organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o504-o505

(E)-1-Phenyl-2-({5-[(1E)-(2-phenyl­hydrazin-1-yl­­idene)meth­yl]-2-thien­yl}methyl­­idene)hydrazine

aDepartamento de Quimica, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 26 January 2010; accepted 27 January 2010; online 3 February 2010)

The title mol­ecule, C18H16N4S, adopts a U-shape with the aromatic groups lying syn and orientated in the same direction as the thio­phene S atom. The conformation about each of the C=N bonds is E. Overall, the mol­ecule is curved as seen in the dihedral angle of 30.26 (19)° formed between the terminal benzene rings. In the crystal, supra­molecular chains along the c axis are formed by a combination of N—H⋯N hydrogen bonds and N—H⋯π inter­actions.

Related literature

For specific uses of 2-substituted-thio­phenes as materials, see: Michaleviciute et al. (2007[Michaleviciute, A., Buika, G., Grazulevicius, J. V., Tran-Van, F., Chevrot, C. & Jankauskas, V. (2007). Mol. Cryst. Liq. Cryst. 468, 459-470.], 2009[Michaleviciute, A., Lygaitis, R., Grazulevicius, J. V., Buika, G., Jankauskas, V., Undzenas, A. & Fataraite, E. (2009). Synth. Met. 159, 223-227.]); Kwon et al. (2009[Kwon, O.-P., Jazbinsek, M., Seo, J.-I., Kim, P.-J., Yun, H., Lee, Y. S. & Gunter, P. (2009). J. Phys. Chem. C, 113, 15405-15411.]). For their specific uses as biological agents, see: Sonar & Crooks (2009[Sonar, V. N. & Crooks, P. A. (2009). J. Enz. Inhib. Med. Chem. 24, 117-124]); Mellado & Cortes (2009[Mellado, O. G. & Cortes, E. C. (2009). Mex. Pat. Appl. CODEN: MXXXA3 MX 2007012608 A 20090413.]); Satyanarayana et al. (2008[Satyanarayana, V. S. V., Sreevani, P., Sivakumar, A. & Vijayakumar, V. (2008). ARKIVOC, pp. 221-233.]); Lourenço et al. (2007[Lourenço, M. C. S., Vicente, F. R., Henriques, M., das, G. M. de O., Candéa, A. L. P., Gonçalves, R. S. B., Nogueira, T. C. M., Ferreira, M. de L. & de Souza, M. V. N. (2007). Bioorg. Med. Chem. Lett. 17, 6895-6898.]). For the preparation of hydrazones of thio­phene­carbaldehydes, see: Kwon, et al. (2009[Kwon, O.-P., Jazbinsek, M., Seo, J.-I., Kim, P.-J., Yun, H., Lee, Y. S. & Gunter, P. (2009). J. Phys. Chem. C, 113, 15405-15411.]); Wardell et al. (2007[Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. E63, o1848-o1850.]); Vaysse & Pastour (1964[Vaysse, M. & Pastour, P. (1964). Compt. Rend. 259, 2657-2659.]); Novitskii et al. (1961[Novitskii, K. Yu., Volkov, V. P., Shaiderova, L. P. & Yurev, Yu. K. (1961). Zh. Obshch. Khim. 31, 3277-3280.]). For related structures, see: Wardell et al. (2007[Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. E63, o1848-o1850.], 2010[Wardell, S. M. S. V., de Lima, G. M., Tiekink, E. R. T. & Wardell, J. L. (2010). Acta Cryst. E66, o271-o272.]); Ferreira et al. (2009[Ferreira de Lima, M., de Souza, M. V. N., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3203.]); Nogueira et al. (2010[Nogueira, T. C. M., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o177.]); de Lima et al. (2010[Lima, G. M. de, Harrison, W. T. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o457-o458.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N4S

  • Mr = 320.41

  • Trigonal, P 32

  • a = 15.6495 (6) Å

  • c = 5.9335 (10) Å

  • V = 1258.5 (2) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 120 K

  • 0.42 × 0.06 × 0.04 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.767, Tmax = 1.000

  • 11400 measured reflections

  • 3675 independent reflections

  • 3287 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.108

  • S = 1.04

  • 3675 reflections

  • 214 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1748 Friedel pairs

  • Flack parameter: 0.04 (10)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C6–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯N4i 0.88 (4) 2.58 (5) 3.398 (4) 155 (4)
C12—H12⋯N2ii 0.95 2.57 3.463 (5) 157
N4—H4NCgii 0.89 (4) 2.81 (5) 3.415 (4) 126 (3)
Symmetry codes: (i) [-x+y+1, -x+2, z+{\script{1\over 3}}]; (ii) [-y+2, x-y+1, z+{\script{2\over 3}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Hydrazone and amide derivatives of thiophene have found many uses, for example in optoelectronic application (Michaleviciute et al., 2007), as optical non-linear materials (Kwon et al., 2009), as hole transporting materials (Michaleviciute et al., 2009), and as biological agents (Sonar & Crooks, 2009; Mellado et al., 2009; Satyanarayana et al., 2008, Lourenço et al., 2007). In continuation of structural studies on thiophene derivatives (Wardell et al., 2007; Nogueira et al., 2010; Ferreira et al., 2009; Wardell et al., 2010; de Lima et al., 2010), we now report the structure of 2,5-thiophenedicarbaldehyde bis(phenylhydrazone), (I).

The molecule of (I) has a U-shaped conformation as the benzene rings are syn, lying to the same side of the molecule as the thiophene-S atom, Fig. 1. The conformation about each of the C5N1 [1.282 (4) Å] and C12N3 [1.287 (4) Å] double bonds is E. There are twists in the molecule, primarily about the hydrazine bonds, as seen in the values of the C5/N1/N2/C6 and C12/N3/N4/C13 torsion angles of -171.4 (3) and 165.1 (3) °. respectively. The dihedral angle formed between the two benzene rings is 30.26 (19) °.

Each of the hydrazine-N–H atoms participates in a significant intermolecular interactions to stabilise a supramolecular chain along the c axis, Fig. 2. The N2—H atom forms a conventional, albeit weak, N–H···N interaction, Table 1. The N4–H atom participates in a N–H···π interaction [N4–H···ring centroid(C6–C11)i distance = 2.81 (5) Å, N4···ring centroid(C6–C11)i = 3.415 (4) Å with an angle at H = 126 (3) ° for i: 2- y, 1+ x - y, 2/3+ z]. The resultant chain is further stabilised by C–H···N2 contacts, Table 1. The primary contacts between supramolecular chains are of the type C–H···π where the π-system is derived from the thiophene ring [C17–H···ring centroid(S1,C1–C4)ii = 2.87 Å, C17······ring centroid(S1,C1–C4)ii = 3.798 (6) Å, with angle at H = 165 ° for ii: 1-x+y, 1-x, -2/3+z], Fig. 3.

Related literature top

For specific uses of 2-substituted-thiophenes as materials, see: Michaleviciute et al. (2007, 2009); Kwon et al. (2009). For their specific uses as biological agents, see: Sonar & Crooks (2009); Mellado et al. (2009); Satyanarayana et al. (2008); Lourenço et al. (2007). For the preparation of hydrazones of thiophenecarbaldehydes, see: Kwon, et al. (2009); Wardell et al. (2007); Vaysse & Pastour (1964); Novitskii et al. (1961). For related structures, see: Wardell et al. (2007, 2010); Ferreira et al. (2009); Nogueira et al. (2010); de Lima et al. (2010).

Experimental top

Solutions of phenylhydrazine.hydrochloride (0.22 g, 2 mmol) in EtOH (10 ml) and 2,5-thiophenedicarbaldehyde (0.14 g, 1 mmol) in EtOH (10 ml) were mixed. The reaction mixture was refluxed for 1 h, and rotary evaporated. The solid residue was recrystallised twice from aq. EtOH (v;v 1:2), m.p. 498-500 K. lit value 504 K (Vaysse & Pastour 1964) and 483-484 K (Novitskii et al., 1961).

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located from a difference map and refined with Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain in (I) mediated by N–H···N hydrogen bonds (blue dashed bonds) and N—H···π interactions (purple dashed lines). Hydrogen atoms not involved in these intermolecular interactions are omitted for reasons of clarity. Colour code: S, yellow; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. View in projection down the c axis of the unit cell contents for (I). Colour code: S, yellow; N, blue; C, grey; and H, green.
(E)-1-Phenyl-2-({5-[(1E)-(2-phenylhydrazin-1-ylidene)methyl]- 2-thienyl}methylidene)hydrazine top
Crystal data top
C18H16N4SDx = 1.268 Mg m3
Mr = 320.41Mo Kα radiation, λ = 0.71073 Å
Trigonal, P32Cell parameters from 8754 reflections
Hall symbol: P 32θ = 2.9–27.5°
a = 15.6495 (6) ŵ = 0.20 mm1
c = 5.9335 (10) ÅT = 120 K
V = 1258.5 (2) Å3Rod, yellow
Z = 30.42 × 0.06 × 0.04 mm
F(000) = 504
Data collection top
Nonius KappaCCD area-detector
diffractometer
3675 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode3287 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.059
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 2020
Tmin = 0.767, Tmax = 1.000l = 77
11400 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0104P)2 + 1.4032P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3675 reflectionsΔρmax = 0.24 e Å3
214 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 1748 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (10)
Crystal data top
C18H16N4SZ = 3
Mr = 320.41Mo Kα radiation
Trigonal, P32µ = 0.20 mm1
a = 15.6495 (6) ÅT = 120 K
c = 5.9335 (10) Å0.42 × 0.06 × 0.04 mm
V = 1258.5 (2) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
3675 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3287 reflections with I > 2σ(I)
Tmin = 0.767, Tmax = 1.000Rint = 0.059
11400 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108Δρmax = 0.24 e Å3
S = 1.04Δρmin = 0.22 e Å3
3675 reflectionsAbsolute structure: Flack (1983), 1748 Friedel pairs
214 parametersAbsolute structure parameter: 0.04 (10)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.81560 (6)0.77053 (6)0.68924 (12)0.02814 (16)
N10.68935 (19)0.86586 (19)0.6256 (4)0.0306 (6)
N20.6286 (2)0.9036 (2)0.5913 (5)0.0333 (6)
H2N0.614 (3)0.927 (3)0.711 (7)0.050*
N30.89915 (18)0.63239 (18)0.6731 (4)0.0297 (6)
N40.9375 (2)0.5714 (2)0.6555 (5)0.0361 (6)
H4N0.963 (3)0.563 (3)0.782 (7)0.054*
C10.8031 (2)0.8521 (2)0.8654 (5)0.0300 (7)
C20.8520 (2)0.8645 (3)1.0644 (5)0.0346 (7)
H20.85430.90711.18120.041*
C30.8988 (2)0.8076 (3)1.0785 (5)0.0351 (7)
H30.93600.80811.20550.042*
C40.8851 (2)0.7513 (2)0.8902 (5)0.0268 (6)
C50.7407 (2)0.8917 (2)0.8070 (5)0.0299 (6)
H50.73740.93800.90490.036*
C60.5620 (2)0.8678 (2)0.4142 (5)0.0331 (7)
C70.4833 (3)0.8868 (3)0.4091 (6)0.0389 (8)
H70.47410.92140.52940.047*
C80.4193 (3)0.8546 (3)0.2278 (6)0.0471 (9)
H80.36600.86750.22420.056*
C90.4316 (3)0.8040 (3)0.0517 (6)0.0488 (10)
H90.38710.78230.07200.059*
C100.5088 (3)0.7852 (3)0.0562 (6)0.0431 (8)
H100.51710.75020.06470.052*
C110.5747 (3)0.8169 (2)0.2359 (5)0.0360 (7)
H110.62790.80400.23740.043*
C120.9187 (2)0.6824 (2)0.8568 (5)0.0299 (6)
H120.95590.67360.97140.036*
C130.9022 (3)0.4977 (2)0.4896 (5)0.0345 (7)
C140.8457 (3)0.4988 (2)0.3078 (5)0.0370 (7)
H140.82570.54680.29900.044*
C150.8196 (3)0.4278 (3)0.1403 (6)0.0474 (9)
H150.78110.42760.01620.057*
C160.8481 (3)0.3579 (3)0.1506 (7)0.0533 (11)
H160.83110.31100.03280.064*
C170.9020 (3)0.3566 (3)0.3340 (7)0.0532 (11)
H170.92020.30720.34370.064*
C180.9296 (3)0.4258 (2)0.5029 (6)0.0418 (8)
H180.96710.42460.62750.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0322 (4)0.0288 (4)0.0255 (3)0.0168 (4)0.0005 (3)0.0002 (3)
N10.0320 (14)0.0295 (14)0.0300 (13)0.0151 (12)0.0019 (11)0.0043 (10)
N20.0406 (16)0.0391 (16)0.0295 (13)0.0268 (14)0.0022 (12)0.0007 (11)
N30.0242 (13)0.0246 (13)0.0388 (14)0.0111 (11)0.0010 (11)0.0006 (11)
N40.0395 (16)0.0385 (17)0.0379 (15)0.0252 (14)0.0053 (12)0.0063 (12)
C10.0312 (17)0.0308 (16)0.0274 (14)0.0150 (14)0.0016 (12)0.0010 (12)
C20.0378 (18)0.0400 (19)0.0304 (16)0.0228 (16)0.0030 (13)0.0084 (13)
C30.0350 (18)0.044 (2)0.0298 (16)0.0226 (16)0.0032 (13)0.0057 (14)
C40.0230 (14)0.0280 (15)0.0272 (14)0.0112 (12)0.0024 (11)0.0020 (12)
C50.0342 (17)0.0300 (16)0.0283 (15)0.0182 (14)0.0002 (12)0.0003 (12)
C60.0317 (17)0.0304 (17)0.0319 (16)0.0115 (14)0.0039 (13)0.0095 (12)
C70.0340 (18)0.044 (2)0.0395 (18)0.0198 (16)0.0056 (14)0.0091 (15)
C80.0309 (19)0.052 (2)0.052 (2)0.0162 (17)0.0004 (16)0.0148 (18)
C90.037 (2)0.050 (2)0.042 (2)0.0083 (18)0.0089 (16)0.0092 (17)
C100.040 (2)0.038 (2)0.0389 (19)0.0102 (16)0.0000 (15)0.0029 (15)
C110.0335 (17)0.0313 (17)0.0378 (17)0.0122 (15)0.0025 (13)0.0062 (13)
C120.0244 (15)0.0318 (16)0.0313 (15)0.0124 (13)0.0015 (12)0.0031 (12)
C130.0378 (18)0.0277 (16)0.0346 (16)0.0137 (14)0.0059 (14)0.0012 (13)
C140.0415 (19)0.0304 (18)0.0357 (17)0.0154 (16)0.0010 (14)0.0015 (13)
C150.050 (2)0.041 (2)0.0405 (19)0.0145 (19)0.0006 (17)0.0031 (16)
C160.069 (3)0.033 (2)0.050 (2)0.020 (2)0.002 (2)0.0097 (17)
C170.074 (3)0.033 (2)0.056 (2)0.029 (2)0.006 (2)0.0014 (17)
C180.056 (2)0.0297 (17)0.0424 (19)0.0239 (17)0.0019 (17)0.0025 (15)
Geometric parameters (Å, º) top
S1—C41.738 (3)C7—H70.9500
S1—C11.736 (3)C8—C91.382 (6)
N1—C51.282 (4)C8—H80.9500
N1—N21.361 (4)C9—C101.379 (5)
N2—C61.386 (4)C9—H90.9500
N2—H2N0.88 (4)C10—C111.391 (5)
N3—C121.287 (4)C10—H100.9500
N3—N41.362 (4)C11—H110.9500
N4—C131.402 (4)C12—H120.9500
N4—H4N0.89 (4)C13—C181.392 (5)
C1—C21.368 (4)C13—C141.400 (5)
C1—C51.436 (4)C14—C151.391 (5)
C2—C31.410 (5)C14—H140.9500
C2—H20.9500C15—C161.374 (6)
C3—C41.371 (4)C15—H150.9500
C3—H30.9500C16—C171.383 (6)
C4—C121.431 (4)C16—H160.9500
C5—H50.9500C17—C181.377 (5)
C6—C111.396 (5)C17—H170.9500
C6—C71.405 (5)C18—H180.9500
C7—C81.382 (5)
C4—S1—C191.41 (15)C9—C8—H8119.6
C5—N1—N2116.9 (3)C10—C9—C8119.8 (3)
N1—N2—C6119.0 (3)C10—C9—H9120.1
N1—N2—H2N116 (3)C8—C9—H9120.1
C6—N2—H2N119 (3)C9—C10—C11120.7 (4)
C12—N3—N4115.9 (3)C9—C10—H10119.6
N3—N4—C13120.0 (3)C11—C10—H10119.6
N3—N4—H4N115 (3)C10—C11—C6119.6 (3)
C13—N4—H4N119 (3)C10—C11—H11120.2
C2—C1—C5126.9 (3)C6—C11—H11120.2
C2—C1—S1111.3 (2)N3—C12—C4120.7 (3)
C5—C1—S1121.6 (2)N3—C12—H12119.6
C1—C2—C3113.1 (3)C4—C12—H12119.6
C1—C2—H2123.5C18—C13—C14120.3 (3)
C3—C2—H2123.5C18—C13—N4118.1 (3)
C4—C3—C2113.2 (3)C14—C13—N4121.5 (3)
C4—C3—H3123.4C15—C14—C13118.4 (3)
C2—C3—H3123.4C15—C14—H14120.8
C3—C4—C12126.7 (3)C13—C14—H14120.8
C3—C4—S1111.0 (2)C16—C15—C14121.4 (4)
C12—C4—S1122.2 (2)C16—C15—H15119.3
N1—C5—C1121.4 (3)C14—C15—H15119.3
N1—C5—H5119.3C15—C16—C17119.3 (4)
C1—C5—H5119.3C15—C16—H16120.3
N2—C6—C11120.8 (3)C17—C16—H16120.3
N2—C6—C7119.5 (3)C18—C17—C16121.0 (4)
C11—C6—C7119.6 (3)C18—C17—H17119.5
C8—C7—C6119.5 (4)C16—C17—H17119.5
C8—C7—H7120.2C17—C18—C13119.5 (4)
C6—C7—H7120.2C17—C18—H18120.3
C7—C8—C9120.9 (4)C13—C18—H18120.3
C7—C8—H8119.6
C5—N1—N2—C6171.4 (3)C7—C8—C9—C100.0 (5)
C12—N3—N4—C13165.1 (3)C8—C9—C10—C110.2 (5)
C4—S1—C1—C21.3 (3)C9—C10—C11—C60.4 (5)
C4—S1—C1—C5173.5 (3)N2—C6—C11—C10177.5 (3)
C5—C1—C2—C3173.6 (3)C7—C6—C11—C100.3 (5)
S1—C1—C2—C30.9 (4)N4—N3—C12—C4177.9 (3)
C1—C2—C3—C40.3 (4)C3—C4—C12—N3178.5 (3)
C2—C3—C4—C12176.8 (3)S1—C4—C12—N30.7 (4)
C2—C3—C4—S11.3 (4)N3—N4—C13—C18168.3 (3)
C1—S1—C4—C31.5 (3)N3—N4—C13—C1415.3 (5)
C1—S1—C4—C12176.7 (3)C18—C13—C14—C151.2 (5)
N2—N1—C5—C1176.6 (3)N4—C13—C14—C15175.2 (3)
C2—C1—C5—N1171.7 (3)C13—C14—C15—C160.1 (6)
S1—C1—C5—N12.2 (4)C14—C15—C16—C171.6 (6)
N1—N2—C6—C1118.7 (4)C15—C16—C17—C181.8 (7)
N1—N2—C6—C7164.1 (3)C16—C17—C18—C130.5 (6)
N2—C6—C7—C8177.3 (3)C14—C13—C18—C171.0 (5)
C11—C6—C7—C80.1 (5)N4—C13—C18—C17175.5 (3)
C6—C7—C8—C90.0 (5)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2n···N4i0.88 (4)2.58 (5)3.398 (4)155 (4)
C12—H12···N2ii0.952.573.463 (5)157
N4—H4N···Cgii0.89 (4)2.81 (5)3.415 (4)126 (3)
Symmetry codes: (i) x+y+1, x+2, z+1/3; (ii) y+2, xy+1, z+2/3.

Experimental details

Crystal data
Chemical formulaC18H16N4S
Mr320.41
Crystal system, space groupTrigonal, P32
Temperature (K)120
a, c (Å)15.6495 (6), 5.9335 (10)
V3)1258.5 (2)
Z3
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.42 × 0.06 × 0.04
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.767, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11400, 3675, 3287
Rint0.059
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.108, 1.04
No. of reflections3675
No. of parameters214
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.22
Absolute structureFlack (1983), 1748 Friedel pairs
Absolute structure parameter0.04 (10)

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2n···N4i0.88 (4)2.58 (5)3.398 (4)155 (4)
C12—H12···N2ii0.952.573.463 (5)157
N4—H4N···Cgii0.89 (4)2.81 (5)3.415 (4)126 (3)
Symmetry codes: (i) x+y+1, x+2, z+1/3; (ii) y+2, xy+1, z+2/3.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerreira de Lima, M., de Souza, M. V. N., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKwon, O.-P., Jazbinsek, M., Seo, J.-I., Kim, P.-J., Yun, H., Lee, Y. S. & Gunter, P. (2009). J. Phys. Chem. C, 113, 15405–15411.  Web of Science CrossRef CAS Google Scholar
First citationLima, G. M. de, Harrison, W. T. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o457–o458.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLourenço, M. C. S., Vicente, F. R., Henriques, M., das, G. M. de O., Candéa, A. L. P., Gonçalves, R. S. B., Nogueira, T. C. M., Ferreira, M. de L. & de Souza, M. V. N. (2007). Bioorg. Med. Chem. Lett. 17, 6895–6898.  PubMed Google Scholar
First citationMellado, O. G. & Cortes, E. C. (2009). Mex. Pat. Appl. CODEN: MXXXA3 MX 2007012608 A 20090413.  Google Scholar
First citationMichaleviciute, A., Buika, G., Grazulevicius, J. V., Tran-Van, F., Chevrot, C. & Jankauskas, V. (2007). Mol. Cryst. Liq. Cryst. 468, 459–470.  Web of Science CrossRef CAS Google Scholar
First citationMichaleviciute, A., Lygaitis, R., Grazulevicius, J. V., Buika, G., Jankauskas, V., Undzenas, A. & Fataraite, E. (2009). Synth. Met. 159, 223–227.  Web of Science CrossRef CAS Google Scholar
First citationNogueira, T. C. M., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNovitskii, K. Yu., Volkov, V. P., Shaiderova, L. P. & Yurev, Yu. K. (1961). Zh. Obshch. Khim. 31, 3277–3280.  CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSatyanarayana, V. S. V., Sreevani, P., Sivakumar, A. & Vijayakumar, V. (2008). ARKIVOC, pp. 221–233.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonar, V. N. & Crooks, P. A. (2009). J. Enz. Inhib. Med. Chem. 24, 117–124  Web of Science CrossRef CAS Google Scholar
First citationVaysse, M. & Pastour, P. (1964). Compt. Rend. 259, 2657–2659.  CAS Google Scholar
First citationWardell, S. M. S. V., de Lima, G. M., Tiekink, E. R. T. & Wardell, J. L. (2010). Acta Cryst. E66, o271–o272.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. E63, o1848–o1850.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o504-o505
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds