metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Phenyl­pyridinium tetra­chlorido­aurate(III)

aDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: n-safari@cc.sbu.ac.ir

(Received 21 February 2010; accepted 23 February 2010; online 27 February 2010)

In the title mol­ecular salt, (C11H10N)[AuCl4], the AuIII atom adopts an almost regular square-planar coordination geometry and the dihedral angle between the aromatic rings of the 3-phenyl­pyridinium cation is 23.1 (3)°. In the crystal, the ions inter­act by way of N—H⋯Cl and C—H⋯Cl hydrogen bonds.

Related literature

For related structures, see: Calleja et al. (2001[Calleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). Inorg. Chem. 40, 4978-4985.]); Faza­eli et al. (2010[Fazaeli, Y., Amani, V., Amini, M. M. & Khavasi, H. R. (2010). Acta Cryst. E66, m212.]); Hasan et al. (1999[Hasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). Inorg. Chem. 38, 5637-5641.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840-m841.]); Johnson & Steed (1998[Johnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479-1480.]); Safari et al. (2009[Safari, N., Amani, V., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m344.]); Yap et al. (1995[Yap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). Inorg. Chem. 34, 3474-3476.]); Yıldırım, Akkurt, Safari, Abedi et al. (2009[Yıldırım, S. Ö., Akkurt, M., Safari, N., Abedi, A., Amani, V. & McKee, V. (2009). Acta Cryst. E65, m479-m480.]); Yıldırım, Akkurt, Safari, Amani & McKee (2009[Yıldırım, S. Ö., Akkurt, M., Safari, N., Amani, V. & McKee, V. (2009). Acta Cryst. E65, m491-m492.]); Zhang et al. (2006[Zhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018-m2020.]).

[Scheme 1]

Experimental

Crystal data
  • (C11H10N)[AuCl4]

  • Mr = 494.97

  • Triclinic, [P \overline 1]

  • a = 7.7629 (9) Å

  • b = 8.5901 (11) Å

  • c = 11.0530 (15) Å

  • α = 94.106 (11)°

  • β = 107.125 (10)°

  • γ = 97.216 (10)°

  • V = 694.20 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.34 mm−1

  • T = 298 K

  • 0.40 × 0.35 × 0.28 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: numerical (X-RED; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.067, Tmax = 0.180

  • 7980 measured reflections

  • 3688 independent reflections

  • 3513 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.15

  • 3688 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −1.85 e Å−3

Table 1
Selected bond lengths (Å)

Au1—Cl2 2.2740 (13)
Au1—Cl3 2.2754 (12)
Au1—Cl1 2.2762 (12)
Au1—Cl4 2.2766 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl3i 0.86 2.63 3.359 (7) 143
C1—H1⋯Cl4i 0.93 2.83 3.755 (7) 175
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

There are several proton transfer systems using HAuCl4 with proton acceptor molecules, such as [EMI][AuCl4], (II) and [BMI]2[AuCl4].2H2O, (III), (Hasan et al., 1999), [H2bipy][AuCl4][Cl], (IV), (Zhang et al., 2006), [H7O3][15-crown-5][AuCl4], (V) and [H5O2][benzo-15-crown-5]2[AuCl4], (VI), (Johnson & Steed, 1998), [H5O2]2[12-crown-4]2[AuCl4]2, (VII), [H3O][18-crown-6][AuCl4], (VIII) and [H3O][4-nitrobenzo-18-crown-6][AuCl4], (IX), (Calleja et al., 2001), [DPpy.H][AuCl4], (X), (Yap et al., 1995),[H2DA18C6][AuCl4].2H2O, (XI), (Hojjat Kashani et al., 2008), [dafonium][dafone][AuCl4], (XII), (Safari et al., 2009), [pz(py)2.H][AuCl4], (XIII), (Yıldırım, Akkurt, Safari, Amani & McKee 2009), [Ph2Phen.H][AuCl4], (XIV), (Yıldırım, Akkurt, Safari, Abedi et al., 2009) and [TBA]2[AuCl4][Cl], (XV), (Fazaeli et al., 2010) [Where EMI is 1-ethyl-3-methylimidazolium, BMI is 1-butyl-3-methylimidazolium, H2bipy is 2,2'-bipyridinium, DPpy.H is 2,6-diphenylpyridinium, H2DA18C6 is 1,10-diazonia-18-crown-6, dafonium is 9-oxo-4,5-diazafluoren-4-ium, dafone is 4,5-diazafluoren-9-one, pz(py)2.H is 2-(3-pyridin-2-ylpyrazin-2-yl)pyridinium, Ph2Phen.H is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolin-1-ium and TBA is tribenzylammonium] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The molecule of the title compound, (I), (Fig. 1), contains one independent protonated 3-phenylpyridinium cation and one [AuCl4]- anion. The AuIII atom has a squareplanar environment defined by four Cl atoms. In [AuCl4]- anion, the Au—Cl bond lengths and angles (Table 1) are within normal range (II, III, VII, VIII and IX).

In the crystal structure, intermolecular N—H···Cl and C—H···Cl hydrogen bonds (Table 2) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related structures, see: Calleja et al. (2001); Fazaeli et al. (2010); Hasan et al. (1999); Hojjat Kashani et al. (2008); Johnson & Steed (1998); Safari et al. (2009); Yap et al. (1995); Yıldırım, Akkurt, Safari, Abedi et al. (2009); Yıldırım, Akkurt, Safari, Amani & McKee (2009); Zhang et al. (2006).

Experimental top

A solution of 3-phenylpyridine (0.11 g, 0.09 ml, 0.74 mmol) in methanol (5 ml) was added to a solution of HAuCl4.3H2O, (0.29 g, 0.74 mmol) in acetonitrile (15 ml) and the resulting yellow solution was stirred for 30 min at 313 K. Then, it was left to evaporate slowly at room temperature. After five days, yellow blocks of (I) were isolated (yield 0.26 g; 71.0%).

Refinement top

All H atoms were positioned geometrically, with C—H=0.93Å for aromatics H and constrained to ride on their parent atoms, with Uiso(H)=1.2Ueq.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for (I). Hydrogen bonds are shown as dashed lines.
3-Phenylpyridinium tetrachloridoaurate(III) top
Crystal data top
(C11H10N)[AuCl4]Z = 2
Mr = 494.97F(000) = 460
Triclinic, P1Dx = 2.368 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7629 (9) ÅCell parameters from 984 reflections
b = 8.5901 (11) Åθ = 1.9–29.2°
c = 11.0530 (15) ŵ = 11.34 mm1
α = 94.106 (11)°T = 298 K
β = 107.125 (10)°Block, yellow
γ = 97.216 (10)°0.40 × 0.35 × 0.28 mm
V = 694.20 (15) Å3
Data collection top
Stoe IPDS II
diffractometer
3688 independent reflections
Radiation source: fine-focus sealed tube3513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 1.9°
rotation method scansh = 1010
Absorption correction: numerical
(X-RED; Stoe & Cie, 2005)
k = 1111
Tmin = 0.067, Tmax = 0.180l = 1515
7980 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.049P)2 + 0.4225P]
where P = (Fo2 + 2Fc2)/3
3688 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 1.85 e Å3
Crystal data top
(C11H10N)[AuCl4]γ = 97.216 (10)°
Mr = 494.97V = 694.20 (15) Å3
Triclinic, P1Z = 2
a = 7.7629 (9) ÅMo Kα radiation
b = 8.5901 (11) ŵ = 11.34 mm1
c = 11.0530 (15) ÅT = 298 K
α = 94.106 (11)°0.40 × 0.35 × 0.28 mm
β = 107.125 (10)°
Data collection top
Stoe IPDS II
diffractometer
3688 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 2005)
3513 reflections with I > 2σ(I)
Tmin = 0.067, Tmax = 0.180Rint = 0.051
7980 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.15Δρmax = 1.19 e Å3
3688 reflectionsΔρmin = 1.85 e Å3
154 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3073 (8)0.3645 (7)0.7222 (6)0.0534 (13)
H10.41410.32030.74150.064*
C20.0102 (9)0.3328 (8)0.6148 (7)0.0593 (14)
H20.11570.26830.56380.071*
C30.0149 (8)0.4824 (7)0.6606 (6)0.0556 (13)
H30.12420.52290.63950.067*
C40.1433 (8)0.5748 (6)0.7388 (6)0.0487 (11)
H40.13860.67750.76910.058*
C50.3102 (7)0.5176 (6)0.7733 (5)0.0412 (9)
C60.4797 (7)0.6118 (6)0.8579 (5)0.0429 (9)
C70.4751 (9)0.7355 (7)0.9442 (6)0.0556 (13)
H70.36280.75660.94970.067*
C80.6310 (11)0.8273 (9)1.0215 (7)0.0693 (18)
H80.62390.91051.07760.083*
C90.7981 (10)0.7962 (10)1.0160 (7)0.0676 (17)
H90.90420.86001.06690.081*
C100.8084 (9)0.6706 (10)0.9353 (8)0.0721 (19)
H100.92170.64700.93420.087*
C110.6485 (8)0.5781 (8)0.8545 (6)0.0591 (14)
H110.65560.49440.79890.071*
N10.1525 (9)0.2805 (7)0.6455 (6)0.0651 (14)
H1A0.15650.18710.61360.078*
Au10.377224 (19)0.071414 (17)0.338315 (15)0.03590 (7)
Cl10.08562 (18)0.08586 (18)0.33626 (17)0.0559 (3)
Cl20.4746 (2)0.30376 (17)0.46750 (16)0.0571 (3)
Cl30.67028 (17)0.05728 (17)0.34422 (16)0.0509 (3)
Cl40.28061 (19)0.15918 (17)0.20634 (17)0.0581 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (3)0.046 (3)0.063 (3)0.013 (2)0.019 (2)0.006 (2)
C20.056 (3)0.052 (3)0.064 (3)0.004 (2)0.016 (3)0.002 (3)
C30.046 (3)0.052 (3)0.067 (3)0.008 (2)0.016 (2)0.004 (3)
C40.053 (3)0.039 (2)0.057 (3)0.012 (2)0.019 (2)0.003 (2)
C50.047 (2)0.037 (2)0.045 (2)0.0093 (18)0.0195 (19)0.0048 (17)
C60.046 (2)0.042 (2)0.044 (2)0.0103 (18)0.0162 (19)0.0077 (18)
C70.057 (3)0.054 (3)0.053 (3)0.013 (2)0.014 (2)0.005 (2)
C80.072 (4)0.066 (4)0.057 (3)0.009 (3)0.004 (3)0.010 (3)
C90.053 (3)0.078 (4)0.064 (4)0.005 (3)0.007 (3)0.011 (3)
C100.042 (3)0.098 (5)0.075 (4)0.012 (3)0.016 (3)0.011 (4)
C110.050 (3)0.066 (3)0.064 (3)0.012 (3)0.023 (3)0.001 (3)
N10.071 (3)0.045 (2)0.074 (3)0.011 (2)0.018 (3)0.011 (2)
Au10.02898 (10)0.03416 (10)0.04446 (11)0.00715 (6)0.01061 (7)0.00261 (7)
Cl10.0343 (5)0.0527 (6)0.0830 (9)0.0122 (5)0.0208 (6)0.0012 (6)
Cl20.0560 (7)0.0460 (6)0.0653 (8)0.0017 (5)0.0195 (6)0.0122 (6)
Cl30.0307 (5)0.0498 (6)0.0711 (8)0.0074 (4)0.0153 (5)0.0007 (6)
Cl40.0428 (6)0.0492 (6)0.0737 (9)0.0055 (5)0.0108 (6)0.0164 (6)
Geometric parameters (Å, º) top
C1—N11.333 (8)C7—H70.9300
C1—C51.389 (7)C8—C91.375 (12)
C1—H10.9300C8—H80.9300
C2—N11.351 (9)C9—C101.376 (11)
C2—C31.356 (9)C9—H90.9300
C2—H20.9300C10—C111.403 (9)
C3—C41.384 (8)C10—H100.9300
C3—H30.9300C11—H110.9300
C4—C51.400 (7)N1—H1A0.8600
C4—H40.9300Au1—Cl22.2740 (13)
C5—C61.470 (8)Au1—Cl32.2754 (12)
C6—C111.388 (8)Au1—Cl12.2762 (12)
C6—C71.388 (7)Au1—Cl42.2766 (13)
C7—C81.368 (9)
N1—C1—C5120.5 (5)C7—C8—C9119.8 (7)
N1—C1—H1119.7C7—C8—H8120.1
C5—C1—H1119.7C9—C8—H8120.1
N1—C2—C3117.9 (6)C8—C9—C10120.0 (7)
N1—C2—H2121.0C8—C9—H9120.0
C3—C2—H2121.0C10—C9—H9120.0
C2—C3—C4119.9 (6)C9—C10—C11120.2 (6)
C2—C3—H3120.0C9—C10—H10119.9
C4—C3—H3120.0C11—C10—H10119.9
C3—C4—C5121.7 (5)C6—C11—C10119.8 (6)
C3—C4—H4119.2C6—C11—H11120.1
C5—C4—H4119.2C10—C11—H11120.1
C1—C5—C4115.8 (5)C1—N1—C2124.0 (5)
C1—C5—C6121.2 (5)C1—N1—H1A118.0
C4—C5—C6123.0 (4)C2—N1—H1A118.0
C11—C6—C7118.3 (5)Cl2—Au1—Cl389.51 (5)
C11—C6—C5120.8 (5)Cl2—Au1—Cl189.92 (6)
C7—C6—C5120.8 (5)Cl3—Au1—Cl1178.98 (5)
C8—C7—C6121.8 (6)Cl2—Au1—Cl4179.07 (6)
C8—C7—H7119.1Cl3—Au1—Cl490.20 (5)
C6—C7—H7119.1Cl1—Au1—Cl490.38 (5)
N1—C2—C3—C41.5 (10)C11—C6—C7—C82.5 (10)
C2—C3—C4—C50.5 (10)C5—C6—C7—C8178.3 (6)
N1—C1—C5—C40.2 (9)C6—C7—C8—C91.0 (12)
N1—C1—C5—C6180.0 (6)C7—C8—C9—C101.6 (13)
C3—C4—C5—C11.3 (9)C8—C9—C10—C112.7 (12)
C3—C4—C5—C6178.9 (5)C7—C6—C11—C101.4 (10)
C1—C5—C6—C1123.1 (8)C5—C6—C11—C10179.4 (6)
C4—C5—C6—C11156.7 (6)C9—C10—C11—C61.1 (12)
C1—C5—C6—C7156.1 (6)C5—C1—N1—C21.9 (11)
C4—C5—C6—C724.1 (8)C3—C2—N1—C12.8 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl3i0.862.633.359 (7)143
C1—H1···Cl4i0.932.833.755 (7)175
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula(C11H10N)[AuCl4]
Mr494.97
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.7629 (9), 8.5901 (11), 11.0530 (15)
α, β, γ (°)94.106 (11), 107.125 (10), 97.216 (10)
V3)694.20 (15)
Z2
Radiation typeMo Kα
µ (mm1)11.34
Crystal size (mm)0.40 × 0.35 × 0.28
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
(X-RED; Stoe & Cie, 2005)
Tmin, Tmax0.067, 0.180
No. of measured, independent and
observed [I > 2σ(I)] reflections
7980, 3688, 3513
Rint0.051
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.15
No. of reflections3688
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 1.85

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Au1—Cl22.2740 (13)Au1—Cl12.2762 (12)
Au1—Cl32.2754 (12)Au1—Cl42.2766 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl3i0.862.633.359 (7)143
C1—H1···Cl4i0.932.833.755 (7)175
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

We thank the Graduate Study Councils of Shahid Beheshti University for financial support (Project 600/1555).

References

First citationCalleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). Inorg. Chem. 40, 4978–4985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFazaeli, Y., Amani, V., Amini, M. M. & Khavasi, H. R. (2010). Acta Cryst. E66, m212.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). Inorg. Chem. 38, 5637–5641.  Web of Science CSD CrossRef CAS Google Scholar
First citationHojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840–m841.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479–1480.  Web of Science CSD CrossRef Google Scholar
First citationSafari, N., Amani, V., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). Inorg. Chem. 34, 3474–3476.  CSD CrossRef CAS Web of Science Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Safari, N., Abedi, A., Amani, V. & McKee, V. (2009). Acta Cryst. E65, m479–m480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Safari, N., Amani, V. & McKee, V. (2009). Acta Cryst. E65, m491–m492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018–m2020.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds