organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Imino­diethanaminium 2,2′-(disulfanyldi­yl)dibenzoate dihydrate

a5959 FM 1960 Road West, Houston, Texas 77069, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 February 2010; accepted 24 February 2010; online 27 February 2010)

In the title hydrated salt, C4H15N32+·C14H8O4S2·2H2O, the dication (with both terminal –NH2 groups protonated) adopts a U-shaped conformation, the Namine—C—C—Naza­nium torsion angles being 57.9 (6) and 60.3 (6)°. The dianion is twisted: the central C—S—S—C torsion angle is 81.3 (2)° and the dihedral angle between the benzene rings is 85.4 (3)°. In the crystal, a chain in the a-axis direction mediated by water–carboxyl­ate O—H⋯O hydrogen bonds through a sequence of alternating 12-membered {⋯OCO⋯HOH}2 and eight-membered {⋯O⋯HOH}2 synthons occurs, which involves only one of the carboxyl­ate residues. The second carboxyl­ate residue participates in N—H⋯O hydrogen bonding, generating a three-dimensional network, along with aza­nium–water N—H⋯O hydrogen bonds.

Related literature

For related studies on co-crystal/salt formation involving 2-[(2-carboxy­phen­yl)disulfan­yl]benzoic acid, see: Broker & Tiekink (2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.]); Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]). For software for searching the Cambridge Structural Database, see: Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]).

[Scheme 1]

Experimental

Crystal data
  • C4H15N3+·C14H8O4S2·2H2O

  • Mr = 445.55

  • Triclinic, [P \overline 1]

  • a = 7.804 (3) Å

  • b = 11.472 (5) Å

  • c = 12.701 (4) Å

  • α = 102.162 (9)°

  • β = 104.806 (4)°

  • γ = 102.776 (7)°

  • V = 1028.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 173 K

  • 0.40 × 0.20 × 0.03 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.832, Tmax = 1

  • 9871 measured reflections

  • 3529 independent reflections

  • 3380 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.175

  • S = 1.28

  • 3529 reflections

  • 277 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1Wi 0.91 2.27 2.939 (6) 130
N1—H1N⋯O2Wii 0.91 2.33 3.038 (6) 135
N1—H2N⋯O4iii 0.91 1.85 2.731 (7) 164
N1—H3N⋯O3iv 0.91 2.24 2.981 (6) 138
N2—H4N⋯O3v 0.88 2.21 3.069 (6) 166
N3—H5N⋯O1Wvi 0.91 2.06 2.961 (6) 172
N3—H6N⋯O2Wvi 0.91 1.94 2.844 (6) 170
N3—H7N⋯O3iv 0.91 1.98 2.835 (6) 156
O1w—H1W⋯O2 0.84 1.90 2.720 (5) 167
O1w—H2W⋯O2vii 0.84 1.99 2.803 (5) 162
O2w—H3W⋯O1 0.84 1.89 2.732 (6) 176
O2w—H4W⋯O2vi 0.84 1.92 2.751 (5) 171
Symmetry codes: (i) x-1, y-1, z; (ii) x, y-1, z; (iii) -x, -y, -z; (iv) x, y, z+1; (v) -x+1, -y, -z; (vi) -x+1, -y+1, -z+1; (vii) -x+2, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title salt dihydrate, (I), was obtained during crystallisation experiments involving various N-containing species with the dicarboxylic acid, 2-[(2-carboxyphenyl)disulfanyl]benzoic acid (Broker & Tiekink, 2007; Broker et al., 2008). The asymmetric unit of (I) comprises an di-aminium cation, Fig. 1, a dinegative 2-[(2-carboxylatophenyl)disulfanyl]benzoate anion, Fig. 2, and two solvent water molecules of crystallisation.

Confirmation that protonation has occurred at each of the terminal primary amines is found in terms of the pattern of intermolecular interactions and consistent with this conclusion is the observation that the central-N2 amine participates in both donor and acceptor hydrogen bonding interactions (see below). The dication adopts a U-shaped conformation: the N1—C15—C16—N2 and N2—C17—C18—N3 torsion angles are 57.9 (6) and 60.3 (6) °, respectively. In accord with expectation (Broker & Tiekink, 2007), the anion is twisted, the C3–S1–S2–C10 torsion angle = 81.3 (2) °, a conformation stabilised by intramolecular S···O interactions of 2.643 (4) Å for S1···O1 and 2.724 (4) Å for S2···O4.

The water molecules in (I) play a pivotal role in the crystal packing, Table 1. As shown in Fig. 3, pairs of water molecules bridge two carboxylate residues leading to a 12-membered {···OCO···HOH}2 synthon. Translationally related synthons are bridged by a pair of water molecules forming eight-membered {···O···HOH}2 synthons and leading to a chain aligned along the a axis, Fig. 3. By contrast, the O3, O4-carboxylate residue does not participate in O–H···O hydrogen bonding but forms N–H···O interactions instead, involving both the aminium-N1 and amine-N2 groups. In the global crystal packing, the chains are sandwiched so that immediately above and below each row of hydrogen bonded carboxylate residues/water molecules are located aminium groups, with each of the nitrogen-bound acidic-hydrogen atoms forming a significant hydrogen bond, Table 1, as emphasized in the view of Fig. 4.

Related literature top

For related studies on co-crystal/salt formation involving 2-[(2-carboxyphenyl)disulfanyl]benzoic acid, see: Broker & Tiekink (2007); Broker et al. (2008). For software for searching the Cambridge Structural Database, see: Bruno et al. (2002).

Experimental top

The title salt was obtained by dissolving 2-[(2-carboxyphenyl)disulfanyl]benzoic acid (0.100 g, Fluka) in ethanol (20 ml) to which was added the amine in 1:1, 1:2 and 1:3 stoichiometric ratios in three separate experiments. Regardless of the stoichiometry, only colurless plates of (I) were harvested as proved by multiple unit cell determinations (m.pt. 381–382 K).

Refinement top

The H-atoms located from difference maps but placed in their idealised positions (O–H = 0.84 Å, N–H = 0.88–0.91 Å, and C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2-1.5Ueq(carrier atom).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the cation in (I) showing displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. Molecular structure of the anion in (I) showing displacement ellipsoids at the 70% probability level.
[Figure 3] Fig. 3. A view of the supramolcular chain in (I) mediated by O–H···O hydrogen bonding (orange dashed lines) via alternating 12-membered {···OCO···HOH}2 and eight-membered {···O···HOH}2 synthons; the second carboxylate ligand forms N–H···O (blue dashed lines) hydrogen bonds exclusively with two of these running parallel to the chain illustrated. Colour code: S, yellow; O, red; N, blue; C, grey; H, green.
[Figure 4] Fig. 4. The unit cell contents of (I) viewed in projection down the a axis. The O–H···O and N–H···O hydrogen bonds are shown as orange and blue dashed lines, respectively. Colour code: S, yellow; O, red; N, blue; C, grey; H, green.
2,2'-Iminodiethanaminium 2,2'-(disulfanyldiyl)dibenzoate dihydrate top
Crystal data top
C4H15N3+·C14H8O4S2·2H2OZ = 2
Mr = 445.55F(000) = 472
Triclinic, P1Dx = 1.439 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 7.804 (3) ÅCell parameters from 1579 reflections
b = 11.472 (5) Åθ = 2.8–30.4°
c = 12.701 (4) ŵ = 0.30 mm1
α = 102.162 (9)°T = 173 K
β = 104.806 (4)°Plate, colourless
γ = 102.776 (7)°0.40 × 0.20 × 0.03 mm
V = 1028.1 (6) Å3
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3529 independent reflections
Radiation source: fine-focus sealed tube3380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.832, Tmax = 1k = 1313
9871 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.28 w = 1/[σ2(Fo2) + (0.0108P)2 + 6.0488P]
where P = (Fo2 + 2Fc2)/3
3529 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.74 e Å3
7 restraintsΔρmin = 0.39 e Å3
Crystal data top
C4H15N3+·C14H8O4S2·2H2Oγ = 102.776 (7)°
Mr = 445.55V = 1028.1 (6) Å3
Triclinic, P1Z = 2
a = 7.804 (3) ÅMo Kα radiation
b = 11.472 (5) ŵ = 0.30 mm1
c = 12.701 (4) ÅT = 173 K
α = 102.162 (9)°0.40 × 0.20 × 0.03 mm
β = 104.806 (4)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3529 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3380 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 1Rint = 0.023
9871 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0677 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.28Δρmax = 0.74 e Å3
3529 reflectionsΔρmin = 0.39 e Å3
277 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36783 (17)0.36668 (12)0.05188 (10)0.0220 (3)
S20.27851 (18)0.29462 (11)0.12164 (10)0.0227 (3)
O10.4707 (5)0.4706 (4)0.2733 (3)0.0289 (8)
O20.7336 (5)0.4825 (3)0.4019 (3)0.0259 (8)
O30.2557 (5)0.0464 (3)0.4359 (3)0.0269 (8)
O40.1636 (5)0.2013 (3)0.3519 (3)0.0261 (8)
O1W1.0465 (5)0.6687 (3)0.5318 (3)0.0261 (8)
H1W0.95100.61670.48320.039*
H2W1.11630.63330.56640.039*
O2W0.3984 (5)0.6179 (3)0.4457 (3)0.0276 (8)
H3W0.42140.57020.39470.041*
H4W0.35960.57950.48850.041*
N10.2010 (6)0.1911 (4)0.3919 (4)0.0261 (10)
H1N0.19970.25940.41780.039*
H2N0.08460.18290.37210.039*
H3N0.27860.12190.44760.039*
N20.3889 (6)0.0195 (4)0.3355 (4)0.0237 (9)
H4N0.49980.00980.35910.036*
N30.2433 (6)0.2148 (4)0.4298 (4)0.0247 (9)
H5N0.14690.24570.43460.037*
H6N0.35170.27260.47520.037*
H7N0.23080.14430.45280.037*
C10.6340 (7)0.4671 (4)0.3007 (4)0.0196 (10)
C20.7199 (7)0.4399 (4)0.2082 (4)0.0200 (10)
C30.6121 (7)0.3884 (4)0.0920 (4)0.0210 (10)
C40.7005 (7)0.3573 (5)0.0129 (4)0.0247 (11)
H40.62930.32010.06480.030*
C50.8917 (7)0.3796 (5)0.0455 (5)0.0265 (11)
H50.94920.35730.01010.032*
C60.9987 (7)0.4334 (5)0.1573 (4)0.0249 (11)
H61.12960.45080.17890.030*
C70.9117 (7)0.4620 (5)0.2382 (4)0.0224 (10)
H70.98460.49740.31580.027*
C80.2166 (6)0.1048 (4)0.3544 (4)0.0210 (10)
C90.2344 (6)0.0572 (4)0.2513 (4)0.0200 (10)
C100.2594 (7)0.1319 (4)0.1426 (4)0.0226 (11)
C110.2712 (8)0.0787 (5)0.0541 (5)0.0320 (13)
H110.28770.12890.01950.038*
C120.2593 (9)0.0472 (5)0.0706 (5)0.0358 (14)
H120.26760.08190.00850.043*
C130.2359 (7)0.1201 (5)0.1749 (5)0.0292 (12)
H130.22780.20590.18630.035*
C140.2238 (6)0.0689 (4)0.2650 (4)0.0222 (10)
H140.20790.12050.33800.027*
C150.2665 (7)0.2058 (5)0.2913 (4)0.0271 (11)
H15A0.18310.28160.23110.033*
H15B0.39240.21590.31250.033*
C160.2700 (8)0.0929 (5)0.2468 (4)0.0272 (11)
H16A0.31670.10290.18100.033*
H16B0.14280.08580.22120.033*
C170.4030 (7)0.1345 (5)0.3004 (5)0.0261 (11)
H17A0.40370.11700.22080.031*
H17B0.52120.19770.34870.031*
C180.2445 (7)0.1852 (5)0.3100 (4)0.0275 (11)
H18A0.25610.26150.28450.033*
H18B0.12630.12300.26030.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0203 (6)0.0241 (6)0.0190 (6)0.0080 (5)0.0041 (5)0.0012 (5)
S20.0293 (7)0.0196 (6)0.0175 (6)0.0089 (5)0.0039 (5)0.0039 (5)
O10.0195 (18)0.040 (2)0.0248 (19)0.0098 (16)0.0064 (15)0.0045 (16)
O20.0237 (18)0.032 (2)0.0198 (18)0.0067 (15)0.0056 (15)0.0074 (15)
O30.036 (2)0.0271 (19)0.0220 (19)0.0119 (16)0.0149 (16)0.0057 (15)
O40.032 (2)0.0248 (19)0.0225 (18)0.0112 (16)0.0082 (15)0.0074 (15)
O1W0.029 (2)0.0189 (18)0.024 (2)0.0069 (15)0.0024 (15)0.0014 (15)
O2W0.035 (2)0.0265 (19)0.026 (2)0.0112 (16)0.0148 (17)0.0072 (16)
N10.032 (2)0.021 (2)0.025 (2)0.0068 (19)0.0093 (19)0.0074 (18)
N20.027 (2)0.023 (2)0.024 (2)0.0098 (19)0.0102 (19)0.0084 (18)
N30.026 (2)0.021 (2)0.031 (2)0.0095 (18)0.0132 (19)0.0077 (18)
C10.021 (2)0.016 (2)0.019 (2)0.0021 (19)0.007 (2)0.0035 (19)
C20.023 (2)0.014 (2)0.024 (3)0.0073 (19)0.008 (2)0.0059 (19)
C30.029 (3)0.017 (2)0.023 (3)0.011 (2)0.012 (2)0.008 (2)
C40.027 (3)0.024 (3)0.023 (3)0.008 (2)0.008 (2)0.006 (2)
C50.030 (3)0.026 (3)0.029 (3)0.011 (2)0.015 (2)0.007 (2)
C60.021 (3)0.026 (3)0.027 (3)0.007 (2)0.007 (2)0.007 (2)
C70.022 (2)0.022 (2)0.021 (3)0.004 (2)0.004 (2)0.007 (2)
C80.019 (2)0.020 (2)0.019 (2)0.002 (2)0.005 (2)0.002 (2)
C90.017 (2)0.020 (2)0.022 (2)0.0034 (19)0.0053 (19)0.006 (2)
C100.021 (2)0.017 (2)0.028 (3)0.005 (2)0.006 (2)0.006 (2)
C110.047 (3)0.030 (3)0.020 (3)0.014 (3)0.011 (2)0.005 (2)
C120.053 (4)0.029 (3)0.030 (3)0.014 (3)0.010 (3)0.019 (3)
C130.031 (3)0.020 (3)0.042 (3)0.008 (2)0.016 (3)0.012 (2)
C140.019 (2)0.016 (2)0.027 (3)0.0043 (19)0.006 (2)0.000 (2)
C150.029 (3)0.024 (3)0.027 (3)0.007 (2)0.011 (2)0.003 (2)
C160.031 (3)0.030 (3)0.019 (3)0.005 (2)0.008 (2)0.006 (2)
C170.030 (3)0.025 (3)0.026 (3)0.010 (2)0.012 (2)0.008 (2)
C180.030 (3)0.030 (3)0.027 (3)0.010 (2)0.011 (2)0.011 (2)
Geometric parameters (Å, º) top
S1—C31.787 (5)C4—H40.9500
S1—S22.0540 (18)C5—C61.375 (7)
S2—C101.796 (5)C5—H50.9500
O1—C11.244 (6)C6—C71.393 (7)
O2—C11.273 (6)C6—H60.9500
O3—C81.253 (6)C7—H70.9500
O4—C81.262 (6)C8—C91.509 (7)
O1W—H1W0.8400C9—C141.401 (7)
O1W—H2W0.8400C9—C101.403 (7)
O2W—H3W0.8400C10—C111.380 (7)
O2W—H4W0.8400C11—C121.393 (8)
N1—C151.484 (6)C11—H110.9500
N1—H1N0.9100C12—C131.353 (8)
N1—H2N0.9100C12—H120.9500
N1—H3N0.9100C13—C141.384 (8)
N2—C161.455 (7)C13—H130.9500
N2—C171.470 (7)C14—H140.9500
N2—H4N0.8800C15—C161.515 (7)
N3—C181.491 (7)C15—H15A0.9900
N3—H5N0.9100C15—H15B0.9900
N3—H6N0.9100C16—H16A0.9900
N3—H7N0.9100C16—H16B0.9900
C1—C21.506 (7)C17—C181.500 (7)
C2—C71.396 (7)C17—H17A0.9900
C2—C31.419 (7)C17—H17B0.9900
C3—C41.388 (7)C18—H18A0.9900
C4—C51.391 (7)C18—H18B0.9900
C3—S1—S2104.23 (17)C14—C9—C10118.2 (5)
C10—S2—S1103.71 (18)C14—C9—C8118.1 (4)
H1W—O1W—H2W111.4C10—C9—C8123.7 (4)
H3W—O2W—H4W111.4C11—C10—C9119.1 (5)
C15—N1—H1N109.5C11—C10—S2121.7 (4)
C15—N1—H2N109.5C9—C10—S2119.3 (4)
H1N—N1—H2N109.5C10—C11—C12121.4 (5)
C15—N1—H3N109.5C10—C11—H11119.3
H1N—N1—H3N109.5C12—C11—H11119.3
H2N—N1—H3N109.5C13—C12—C11120.1 (5)
C16—N2—C17114.3 (4)C13—C12—H12119.9
C16—N2—H4N108.1C11—C12—H12119.9
C17—N2—H4N109.8C12—C13—C14119.6 (5)
C18—N3—H5N109.5C12—C13—H13120.2
C18—N3—H6N109.5C14—C13—H13120.2
H5N—N3—H6N109.5C13—C14—C9121.6 (5)
C18—N3—H7N109.5C13—C14—H14119.2
H5N—N3—H7N109.5C9—C14—H14119.2
H6N—N3—H7N109.5N1—C15—C16110.4 (4)
O1—C1—O2124.6 (4)N1—C15—H15A109.6
O1—C1—C2118.2 (4)C16—C15—H15A109.6
O2—C1—C2117.2 (4)N1—C15—H15B109.6
C7—C2—C3118.9 (4)C16—C15—H15B109.6
C7—C2—C1118.8 (4)H15A—C15—H15B108.1
C3—C2—C1122.3 (4)N2—C16—C15110.1 (4)
C4—C3—C2118.7 (5)N2—C16—H16A109.6
C4—C3—S1122.1 (4)C15—C16—H16A109.6
C2—C3—S1119.3 (4)N2—C16—H16B109.6
C3—C4—C5121.1 (5)C15—C16—H16B109.6
C3—C4—H4119.5H16A—C16—H16B108.2
C5—C4—H4119.5N2—C17—C18111.2 (4)
C6—C5—C4120.9 (5)N2—C17—H17A109.4
C6—C5—H5119.6C18—C17—H17A109.4
C4—C5—H5119.6N2—C17—H17B109.4
C5—C6—C7118.8 (5)C18—C17—H17B109.4
C5—C6—H6120.6H17A—C17—H17B108.0
C7—C6—H6120.6N3—C18—C17110.3 (4)
C6—C7—C2121.6 (5)N3—C18—H18A109.6
C6—C7—H7119.2C17—C18—H18A109.6
C2—C7—H7119.2N3—C18—H18B109.6
O3—C8—O4124.8 (5)C17—C18—H18B109.6
O3—C8—C9118.1 (4)H18A—C18—H18B108.1
O4—C8—C9117.1 (4)
C3—S1—S2—C1081.3 (2)O3—C8—C9—C10156.8 (5)
O1—C1—C2—C7166.2 (4)O4—C8—C9—C1022.9 (7)
O2—C1—C2—C715.1 (7)C14—C9—C10—C110.5 (7)
O1—C1—C2—C316.1 (7)C8—C9—C10—C11179.0 (5)
O2—C1—C2—C3162.6 (4)C14—C9—C10—S2178.7 (4)
C7—C2—C3—C42.6 (7)C8—C9—C10—S21.9 (7)
C1—C2—C3—C4175.1 (4)S1—S2—C10—C1110.9 (5)
C7—C2—C3—S1177.0 (4)S1—S2—C10—C9168.2 (4)
C1—C2—C3—S15.3 (6)C9—C10—C11—C120.2 (8)
S2—S1—C3—C40.7 (4)S2—C10—C11—C12178.9 (5)
S2—S1—C3—C2178.9 (3)C10—C11—C12—C130.1 (9)
C2—C3—C4—C52.1 (7)C11—C12—C13—C140.0 (9)
S1—C3—C4—C5177.5 (4)C12—C13—C14—C90.3 (8)
C3—C4—C5—C60.1 (8)C10—C9—C14—C130.5 (7)
C4—C5—C6—C71.9 (8)C8—C9—C14—C13178.9 (5)
C5—C6—C7—C21.5 (8)C17—N2—C16—C15179.5 (4)
C3—C2—C7—C60.8 (7)N1—C15—C16—N257.9 (6)
C1—C2—C7—C6177.0 (4)C16—N2—C17—C1883.9 (5)
O3—C8—C9—C1423.8 (7)N2—C17—C18—N360.3 (6)
O4—C8—C9—C14156.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1Wi0.912.272.939 (6)130
N1—H1N···O2Wii0.912.333.038 (6)135
N1—H2N···O4iii0.911.852.731 (7)164
N1—H3N···O3iv0.912.242.981 (6)138
N2—H4N···O3v0.882.213.069 (6)166
N3—H5N···O1Wvi0.912.062.961 (6)172
N3—H6N···O2Wvi0.911.942.844 (6)170
N3—H7N···O3iv0.911.982.835 (6)156
O1w—H1W···O20.841.902.720 (5)167
O1w—H2W···O2vii0.841.992.803 (5)162
O2w—H3W···O10.841.892.732 (6)176
O2w—H4W···O2vi0.841.922.751 (5)171
Symmetry codes: (i) x1, y1, z; (ii) x, y1, z; (iii) x, y, z; (iv) x, y, z+1; (v) x+1, y, z; (vi) x+1, y+1, z+1; (vii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC4H15N3+·C14H8O4S2·2H2O
Mr445.55
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.804 (3), 11.472 (5), 12.701 (4)
α, β, γ (°)102.162 (9), 104.806 (4), 102.776 (7)
V3)1028.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.40 × 0.20 × 0.03
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.832, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
9871, 3529, 3380
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.175, 1.28
No. of reflections3529
No. of parameters277
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.39

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1Wi0.912.272.939 (6)130
N1—H1N···O2Wii0.912.333.038 (6)135
N1—H2N···O4iii0.911.852.731 (7)164
N1—H3N···O3iv0.912.242.981 (6)138
N2—H4N···O3v0.882.213.069 (6)166
N3—H5N···O1Wvi0.912.062.961 (6)172
N3—H6N···O2Wvi0.911.942.844 (6)170
N3—H7N···O3iv0.911.982.835 (6)156
O1w—H1W···O20.841.902.720 (5)167
O1w—H2W···O2vii0.841.992.803 (5)162
O2w—H3W···O10.841.892.732 (6)176
O2w—H4W···O2vi0.841.922.751 (5)171
Symmetry codes: (i) x1, y1, z; (ii) x, y1, z; (iii) x, y, z; (iv) x, y, z+1; (v) x+1, y, z; (vi) x+1, y+1, z+1; (vii) x+2, y+1, z+1.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds