organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o698-o699

7-Chloro-4-[(E)-2-(2-meth­oxy­benzyl­­idene)hydrazin-1-yl]quinoline monohydrate

aInstituto de Tecnologia em Farmacos, Fundação Oswaldo Cruz (FIOCRUZ), FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Old Aberdeen AB15 5NY, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and fDepartamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 February 2010; accepted 19 February 2010; online 27 February 2010)

In the title hydrate, C17H14ClN3O·H2O, the dihedral angle between the quinoline fused-ring system and the benzene ring is 13.4 (2)° and the conformation about the C=N bond is E. In the crystal, Nh—H⋯Ow and Ow—H⋯Nq (h = hydro­zone, w = water and q = quinoline) hydrogen bonds generate a two-dimenstional network in the ac plane. A weak C—H⋯O inter­action helps to consolidate the packing.

Related literature

For background to the pharmacological activity of quinoline derivatives, see: Warshakoon et al. (2006[Warshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207-5211.]). For recent studies into quinoline-based anti-malarials, see: Andrade et al. (2007[Andrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194-198.]); de Souza et al. (2005[Souza, M. V. N. de (2005). Mini-Rev. Med. Chem. 5, 1009-1017.]). For related structures, see: Kaiser et al. (2009[Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133-1140.]); de Souza et al. (2009[Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3120-o3121.], 2010[Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o152-o153.]). For the structure of the isomeric 2-meth­oxy structure, see: de Lima Ferreira et al. (2010[Lima Ferreira, M. de, de Souza, M. V. N., Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o696-o697.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14ClN3O·H2O

  • Mr = 329.78

  • Monoclinic, P 21 /c

  • a = 3.9202 (2) Å

  • b = 24.5084 (17) Å

  • c = 16.1212 (11) Å

  • β = 91.639 (4)°

  • V = 1548.26 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 120 K

  • 0.62 × 0.03 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.735, Tmax = 0.995

  • 11507 measured reflections

  • 2716 independent reflections

  • 1769 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.093

  • wR(F2) = 0.260

  • S = 1.04

  • 2716 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1W 0.88 2.08 2.928 (7) 161
O1W—H1W⋯N1i 0.81 (9) 2.30 (9) 3.030 (8) 150 (8)
O1W—H2W⋯N1ii 0.82 (9) 2.03 (9) 2.820 (7) 163 (8)
C5—H5⋯O1W 0.95 2.43 3.358 (8) 166
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Quinoline derivatives are known to display pharmacological potential (Warshakoon et al., 2006) and are being investigated for their anti-malarial activity (Andrade et al. 2007; de Souza et al., 2005). Structural studies on quinoline derivatives augment the biological investigations (Kaiser et al., 2009; de Souza et al., 2009; de Souza et al., 2010; de Lima Ferreira et al., 2010) and as a part of these studies, the crystal structure of the title hydrate, (I), was investigated.

The most significant twist in the quinoline molecule of (I), Fig. 1, occurs around the C10–C11 bond as seen in the N3–C10–C11–C16 torsion angle of 6.9 (9) °. This accounts for the dihedral angle of 13.4 (2) ° formed between the quinoline fused-ring system and the benzene ring. The conformation about the C10N3 bond [1.282 (8) Å] is E. The crystal packing is stabilised by a variety of hydrogen bonding interactions, Table 1. The water molecule accepts a hydrogen bond from the hydrazone-N2 atom and bridges two symmetry related molecules by forming donor interactions with quinoline-N1 atoms; the water-O atom also participates in a C–H···O contact, Table 1. The result of the hydrogen bonding is the formation of a 2-D supramolecular array in the ac plane, Fig. 2, and these stack along the b axis, Fig. 3.

Related literature top

For background to the pharmacological activity of quinoline derivatives, see: Warshakoon et al. (2006). For recent studies into quinoline-based anti-malarials, see: Andrade et al. (2007); de Souza et al. (2005). For related structures, see: Kaiser et al. (2009); de Souza et al. (2009, 2010). For the structure of the isomeric 2-methoxy structure, see: de Lima Ferreira et al. (2010).

Experimental top

A solution of 7-chloro-4-quinolinylhydrazine(0.2 g, 1.03 mmol) and 2-methoxybenzaldehyde (1.2 mmol) in EtOH (5 ml) was maintained at room temperature overnight and rotary evaporated. The solid residue, was washed with cold Et2O (3 x 10 ml) and recrystallised from EtOH; m.pt. 459-461 K, yield 82%. The sample for the X-ray study was slowly grown from moist EtOH and was found to be the monohydrate. MS/ESI: [M—H]: 310.8. IR νmax (cm-1; KBr disc): 3190 (N—H), 1578 (C=N).

Refinement top

The N- and C-bound H atoms were geometrically placed (N–H = 0.88 Å and C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C,N). The water-bound H atoms were located from a difference map and refined with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structures of the asymmetric unit in (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. View of the 2-D supramolecular array in the ac plane of (I) showing the O–H···N and N–H···O hydrogen bonding as orange and blue dashed lines, respectively. Colour code: Cl, cyan; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. A view of the stacking of layers in (I). The O–H···N and N–H···O hydrogen bonding as orange and blue dashed lines, respectively. Colour code: Cl, cyan; O, red; N, blue; C, grey; and H, green.
7-Chloro-4-[(E)-2-(2-methoxybenzylidene)hydrazin-1-yl]quinoline monohydrate top
Crystal data top
C17H14ClN3O·H2OF(000) = 688
Mr = 329.78Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9260 reflections
a = 3.9202 (2) Åθ = 2.9–27.5°
b = 24.5084 (17) ŵ = 0.26 mm1
c = 16.1212 (11) ÅT = 120 K
β = 91.639 (4)°Needle, colourless
V = 1548.26 (17) Å30.62 × 0.03 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2716 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode1769 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.096
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.0°
ϕ and ω scansh = 44
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 2929
Tmin = 0.735, Tmax = 0.995l = 1919
11507 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.093Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.260H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.1P)2 + 10.4045P]
where P = (Fo2 + 2Fc2)/3
2716 reflections(Δ/σ)max = 0.001
215 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C17H14ClN3O·H2OV = 1548.26 (17) Å3
Mr = 329.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.9202 (2) ŵ = 0.26 mm1
b = 24.5084 (17) ÅT = 120 K
c = 16.1212 (11) Å0.62 × 0.03 × 0.02 mm
β = 91.639 (4)°
Data collection top
Nonius KappaCCD
diffractometer
2716 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1769 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 0.995Rint = 0.096
11507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0930 restraints
wR(F2) = 0.260H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.1P)2 + 10.4045P]
where P = (Fo2 + 2Fc2)/3
2716 reflectionsΔρmax = 0.40 e Å3
215 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.0208 (4)0.57108 (6)0.05313 (10)0.0256 (5)
O11.3298 (11)0.93299 (18)0.2940 (3)0.0232 (10)
N10.1966 (13)0.7497 (2)0.0985 (3)0.0201 (12)
N20.6619 (13)0.8261 (2)0.1080 (3)0.0214 (12)
H2N0.69680.80800.15470.026*
N30.7680 (12)0.8795 (2)0.1015 (3)0.0195 (12)
C10.2920 (16)0.8018 (3)0.0989 (4)0.0232 (15)
H10.25040.82200.14840.028*
C20.4479 (15)0.8288 (2)0.0322 (4)0.0183 (13)
H20.51570.86580.03770.022*
C30.5046 (15)0.8016 (2)0.0426 (4)0.0203 (14)
C40.3926 (15)0.7459 (2)0.0470 (4)0.0176 (13)
C50.4234 (15)0.7141 (3)0.1204 (4)0.0223 (14)
H50.52400.72960.16920.027*
C60.3094 (16)0.6611 (2)0.1217 (4)0.0206 (14)
H60.32930.64020.17120.025*
C70.1640 (15)0.6384 (2)0.0496 (4)0.0176 (13)
C80.1307 (16)0.6672 (3)0.0225 (4)0.0213 (14)
H80.03290.65040.07070.026*
C90.2419 (15)0.7222 (2)0.0257 (4)0.0180 (13)
C100.9303 (15)0.8980 (3)0.1657 (4)0.0211 (14)
H100.97740.87450.21150.025*
C111.0442 (14)0.9551 (2)0.1693 (4)0.0164 (13)
C121.2380 (14)0.9726 (2)0.2387 (4)0.0181 (14)
C131.3295 (16)1.0271 (3)0.2466 (4)0.0237 (15)
H131.45961.03910.29380.028*
C141.2299 (16)1.0641 (3)0.1851 (4)0.0222 (14)
H141.29081.10140.19090.027*
C151.0422 (16)1.0471 (3)0.1152 (4)0.0249 (15)
H150.97781.07250.07310.030*
C160.9495 (15)0.9922 (2)0.1078 (4)0.0212 (14)
H160.82110.98020.06040.025*
C171.5235 (16)0.9495 (3)0.3666 (4)0.0242 (15)
H17A1.74390.96420.35010.036*
H17B1.56130.91790.40300.036*
H17C1.39760.97770.39620.036*
O1W0.7223 (14)0.7893 (2)0.2807 (3)0.0304 (12)
H1W0.53 (2)0.785 (3)0.300 (5)0.046*
H2W0.89 (2)0.780 (3)0.309 (5)0.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0319 (9)0.0186 (8)0.0263 (9)0.0044 (7)0.0002 (7)0.0044 (7)
O10.028 (2)0.023 (2)0.018 (2)0.0005 (19)0.0047 (18)0.001 (2)
N10.027 (3)0.019 (3)0.015 (3)0.002 (2)0.003 (2)0.002 (2)
N20.027 (3)0.020 (3)0.017 (3)0.002 (2)0.003 (2)0.002 (2)
N30.022 (3)0.015 (3)0.022 (3)0.002 (2)0.004 (2)0.002 (2)
C10.026 (3)0.026 (4)0.017 (4)0.000 (3)0.005 (3)0.008 (3)
C20.023 (3)0.015 (3)0.017 (3)0.001 (2)0.004 (3)0.004 (3)
C30.018 (3)0.020 (3)0.022 (4)0.002 (3)0.003 (3)0.004 (3)
C40.016 (3)0.020 (3)0.017 (3)0.001 (2)0.005 (2)0.001 (3)
C50.023 (3)0.025 (3)0.019 (4)0.002 (3)0.002 (3)0.000 (3)
C60.029 (3)0.015 (3)0.018 (4)0.002 (3)0.001 (3)0.001 (3)
C70.019 (3)0.017 (3)0.018 (3)0.002 (2)0.008 (2)0.002 (3)
C80.023 (3)0.024 (3)0.017 (4)0.004 (3)0.004 (3)0.001 (3)
C90.023 (3)0.016 (3)0.015 (3)0.000 (2)0.002 (3)0.002 (3)
C100.019 (3)0.021 (3)0.023 (4)0.001 (3)0.002 (3)0.005 (3)
C110.014 (3)0.016 (3)0.018 (3)0.004 (2)0.001 (2)0.003 (3)
C120.014 (3)0.019 (3)0.022 (4)0.001 (2)0.006 (2)0.004 (3)
C130.027 (3)0.026 (3)0.018 (4)0.001 (3)0.000 (3)0.001 (3)
C140.026 (3)0.015 (3)0.026 (4)0.007 (3)0.011 (3)0.003 (3)
C150.027 (3)0.019 (3)0.029 (4)0.006 (3)0.003 (3)0.003 (3)
C160.024 (3)0.018 (3)0.021 (4)0.001 (3)0.004 (3)0.004 (3)
C170.022 (3)0.030 (4)0.021 (4)0.002 (3)0.002 (3)0.005 (3)
O1W0.028 (3)0.039 (3)0.024 (3)0.000 (2)0.005 (2)0.004 (2)
Geometric parameters (Å, º) top
Cl1—C71.744 (6)C7—C81.362 (9)
O1—C121.360 (7)C8—C91.419 (9)
O1—C171.434 (7)C8—H80.9500
N1—C11.330 (8)C10—C111.471 (8)
N1—C91.361 (8)C10—H100.9500
N2—C31.348 (8)C11—C161.388 (9)
N2—N31.379 (7)C11—C121.401 (8)
N2—H2N0.8800C12—C131.388 (9)
N3—C101.282 (8)C13—C141.391 (9)
C1—C21.389 (9)C13—H130.9500
C1—H10.9500C14—C151.391 (9)
C2—C31.391 (9)C14—H140.9500
C2—H20.9500C15—C161.399 (9)
C3—C41.436 (8)C15—H150.9500
C4—C91.420 (8)C16—H160.9500
C4—C51.420 (9)C17—H17A0.9800
C5—C61.372 (9)C17—H17B0.9800
C5—H50.9500C17—H17C0.9800
C6—C71.396 (9)O1W—H1W0.81 (9)
C6—H60.9500O1W—H2W0.82 (9)
C12—O1—C17117.2 (5)N1—C9—C4123.4 (5)
C1—N1—C9116.6 (5)C8—C9—C4118.6 (6)
C3—N2—N3119.7 (5)N3—C10—C11120.7 (6)
C3—N2—H2N120.2N3—C10—H10119.6
N3—N2—H2N120.2C11—C10—H10119.6
C10—N3—N2114.6 (5)C16—C11—C12119.9 (6)
N1—C1—C2124.9 (6)C16—C11—C10121.4 (5)
N1—C1—H1117.6C12—C11—C10118.7 (5)
C2—C1—H1117.6O1—C12—C13124.3 (6)
C1—C2—C3119.9 (6)O1—C12—C11115.7 (5)
C1—C2—H2120.1C13—C12—C11120.0 (6)
C3—C2—H2120.1C12—C13—C14119.6 (6)
N2—C3—C2121.6 (6)C12—C13—H13120.2
N2—C3—C4121.2 (6)C14—C13—H13120.2
C2—C3—C4117.2 (5)C15—C14—C13120.9 (6)
C9—C4—C5119.1 (5)C15—C14—H14119.5
C9—C4—C3117.9 (5)C13—C14—H14119.5
C5—C4—C3122.9 (6)C14—C15—C16119.1 (6)
C6—C5—C4120.8 (6)C14—C15—H15120.4
C6—C5—H5119.6C16—C15—H15120.4
C4—C5—H5119.6C11—C16—C15120.3 (6)
C5—C6—C7119.3 (6)C11—C16—H16119.8
C5—C6—H6120.3C15—C16—H16119.8
C7—C6—H6120.3O1—C17—H17A109.5
C8—C7—C6122.0 (6)O1—C17—H17B109.5
C8—C7—Cl1119.7 (5)H17A—C17—H17B109.5
C6—C7—Cl1118.3 (5)O1—C17—H17C109.5
C7—C8—C9120.1 (6)H17A—C17—H17C109.5
C7—C8—H8119.9H17B—C17—H17C109.5
C9—C8—H8119.9H1W—O1W—H2W118 (9)
N1—C9—C8118.0 (5)
C3—N2—N3—C10176.6 (6)C7—C8—C9—C41.1 (9)
C9—N1—C1—C23.4 (9)C5—C4—C9—N1178.9 (6)
N1—C1—C2—C32.1 (10)C3—C4—C9—N10.4 (9)
N3—N2—C3—C20.5 (9)C5—C4—C9—C80.8 (9)
N3—N2—C3—C4179.6 (5)C3—C4—C9—C8179.9 (6)
C1—C2—C3—N2178.5 (6)N2—N3—C10—C11177.0 (5)
C1—C2—C3—C40.6 (9)N3—C10—C11—C166.9 (9)
N2—C3—C4—C9177.4 (6)N3—C10—C11—C12176.3 (6)
C2—C3—C4—C91.7 (8)C17—O1—C12—C132.3 (9)
N2—C3—C4—C53.3 (9)C17—O1—C12—C11178.9 (5)
C2—C3—C4—C5177.6 (6)C16—C11—C12—O1177.5 (5)
C9—C4—C5—C60.0 (9)C10—C11—C12—O15.6 (8)
C3—C4—C5—C6179.3 (6)C16—C11—C12—C131.3 (9)
C4—C5—C6—C70.5 (9)C10—C11—C12—C13175.6 (6)
C5—C6—C7—C80.1 (9)O1—C12—C13—C14178.2 (6)
C5—C6—C7—Cl1179.9 (5)C11—C12—C13—C140.5 (9)
C6—C7—C8—C90.7 (10)C12—C13—C14—C150.6 (10)
Cl1—C7—C8—C9179.1 (5)C13—C14—C15—C160.9 (10)
C1—N1—C9—C8177.7 (6)C12—C11—C16—C151.0 (9)
C1—N1—C9—C42.0 (9)C10—C11—C16—C15175.8 (6)
C7—C8—C9—N1178.6 (6)C14—C15—C16—C110.1 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1W0.882.082.928 (7)161
O1W—H1W···N1i0.81 (9)2.30 (9)3.030 (8)150 (8)
O1W—H2W···N1ii0.82 (9)2.03 (9)2.820 (7)163 (8)
C5—H5···O1W0.952.433.358 (8)166
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H14ClN3O·H2O
Mr329.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)3.9202 (2), 24.5084 (17), 16.1212 (11)
β (°) 91.639 (4)
V3)1548.26 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.62 × 0.03 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.735, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
11507, 2716, 1769
Rint0.096
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.093, 0.260, 1.04
No. of reflections2716
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.1P)2 + 10.4045P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.40, 0.45

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1W0.882.082.928 (7)161
O1W—H1W···N1i0.81 (9)2.30 (9)3.030 (8)150 (8)
O1W—H2W···N1ii0.82 (9)2.03 (9)2.820 (7)163 (8)
C5—H5···O1W0.952.433.358 (8)166
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+3/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationAndrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194–198.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.  Web of Science CSD CrossRef CAS Google Scholar
First citationLima Ferreira, M. de, de Souza, M. V. N., Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o696–o697.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de (2005). Mini-Rev. Med. Chem. 5, 1009–1017.  Google Scholar
First citationSouza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o152–o153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3120–o3121.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWarshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207–5211.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o698-o699
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds