organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o572-o573

6-{[(Benz­yl­oxy)carbon­yl]­­oxy}-2-methyl­hexa­hydro­pyrano[3,2-d][1,3]dioxin-7,8-diyl bis­­(chloro­acetate)

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India, dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and eDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 30 December 2009; accepted 3 February 2010; online 10 February 2010)

The asymmetric unit of the title compound, C20H22O10Cl2, consists of a 6-{[(benz­yloxy)carbon­yl]­oxy}group and two chloro­acetate groups bonded to a 2-methyl­hexa­hydro­pyrano[3,2-d][1,3]dioxin group at the carbon 1,2 and 3 positions, respectively, of a pyrano ring fused to a dioxin ring. The dihedral angle between the mean planes of the dioxin and benzyl rings is 42.2 (2)°. An extensive array of weak inter­molecular C—H⋯O hydrogen bonds links the mol­ecules into chains along [011]. Additional weak inter­molecular C—H⋯π inter­actions occur between C—H atoms of the dioxin and benzyl rings and a nearby benzene ring. A MOPAC geometry optimization calculation in vacuo revealed that the dihedral angle between the mean planes of the dioxin and benzyl rings increased by 24.42 to 66.64°, suggesting that the weak inter­molecular hydrogen-bonding inter­actions, in coord­ination with weak C—H⋯π inter­actions, influence the geometry of the resultant crystalline species and help to stabilize the crystal packing.

Related literature

For background to the title compound, see: Ernst & Derendorf, (1995[Ernst, M. & Derendorf, H. (1995). Drug Actions: Basic Principles and Therapeutic Aspects. Stuttgart: Medpharm Scientific Publishers.]); Ji et al. (1997[Ji, Z., Wang, H.-K., Bastow, K. F., Zhu, X.-K., Cho, S. J., Cheng, Y.-C. & Lee, K.-H. (1997). Bioorg. Med. Chem. Lett. 7, 607-612.]); Sanford et al. (1990[Sanford, G. L., Gilman, A. & Gilman, A. G. (1990). The Pharmacological Basis of Therapeutics, 8th Edition. Elmsford, NY, Pergamon Press.]); Budavari (1989[Budavari, S. (1989). Editor. The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals, Rahway, NJ: Merck & Co.]); Wrasidlo et al. (2002[Wrasidlo, W., Schröder, U., Bernt, K., Hübener, N., Shabat, D., Gaedicke, G. & Lode, H. (2002). Bioorg. Med. Chem. Lett. 12, 557-560.]). For related structures, see: Shi & Wang, (2003[Shi, J.-F. & Wang, Y.-G. (2003). Acta Cryst. E59, o756-o758.]); Wu et al. (2005[Wu, Q.-X., Shi, Y.-P. & Shi, Y.-P. (2005). Acta Cryst. E61, o3502-o3504.]); Zhou et al. (2005[Zhou, F.-Y., Jian, S.-Z., He, X.-Y. & Wang, Y.-G. (2005). Acta Cryst. E61, o1374-o1376.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97 1354-1355.]). For MOPAC PM3 calculations, see: Schmidt & Polik, (2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22Cl2O10

  • Mr = 493.28

  • Orthorhombic, P 21 21 21

  • a = 8.1780 (1) Å

  • b = 14.9165 (3) Å

  • c = 19.3555 (4) Å

  • V = 2361.12 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 200 K

  • 0.44 × 0.34 × 0.27 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.821, Tmax = 1.000

  • 30676 measured reflections

  • 5818 independent reflections

  • 3677 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.084

  • S = 0.92

  • 5818 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2513 Friedel pairs

  • Flack parameter: 0.05 (5)

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C10—C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O8i 0.99 2.57 3.235 (3) 125
C13—H13A⋯O10ii 0.95 2.54 3.452 (4) 162
C17—H17B⋯O5iii 0.99 2.42 3.310 (3) 149
C19—H19A⋯O3iv 0.99 2.52 3.460 (3) 158
C19—H19B⋯O2v 0.99 2.38 3.364 (3) 170
C20—H20B⋯O4iv 0.98 2.59 3.494 (3) 154
C4—H4ACg3iv 1.00 2.89 3.879 (2) 171
C14—H14ACg3vi 0.95 2.87 3.818 (4) 173
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x-1, y, z; (vi) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an intermediate in the preparation of etoposide phosphate (Budavari, 1989), an inhibitor of the enzyme topoisomerase II. It is used as a form of chemotherapy for malignancies such as Ewing's sarcoma, lung cancer, testicular cancer, lymphoma, non-lymphocytic leukemia, and glioblastoma multiforme. It is often given in combination with other drugs. Chemically it derives from podophyllotoxin, a toxin found in the American Mayapple (Sanford et al., 1990; Ernst & Derendorf, 1995). Design, synthesis, and biological evaluation of novel etoposide analogs bearing pyrrolecarboxamidino group as DNA topoisomerase II inhibitors have been reported (Ji et al., 1997). Two 4'-propylcarbonoxy derivatives of etoposide were synthesized and evaluated as potential prodrugs for anticancer therapy (Wrasidlo et al., 2002). Structures of few derivatives of etoposide are published, viz, 10-hydroxy-1-oxoeremophila-7(11),8(9)-dien-12,8-olide (Wu et al., 2005), (5R,5aR,8aR,9S)-5-(3,4-dihydroxy-5-methoxyphenyl) -9-fluoro-5,8,8a,9-tetrahydrofuro[3',4':6,7]naphtho[2,3-d] -1,3-dioxol-6(5aH)-one acetone solvate (Zhou et al., 2005), (5aR,8aR,9R)-9-(3,4,5-trimethoxyphenyl)-5a,6,8a,9-tetrahydrofuro[3',4': 6,7]naphtho[2,3-d][1,3]dioxole-5,8-dione (Shi & Wang, 2003). In view of the importance of the title compound, C20H22Cl2O10, (I), a crystal structure is reported here.

The asymmetric unit of title compound, C20H22Cl2O10, (I), consists of a 6-{[(benzyloxy)carbonyl]oxy}group and two chloroacetate groups bonded to a 2-methylhexahydropyrano[3,2-d][1,3]dioxin group at the carbon 1,2 and 3 positions of the pyrano ring fused to a dioxin ring, respectively (Fig. 1). The fused [1,3]dioxin and 2-methylhexahydropyrano six-membered rings each adopt a slightly distorted normal chair configuration (Cremer & Pople, 1975) with puckering parameters Q, θ and ϕ of 0.598 (2) & 0.6025 (19) Å, 2.95 (19)° & 2.81 (18)°, and 33 (5)° & 357 (4)%, respectively (Fig. 2). For an ideal chair, θ has a value of 0 or 180°. The keto groups in each chloroacetate group are arranged in an antiparallel fashion (Torsion angles C2/O7/C16/C8 = 2.2 (3)°; C3/O9/C18/O10 = 4.4 (3)°) and nearly perpendicular to the benzene ring, while the keto group in the 6-{[(benzyloxy)carbonyl]oxy}group is somewhat diagonal to and bisecting the benzyl ring (torsion angle C1/O4/C8/O5 = -3.1 (3)°). The dihedral angle between the mean planes of the dioxin and benzene rings is 42.2 (2)°. An extensive array of intermolecular C—H···O hydrogen bonds exists which involves acceptor oxygen atoms from the three carbonyl groups, two oxygen atoms from the pyrano-dioxin rings, a keto oxygen atom in the 6-{[(benzyloxy)carbonyl]oxy}group, donor C—H atoms from an sp2 hybridized carbon in the benzene ring and sp3 hybridized carbon atoms from the dioxin ring, a methyl group and each chloroacetate group (Table 1). In addition, intermolecular C—H···Cg π-ring interactions also occur between C4—H4A and C14—H14A atoms of the dioxin and benzene rings and a nearby benzene ring (C4—H4A···Cg3 = 3.879 (2) Å (2-x, 1/2+y, 1/2- z) and C14—H14A···Cg3 = 3.818 (4) Å (-1/2+x, -1/2-y, -z), where Cg3 = ring centroid for C10—C15), respectively. Bond lengths and angles are all within expected ranges (Allen et al. 1987).

After a geometry optimized MOPAC PM3 computational calculation (Schmidt & Polik 2007) on (I), in vacuo, the dihedral angle between the mean planes of the dioxin and benzene rings became 66.64°, an increase of 24.42°. These observations support a suggestion that a collection of weak intermolecular forces influence the molecular conformation in the crystal and contribute to the packing of these molecules into chains propagating along the [011].

Related literature top

For background to the title compound, see: Ernst & Derendorf, (1995); Ji et al. (1997); Sanford et al. (1990); Budavari (1989); Wrasidlo et al. (2002). For related structures, see: Shi & Wang, (2003); Wu et al. (2005); Zhou et al. (2005). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975). For MOPAC PM3 calculations, see: Schmidt & Polik, (2007).

Experimental top

The title compound was obtained as a gift sample from CAD Pharma, Bangalore, India. Suitable crystals were grown from methanol by slow evaporation (m.p.: 385-388 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95-1.00 Å, and with Uiso(H) = 1.18-1.49Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), C20H22O10Cl2, showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing for (I) viewed down the a axis. Dashed lines indicate weak C—H···O intermolecular hydrogen bond interactions which link the molecule into chains propagating along the [011].
6-{[(Benzyloxy)carbonyl]oxy}-2-methylhexahydropyrano[3,2-d][1,3]dioxin-7,8-diyl bis(chloroacetate) top
Crystal data top
C20H22Cl2O10F(000) = 1024
Mr = 493.28Dx = 1.388 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8966 reflections
a = 8.1780 (1) Åθ = 4.8–32.5°
b = 14.9165 (3) ŵ = 0.33 mm1
c = 19.3555 (4) ÅT = 200 K
V = 2361.12 (7) Å3Prism, colorless
Z = 40.44 × 0.34 × 0.27 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
5818 independent reflections
Radiation source: Enhance (Mo) X-ray Source3677 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 10.5081 pixels mm-1θmax = 28.3°, θmin = 4.9°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1919
Tmin = 0.821, Tmax = 1.000l = 2525
30676 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0439P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
5818 reflectionsΔρmax = 0.34 e Å3
290 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 2513 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (5)
Crystal data top
C20H22Cl2O10V = 2361.12 (7) Å3
Mr = 493.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.1780 (1) ŵ = 0.33 mm1
b = 14.9165 (3) ÅT = 200 K
c = 19.3555 (4) Å0.44 × 0.34 × 0.27 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
5818 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3677 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 1.000Rint = 0.049
30676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.34 e Å3
S = 0.92Δρmin = 0.23 e Å3
5818 reflectionsAbsolute structure: Flack (1983), 2513 Friedel pairs
290 parametersAbsolute structure parameter: 0.05 (5)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46237 (7)0.35551 (4)0.03846 (3)0.05778 (17)
Cl20.51793 (9)0.59375 (5)0.14719 (4)0.0793 (2)
O11.17773 (16)0.47514 (9)0.26910 (8)0.0450 (4)
O21.42110 (16)0.41973 (10)0.31523 (8)0.0520 (4)
O31.21358 (17)0.23957 (9)0.22343 (7)0.0377 (3)
O41.06875 (15)0.14810 (9)0.15336 (7)0.0371 (3)
O51.29642 (18)0.12683 (10)0.08848 (8)0.0456 (4)
O61.11749 (18)0.01657 (9)0.11327 (8)0.0452 (4)
O70.86643 (16)0.28806 (9)0.11292 (7)0.0376 (3)
O80.63005 (18)0.29606 (12)0.17188 (8)0.0542 (4)
O90.86234 (16)0.43867 (9)0.21585 (7)0.0366 (3)
O100.8181 (2)0.49330 (10)0.10897 (8)0.0553 (4)
C11.1148 (2)0.23894 (13)0.16396 (11)0.0346 (5)
H1A1.17590.26280.12320.042*
C20.9602 (2)0.29229 (13)0.17650 (10)0.0340 (4)
H2A0.89640.26500.21520.041*
C31.0049 (2)0.38910 (13)0.19405 (10)0.0354 (5)
H3A1.05670.41890.15330.043*
C41.1217 (2)0.38731 (13)0.25368 (11)0.0349 (5)
H4A1.06460.36230.29510.042*
C51.2792 (3)0.47197 (16)0.32884 (14)0.0512 (6)
H5A1.21720.44590.36860.061*
C61.3804 (3)0.32825 (15)0.29908 (12)0.0458 (6)
H6A1.32510.29970.33890.055*
H6B1.48080.29380.28850.055*
C71.2681 (2)0.32912 (13)0.23705 (11)0.0358 (5)
H7A1.32710.35350.19590.043*
C81.1749 (3)0.09907 (14)0.11513 (11)0.0367 (5)
C91.2170 (3)0.04574 (16)0.07276 (15)0.0623 (7)
H9A1.32840.05020.09240.075*
H9B1.22560.02500.02430.075*
C101.1332 (3)0.13444 (14)0.07586 (11)0.0418 (5)
C111.1874 (3)0.20073 (18)0.12047 (13)0.0600 (7)
H11A1.27830.19070.15000.072*
C121.1032 (5)0.2844 (2)0.12081 (18)0.0876 (11)
H12A1.13810.33210.14970.105*
C130.9681 (5)0.2943 (2)0.0776 (2)0.0910 (10)
H13A0.90890.34900.07800.109*
C140.9205 (5)0.2287 (3)0.03579 (19)0.0983 (11)
H14A0.82890.23720.00630.118*
C151.0007 (3)0.1510 (2)0.03498 (14)0.0686 (7)
H15A0.96400.10520.00460.082*
C160.7027 (3)0.28930 (13)0.11876 (11)0.0383 (5)
C170.6253 (3)0.27921 (16)0.04854 (12)0.0501 (6)
H17A0.58420.21720.04300.060*
H17B0.70840.29010.01230.060*
C180.7850 (3)0.48932 (14)0.16859 (13)0.0395 (5)
C190.6518 (3)0.54010 (16)0.20523 (12)0.0494 (6)
H19A0.70190.58560.23590.059*
H19B0.58860.49810.23450.059*
C201.3316 (3)0.56632 (18)0.34550 (18)0.0757 (9)
H20A1.40780.56540.38460.114*
H20B1.23540.60220.35760.114*
H20C1.38560.59270.30520.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0480 (3)0.0624 (4)0.0629 (4)0.0086 (3)0.0107 (3)0.0046 (3)
Cl20.0861 (5)0.0687 (5)0.0832 (5)0.0365 (4)0.0317 (4)0.0064 (4)
O10.0382 (8)0.0321 (8)0.0646 (10)0.0006 (7)0.0006 (7)0.0154 (7)
O20.0352 (8)0.0465 (10)0.0741 (11)0.0012 (7)0.0012 (8)0.0234 (8)
O30.0399 (7)0.0291 (8)0.0441 (8)0.0021 (6)0.0029 (7)0.0041 (6)
O40.0384 (7)0.0287 (8)0.0441 (8)0.0000 (6)0.0061 (6)0.0039 (6)
O50.0382 (8)0.0352 (8)0.0635 (10)0.0013 (7)0.0091 (7)0.0066 (7)
O60.0512 (8)0.0281 (8)0.0564 (9)0.0049 (7)0.0165 (8)0.0094 (7)
O70.0386 (8)0.0397 (9)0.0344 (8)0.0017 (6)0.0018 (7)0.0024 (7)
O80.0422 (8)0.0779 (12)0.0426 (10)0.0057 (8)0.0049 (8)0.0066 (8)
O90.0376 (7)0.0325 (8)0.0398 (8)0.0086 (6)0.0007 (7)0.0017 (6)
O100.0732 (11)0.0471 (10)0.0457 (10)0.0091 (9)0.0007 (9)0.0060 (8)
C10.0397 (11)0.0251 (11)0.0392 (12)0.0026 (9)0.0019 (9)0.0029 (9)
C20.0346 (10)0.0354 (11)0.0321 (11)0.0014 (9)0.0026 (9)0.0019 (9)
C30.0356 (11)0.0313 (11)0.0394 (12)0.0004 (9)0.0088 (9)0.0015 (9)
C40.0332 (10)0.0308 (12)0.0406 (12)0.0038 (8)0.0047 (9)0.0039 (9)
C50.0352 (11)0.0495 (14)0.0688 (16)0.0033 (10)0.0041 (12)0.0253 (12)
C60.0400 (11)0.0456 (14)0.0519 (14)0.0027 (10)0.0004 (11)0.0110 (11)
C70.0355 (10)0.0285 (11)0.0434 (13)0.0010 (9)0.0040 (9)0.0079 (9)
C80.0413 (12)0.0301 (12)0.0388 (12)0.0017 (10)0.0051 (10)0.0039 (10)
C90.0675 (15)0.0362 (14)0.0832 (18)0.0035 (12)0.0294 (15)0.0192 (13)
C100.0482 (12)0.0330 (12)0.0441 (12)0.0022 (10)0.0056 (11)0.0114 (11)
C110.0559 (14)0.0621 (19)0.0620 (16)0.0183 (14)0.0053 (13)0.0025 (14)
C120.119 (3)0.0480 (19)0.096 (3)0.0332 (19)0.049 (2)0.0267 (17)
C130.109 (3)0.051 (2)0.113 (3)0.030 (2)0.028 (3)0.024 (2)
C140.119 (3)0.087 (3)0.089 (2)0.035 (2)0.008 (2)0.025 (2)
C150.0832 (19)0.0692 (19)0.0534 (16)0.0104 (16)0.0070 (15)0.0092 (14)
C160.0428 (12)0.0312 (12)0.0409 (13)0.0055 (10)0.0012 (11)0.0014 (10)
C170.0548 (13)0.0468 (14)0.0489 (14)0.0091 (11)0.0107 (12)0.0084 (11)
C180.0466 (12)0.0274 (11)0.0446 (14)0.0023 (10)0.0083 (11)0.0007 (10)
C190.0518 (13)0.0403 (13)0.0562 (14)0.0130 (11)0.0099 (12)0.0024 (11)
C200.0435 (13)0.0595 (18)0.124 (3)0.0071 (13)0.0108 (15)0.0508 (17)
Geometric parameters (Å, º) top
Cl1—C171.763 (2)C5—H5A1.0000
Cl2—C191.761 (2)C6—C71.512 (3)
O1—C41.420 (2)C6—H6A0.9900
O1—C51.424 (3)C6—H6B0.9900
O2—C51.423 (2)C7—H7A1.0000
O2—C61.439 (3)C9—C101.491 (3)
O3—C11.406 (2)C9—H9A0.9900
O3—C71.433 (2)C9—H9B0.9900
O4—C81.355 (2)C10—C151.365 (3)
O4—C11.421 (2)C10—C111.386 (3)
O5—C81.194 (2)C11—C121.426 (4)
O6—C81.318 (2)C11—H11A0.9500
O6—C91.463 (3)C12—C131.393 (5)
O7—C161.343 (2)C12—H12A0.9500
O7—C21.452 (2)C13—C141.328 (5)
O8—C161.192 (2)C13—H13A0.9500
O9—C181.345 (3)C14—C151.331 (4)
O9—C31.444 (2)C14—H14A0.9500
O10—C181.187 (3)C15—H15A0.9500
C1—C21.513 (3)C16—C171.507 (3)
C1—H1A1.0000C17—H17A0.9900
C2—C31.528 (3)C17—H17B0.9900
C2—H2A1.0000C18—C191.504 (3)
C3—C41.499 (3)C19—H19A0.9900
C3—H3A1.0000C19—H19B0.9900
C4—C71.513 (3)C20—H20A0.9800
C4—H4A1.0000C20—H20B0.9800
C5—C201.506 (3)C20—H20C0.9800
C4—O1—C5109.16 (16)O5—C8—O4125.60 (19)
C5—O2—C6111.76 (15)O6—C8—O4106.92 (17)
C1—O3—C7109.60 (15)O6—C9—C10106.67 (18)
C8—O4—C1115.07 (15)O6—C9—H9A110.4
C8—O6—C9114.21 (17)C10—C9—H9A110.4
C16—O7—C2117.04 (15)O6—C9—H9B110.4
C18—O9—C3117.98 (16)C10—C9—H9B110.4
O3—C1—O4106.07 (15)H9A—C9—H9B108.6
O3—C1—C2110.18 (15)C15—C10—C11119.1 (2)
O4—C1—C2107.64 (14)C15—C10—C9120.2 (2)
O3—C1—H1A110.9C11—C10—C9120.8 (2)
O4—C1—H1A110.9C10—C11—C12118.2 (3)
C2—C1—H1A110.9C10—C11—H11A120.9
O7—C2—C1106.42 (15)C12—C11—H11A120.9
O7—C2—C3110.85 (15)C13—C12—C11118.2 (3)
C1—C2—C3109.45 (15)C13—C12—H12A120.9
O7—C2—H2A110.0C11—C12—H12A120.9
C1—C2—H2A110.0C14—C13—C12121.4 (3)
C3—C2—H2A110.0C14—C13—H13A119.3
O9—C3—C4107.40 (14)C12—C13—H13A119.3
O9—C3—C2110.87 (15)C13—C14—C15120.3 (4)
C4—C3—C2107.87 (15)C13—C14—H14A119.9
O9—C3—H3A110.2C15—C14—H14A119.9
C4—C3—H3A110.2C14—C15—C10122.8 (3)
C2—C3—H3A110.2C14—C15—H15A118.6
O1—C4—C3110.57 (16)C10—C15—H15A118.6
O1—C4—C7108.61 (15)O8—C16—O7124.80 (19)
C3—C4—C7110.53 (16)O8—C16—C17125.23 (19)
O1—C4—H4A109.0O7—C16—C17109.96 (19)
C3—C4—H4A109.0C16—C17—Cl1110.66 (16)
C7—C4—H4A109.0C16—C17—H17A109.5
O2—C5—O1110.07 (17)Cl1—C17—H17A109.5
O2—C5—C20108.63 (18)C16—C17—H17B109.5
O1—C5—C20108.0 (2)Cl1—C17—H17B109.5
O2—C5—H5A110.0H17A—C17—H17B108.1
O1—C5—H5A110.0O10—C18—O9125.6 (2)
C20—C5—H5A110.0O10—C18—C19126.8 (2)
O2—C6—C7107.76 (18)O9—C18—C19107.63 (19)
O2—C6—H6A110.2C18—C19—Cl2112.21 (17)
C7—C6—H6A110.2C18—C19—H19A109.2
O2—C6—H6B110.2Cl2—C19—H19A109.2
C7—C6—H6B110.2C18—C19—H19B109.2
H6A—C6—H6B108.5Cl2—C19—H19B109.2
O3—C7—C6109.09 (17)H19A—C19—H19B107.9
O3—C7—C4109.16 (15)C5—C20—H20A109.5
C6—C7—C4108.45 (17)C5—C20—H20B109.5
O3—C7—H7A110.0H20A—C20—H20B109.5
C6—C7—H7A110.0C5—C20—H20C109.5
C4—C7—H7A110.0H20A—C20—H20C109.5
O5—C8—O6127.48 (19)H20B—C20—H20C109.5
C7—O3—C1—O4178.93 (14)O2—C6—C7—O3174.90 (16)
C7—O3—C1—C264.85 (19)O2—C6—C7—C456.1 (2)
C8—O4—C1—O387.73 (18)O1—C4—C7—O3178.26 (15)
C8—O4—C1—C2154.34 (16)C3—C4—C7—O360.3 (2)
C16—O7—C2—C1148.00 (16)O1—C4—C7—C659.5 (2)
C16—O7—C2—C393.07 (19)C3—C4—C7—C6179.03 (16)
O3—C1—C2—O7179.99 (14)C9—O6—C8—O50.7 (3)
O4—C1—C2—O764.77 (19)C9—O6—C8—O4179.11 (18)
O3—C1—C2—C360.1 (2)C1—O4—C8—O53.1 (3)
O4—C1—C2—C3175.39 (14)C1—O4—C8—O6177.14 (15)
C18—O9—C3—C4145.41 (17)C8—O6—C9—C10179.41 (19)
C18—O9—C3—C296.97 (19)O6—C9—C10—C1578.9 (3)
O7—C2—C3—O971.06 (18)O6—C9—C10—C11100.5 (2)
C1—C2—C3—O9171.86 (16)C15—C10—C11—C121.0 (3)
O7—C2—C3—C4171.62 (14)C9—C10—C11—C12179.6 (2)
C1—C2—C3—C454.5 (2)C10—C11—C12—C131.7 (4)
C5—O1—C4—C3175.95 (16)C11—C12—C13—C141.6 (5)
C5—O1—C4—C762.6 (2)C12—C13—C14—C150.8 (6)
O9—C3—C4—O164.92 (19)C13—C14—C15—C100.1 (5)
C2—C3—C4—O1175.53 (15)C11—C10—C15—C140.2 (4)
O9—C3—C4—C7174.79 (15)C9—C10—C15—C14179.6 (3)
C2—C3—C4—C755.2 (2)C2—O7—C16—O82.2 (3)
C6—O2—C5—O162.2 (2)C2—O7—C16—C17176.82 (16)
C6—O2—C5—C20179.8 (2)O8—C16—C17—Cl145.1 (3)
C4—O1—C5—O263.6 (2)O7—C16—C17—Cl1135.95 (16)
C4—O1—C5—C20177.92 (18)C3—O9—C18—O104.4 (3)
C5—O2—C6—C758.2 (2)C3—O9—C18—C19174.89 (16)
C1—O3—C7—C6177.39 (16)O10—C18—C19—Cl211.2 (3)
C1—O3—C7—C464.27 (19)O9—C18—C19—Cl2169.47 (15)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C10—C15 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6B···O8i0.992.573.235 (3)125
C13—H13A···O10ii0.952.543.452 (4)162
C17—H17B···O5iii0.992.423.310 (3)149
C19—H19A···O3iv0.992.523.460 (3)158
C19—H19B···O2v0.992.383.364 (3)170
C20—H20B···O4iv0.982.593.494 (3)154
C4—H4A···Cg3iv1.002.893.879 (2)171
C14—H14A···Cg3vi0.952.873.818 (4)173
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x1/2, y+1/2, z; (iv) x+2, y+1/2, z+1/2; (v) x1, y, z; (vi) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC20H22Cl2O10
Mr493.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)200
a, b, c (Å)8.1780 (1), 14.9165 (3), 19.3555 (4)
V3)2361.12 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.44 × 0.34 × 0.27
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.821, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
30676, 5818, 3677
Rint0.049
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.084, 0.92
No. of reflections5818
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.23
Absolute structureFlack (1983), 2513 Friedel pairs
Absolute structure parameter0.05 (5)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C10—C15 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6B···O8i0.992.573.235 (3)124.7
C13—H13A···O10ii0.952.543.452 (4)161.5
C17—H17B···O5iii0.992.423.310 (3)149.2
C19—H19A···O3iv0.992.523.460 (3)157.5
C19—H19B···O2v0.992.383.364 (3)170.0
C20—H20B···O4iv0.982.593.494 (3)153.6
C4—H4A···Cg3iv1.002.893.879 (2)171
C14—H14A···Cg3vi0.952.873.818 (4)173
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x1/2, y+1/2, z; (iv) x+2, y+1/2, z+1/2; (v) x1, y, z; (vi) x1/2, y1/2, z.
 

Acknowledgements

MTS thanks theUniversity of Mysore for use of their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBudavari, S. (1989). Editor. The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals, Rahway, NJ: Merck & Co.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97 1354–1355.  CrossRef CAS Web of Science Google Scholar
First citationErnst, M. & Derendorf, H. (1995). Drug Actions: Basic Principles and Therapeutic Aspects. Stuttgart: Medpharm Scientific Publishers.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJi, Z., Wang, H.-K., Bastow, K. F., Zhu, X.-K., Cho, S. J., Cheng, Y.-C. & Lee, K.-H. (1997). Bioorg. Med. Chem. Lett. 7, 607–612.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSanford, G. L., Gilman, A. & Gilman, A. G. (1990). The Pharmacological Basis of Therapeutics, 8th Edition. Elmsford, NY, Pergamon Press.  Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J.-F. & Wang, Y.-G. (2003). Acta Cryst. E59, o756–o758.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWrasidlo, W., Schröder, U., Bernt, K., Hübener, N., Shabat, D., Gaedicke, G. & Lode, H. (2002). Bioorg. Med. Chem. Lett. 12, 557–560.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, Q.-X., Shi, Y.-P. & Shi, Y.-P. (2005). Acta Cryst. E61, o3502–o3504.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, F.-Y., Jian, S.-Z., He, X.-Y. & Wang, Y.-G. (2005). Acta Cryst. E61, o1374–o1376.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o572-o573
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds