.0293 (10)0.0565 (14)0.0154 (9)0.0238 (10)0.0090 (9)
O40.0213 (9)0.0425 (11)0.0216 (9)0.0142 (8)0.0045 (7)0.0026 (8)
O50.0236 (9)0.0344 (10)0.0308 (10)0.0099 (8)0.0107 (8)0.0020 (8)
O60.0477 (13)0.0247 (10)0.0369 (12)0.0136 (9)0.0109 (10)0.0026 (9)
O70.0198 (9)0.0364 (10)0.0312 (10)0.0102 (8)0.0027 (7)0.0139 (8)
O80.0379 (11)0.0550 (14)0.0246 (10)0.0191 (10)0.0039 (9)0.0024 (9)
O90.0206 (10)0.0385 (12)0.0654 (16)0.0028 (9)0.0009 (10)0.0085 (11)
O100.0235 (10)0.0306 (11)0.0408 (12)0.0106 (9)0.0030 (9)0.0052 (9)
N10.0302 (12)0.0319 (12)0.0253 (12)0.0140 (10)0.0049 (9)0.0024 (9)
N20.0292 (12)0.0334 (13)0.0324 (13)0.0128 (10)0.0054 (10)0.0041 (10)
C10.0327 (14)0.0254 (13)0.0225 (13)0.0129 (11)0.0047 (11)0.0026 (10)
C20.0348 (15)0.0285 (14)0.0277 (14)0.0133 (12)0.0053 (12)0.0063 (11)
C30.0427 (17)0.0471 (18)0.0327 (16)0.0249 (15)0.0159 (13)0.0113 (13)
C40.066 (2)0.0483 (19)0.0228 (15)0.0332 (17)0.0109 (14)0.0035 (13)
C50.052 (2)0.057 (2)0.0261 (16)0.0254 (17)0.0059 (14)0.0004 (14)
C60.0339 (15)0.0509 (19)0.0329 (16)0.0194 (14)0.0021 (13)0.0026 (14)
C70.0324 (16)0.063 (2)0.0357 (17)0.0160 (16)0.0044 (13)0.0086 (15)
C80.0341 (15)0.0313 (14)0.0317 (15)0.0176 (12)0.0047 (12)0.0057 (12)
C90.0398 (16)0.0298 (15)0.0350 (16)0.0135 (13)0.0053 (13)0.0025 (12)
C100.057 (2)0.0418 (18)0.0396 (18)0.0242 (16)0.0180 (16)0.0109 (14)
C110.069 (2)0.052 (2)0.0338 (18)0.0326 (19)0.0072 (17)0.0085 (15)
C120.048 (2)0.071 (2)0.0391 (19)0.0263 (19)0.0116 (16)0.0009 (17)
C130.0350 (16)0.0500 (19)0.0409 (18)0.0202 (15)0.0024 (13)0.0073 (15)
C140.0348 (17)0.049 (2)0.052 (2)0.0033 (15)0.0034 (15)0.0024 (16)
Geometric parameters (Å, º) top
P1—O11.461 (2)C2—C31.395 (4)
P1—O21.491 (2)C2—C71.504 (4)
P1—O31.591 (2)C3—C41.374 (4)
P1—O41.6075 (19)C3—H30.9300
P2—O61.480 (2)C4—C51.367 (5)
P2—O51.4830 (19)C4—H40.9300
P2—O71.5931 (19)C5—C61.383 (4)
P2—O41.594 (2)C5—H50.9300
P3—O81.465 (2)C6—H60.9300
P3—O91.483 (2)C7—H7A0.9600
P3—O31.590 (2)C7—H7B0.9600
P3—O7i1.6035 (19)C7—H7C0.9600
O7—P3i1.6035 (19)C8—C91.378 (4)
O10—H1100.862 (10)C8—C131.388 (4)
O10—H2100.863 (10)C9—C101.393 (4)
O10—H3100.864 (10)C9—C141.496 (4)
N1—C11.470 (3)C10—C111.367 (5)
N1—H1A0.8900C10—H100.9300
N1—H1B0.8900C11—C121.369 (5)
N1—H1C0.8900C11—H110.9300
N2—C81.489 (3)C12—C131.375 (5)
N2—H2A0.8900C12—H120.9300
N2—H2B0.8900C13—H130.9300
N2—H2C0.8900C14—H14A0.9600
C1—C61.370 (4)C14—H14B0.9600
C1—C21.390 (4)C14—H14C0.9600
O1—P1—O2118.49 (11)C4—C3—C2122.3 (3)
O1—P1—O3110.27 (13)C4—C3—H3118.8
O2—P1—O3106.30 (12)C2—C3—H3118.8
O1—P1—O4108.90 (11)C5—C4—C3120.0 (3)
O2—P1—O4109.44 (11)C5—C4—H4120.0
O3—P1—O4102.21 (11)C3—C4—H4120.0
O6—P2—O5118.69 (12)C4—C5—C6119.7 (3)
O6—P2—O7108.57 (12)C4—C5—H5120.1
O5—P2—O7110.85 (11)C6—C5—H5120.1
O6—P2—O4111.40 (12)C1—C6—C5119.4 (3)
O5—P2—O4106.38 (11)C1—C6—H6120.3
O7—P2—O499.21 (11)C5—C6—H6120.3
O8—P3—O9121.31 (13)C2—C7—H7A109.5
O8—P3—O3111.13 (13)C2—C7—H7B109.5
O9—P3—O3107.21 (12)H7A—C7—H7B109.5
O8—P3—O7i106.23 (11)C2—C7—H7C109.5
O9—P3—O7i107.42 (12)H7A—C7—H7C109.5
O3—P3—O7i101.72 (12)H7B—C7—H7C109.5
P3—O3—P1137.49 (13)C9—C8—C13122.6 (3)
P2—O4—P1133.83 (12)C9—C8—N2119.2 (2)
P2—O7—P3i129.82 (12)C13—C8—N2118.2 (3)
H110—O10—H210112 (2)C8—C9—C10116.4 (3)
H110—O10—H310110 (2)C8—C9—C14122.2 (3)
H210—O10—H310110 (2)C10—C9—C14121.4 (3)
C1—N1—H1A109.5C11—C10—C9122.0 (3)
C1—N1—H1B109.5C11—C10—H10119.0
H1A—N1—H1B109.5C9—C10—H10119.0
C1—N1—H1C109.5C10—C11—C12120.2 (3)
H1A—N1—H1C109.5C10—C11—H11119.9
H1B—N1—H1C109.5C12—C11—H11119.9
C8—N2—H2A109.5C11—C12—C13120.1 (3)
C8—N2—H2B109.5C11—C12—H12120.0
H2A—N2—H2B109.5C13—C12—H12120.0
C8—N2—H2C109.5C12—C13—C8118.8 (3)
H2A—N2—H2C109.5C12—C13—H13120.6
H2B—N2—H2C109.5C8—C13—H13120.6
C6—C1—C2122.8 (3)C9—C14—H14A109.5
C6—C1—N1118.0 (2)C9—C14—H14B109.5
C2—C1—N1119.1 (2)H14A—C14—H14B109.5
C1—C2—C3115.7 (3)C9—C14—H14C109.5
C1—C2—C7122.8 (3)H14A—C14—H14C109.5
C3—C2—C7121.5 (3)H14B—C14—H14C109.5
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H110···O90.86 (1)1.62 (1)2.469 (3)170 (3)
O10—H210···O2ii0.86 (1)1.69 (1)2.550 (3)177 (3)
O10—H310···O6iii0.86 (1)1.67 (1)2.524 (3)171 (3)
N1—H1A···O8iv0.891.862.753 (3)177
N1—H1B···O2ii0.891.982.853 (3)168
N1—H1C···O5iv0.891.922.800 (3)169
N2—H2A···O6i0.892.353.085 (4)140
N2—H2B···O5iii0.892.022.904 (3)176
N2—H2C···O1v0.891.832.710 (3)170
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula4C7H10N+·2H3O+·P6O186
Mr944.51
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.344 (3), 10.360 (2), 11.537 (2)
α, β, γ (°)95.35 (4), 92.23 (3), 116.00 (5)
V3)995.4 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6038, 5773, 3061
Rint0.025
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.114, 1.01
No. of reflections5773
No. of parameters278
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.38

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H110···O90.862 (10)1.616 (12)2.469 (3)170 (3)
O10—H210···O2i0.863 (10)1.688 (10)2.550 (3)177 (3)
O10—H310···O6ii0.864 (10)1.668 (12)2.524 (3)171 (3)
N1—H1A···O8iii0.891.862.753 (3)177.3
N1—H1B···O2i0.891.982.853 (3)168.0
N1—H1C···O5iii0.891.922.800 (3)168.7
N2—H2A···O6iv0.892.353.085 (4)139.7
N2—H2B···O5ii0.892.022.904 (3)176.2
N2—H2C···O1v0.891.832.710 (3)169.9
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x, y, z+1; (v) x, y+1, z.
 

References

First citationAkriche, S. & Rzaigui, M. (2000). Solid State Sci. 2, 397–403.  CSD CrossRef CAS Google Scholar
First citationAmri, O., Abid, S. & Rzaigui, M. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 1996–2005.  Web of Science CSD CrossRef Google Scholar
First citationBaur, W. H. (1974). Acta Cryst. B30, 1195–1215.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBlessing, R. H. (1986). Acta Cryst. B42, 613–621.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKhemiri, H., Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, o1152.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLarafa, K., Mahjoub, A., Rzaigui, M. & Durif, A. (1997). Eur. J. Solid State Inorg. Chem. 34, 481–494.  CAS Google Scholar
First citationSchülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175.  Google Scholar
First citationSelmi, A., Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, m1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds