organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(E)-(5-tert-Butyl-2-hy­droxy­phen­yl)diazen­yl]benzoic acid benzene hemisolvate

aDepartment of Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 1 February 2010; accepted 1 February 2010; online 6 February 2010)

The title benzene hemisolvate, C17H18N2O3·0.5C6H6, features an essentially planar (the r.m.s. deviation of the non-H atoms, excluding methyl-C, is 0.071 Å) diazo mol­ecule with an E conformation about the N=N bond, and a half-mol­ecule of benzene disposed about a centre of inversion. The dihedral angle formed between the benzene rings of the diazo mol­ecule is 7.69 (12)°. In the crystal, centrosymmetrically related dimers associate via the eight-membered carboxylic acid dimer synthon, {⋯HOC(=O)}2, and these are connected into a supra­molecular chain along the b axis via C—H⋯O contacts.

Related literature

For background to and motivation for the synthesis of the title compound, see: Basu Baul et al. (2010a[Basu Baul, T. S., Paul, A., Pellerito, L., Scopelliti, M., Singh, P., Verma, P., Duthie, A., de Vos, D. & Tiekink, E. R. T. (2010a). Invest New Drugs, doi:10.1007/s10637-009-9360-3.],b[Basu Baul, T. S., Paul, A., Pellerito, L., Scopelliti, M., Singh, P., Verma, P. & de Vos, D. (2010b). Invest New Drugs, doi:10.1007/s10637-009-9293-x.],c[Basu Baul, T. S., Paul, A. & Tiekink, E. R. T. (2010c). Z. Kristallogr. doi:10.1524/zkri.2010.1232.]). For the structure of a related diazo compound, see: Basu Baul et al. (2008[Basu Baul, T. S., Paul, A., Arman, H. D. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o2125.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O3·0.5C6H6

  • Mr = 337.39

  • Triclinic, [P \overline 1]

  • a = 6.0960 (2) Å

  • b = 7.3578 (3) Å

  • c = 20.6562 (7) Å

  • α = 81.326 (2)°

  • β = 88.992 (2)°

  • γ = 71.355 (2)°

  • V = 867.37 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.49 × 0.09 × 0.03 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.859, Tmax = 1

  • 11445 measured reflections

  • 3053 independent reflections

  • 1888 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.157

  • S = 1.08

  • 3053 reflections

  • 232 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3o⋯N1 0.84 1.87 2.587 (3) 142
O2—H2o⋯O1i 0.84 1.79 2.614 (3) 167
C3—H3⋯O1ii 0.95 2.59 3.473 (3) 155
C6—H6⋯O3iii 0.95 2.48 3.201 (3) 133
Symmetry codes: (i) -x+2, -y+2, -z; (ii) -x+2, -y+1, -z; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

4-Aminobenzoic acid reacts with 4-tert-butyl-phenol to yield the title compound which was prepared during an on-going study of the coordination chemistry of organotin carboxylates, their potential as cytotoxic agents and molecular modelling (Basu Baul et al., 2010a,b,c). The asymmetric unit of (I) comprises a molecule of 4-[(E)-2-(5-tert-butyl-2-hydroxyphenyl)diazen-1-yl]benzoic acid and half a molecule of benzene, with the latter being disposed about a crystallographic centre of inversion. The conformation about the central N1N2 bond [1.269 (3) Å] is E, Fig. 1. The diazo molecule is essentially planar with the exception of the tert-butyl group. The planarity is reflected in the sequence of O1–C1–C2–C3, C4–C5–N1–N2, and N1–N2–C8–C9 torsion angles of 6.4 (4), 172.6 (2), and 0.1 (4)°, respectively, which show only small twists in the molecule. The dihedral angle formed between the two benzene rings is 7.69 (12) °. The planar conformation is stabilised by an intramolecular Ohydroxyl—H···Nazo hydrogen bond, Table 1. In terms of geometric parameters, the diazo compound in (I) resembles those reported for the 2-benzoic acid isomer (Basu Baul et al., 2008).

The crystal packing features a familiar eight-membered carboxylic acid dimer synthon, Table 1. These are connected into a supramolecular chain via C–H···O contacts, Fig. 2 and Table 1. The C–H···O contacts involving the carbonyl-O2 atom lead to the formation of ten-membered {···HC3O}2 synthons, while those involving the hydroxyl-O3—H group are somewhat larger, i.e. 17-membered {···OhydroxylC2N2C3H···Ocarbonyl···HOcarboxylic acidC4H}2, and incorporate the intramolecular six-membered {···HOC2N2} synthons. The supramolecular chain has a flat topology and is aligned along the b axis. Chains stack in the crystal structure to form columns with the primary interactions between them being of the type π···π: ring centroid(C2—C7)···ring centroid(C8—C13)i = 3.6637 (14) Å for i: 1+x, y, z. Interspersing these arrays are the solvent benzene molecules, Fig. 3.

Related literature top

For background to and motivation for the synthesis of the title compound, see: Basu Baul et al. (2010a,b,c). For the structure of a related diazo compound, see: Basu Baul et al. (2008).

Experimental top

The compound was prepared by reacting p-carboxybenzenediazonium chloride with 4-tert-butyl-phenol in alkaline solution under cold conditions (273–278 K) following the literature method (Basu Baul et al., 2010a). Several crystallizations from methanol yielded red plates. M.pt.: 531–533 K. Anal. Calc. for C17H18N2O3: C, 68.44; H, 6.08; N, 9.39 %. Found. 68.39; H, 6.12; N, 9.40 %. IR (KBr): 1688 ν(OCO)asym. Single crystals suitable for an X-ray crystal-structure determination were obtained by slow evaporation of a benzene solution of the analytically pure compound and shown by crystallography to be the hemi-benzene solvate, (I).

Refinement top

All H-atoms were placed in calculated positions (O–H = 0.84 Å, and C–H = 0.95-0.98 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2-1.5Ueq(carrier atom).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular chain formation along the b axis in (I) mediated by O—H···O hydrogen bonds (orange dashed lines) and C—H···O contacts (blue dashed lines).
[Figure 3] Fig. 3. View in projection down the a axis of the crystal packing in (I), highlighting the stacking of supramolecular chains. The O—H···O hydrogen bonds are shown as orange dashed lines, and C—H···O contacts as blue dashed lines.
4-[(E)-(5-tert-Butyl-2-hydroxyphenyl)diazenyl]benzoic acid benzene hemisolvate top
Crystal data top
C17H18N2O3·0.5C6H6Z = 2
Mr = 337.39F(000) = 358
Triclinic, P1Dx = 1.292 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0960 (2) ÅCell parameters from 2230 reflections
b = 7.3578 (3) Åθ = 3.0–25.1°
c = 20.6562 (7) ŵ = 0.09 mm1
α = 81.326 (2)°T = 100 K
β = 88.992 (2)°Plate, orange
γ = 71.355 (2)°0.49 × 0.09 × 0.03 mm
V = 867.37 (5) Å3
Data collection top
Bruker SMART APEXII
diffractometer
3053 independent reflections
Radiation source: sealed tube1888 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 25.0°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.859, Tmax = 1k = 88
11445 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0815P)2 + 0.0458P]
where P = (Fo2 + 2Fc2)/3
3053 reflections(Δ/σ)max = 0.001
232 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C17H18N2O3·0.5C6H6γ = 71.355 (2)°
Mr = 337.39V = 867.37 (5) Å3
Triclinic, P1Z = 2
a = 6.0960 (2) ÅMo Kα radiation
b = 7.3578 (3) ŵ = 0.09 mm1
c = 20.6562 (7) ÅT = 100 K
α = 81.326 (2)°0.49 × 0.09 × 0.03 mm
β = 88.992 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
3053 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1888 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 1Rint = 0.049
11445 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.08Δρmax = 0.25 e Å3
3053 reflectionsΔρmin = 0.39 e Å3
232 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9406 (3)0.7864 (2)0.00097 (8)0.0270 (5)
O20.7757 (3)1.0387 (2)0.05359 (8)0.0270 (5)
H2O0.87091.08270.03210.040*
O30.0159 (3)0.2070 (2)0.17405 (9)0.0295 (5)
H3O0.10190.26900.15690.044*
N10.1696 (3)0.4998 (3)0.15671 (9)0.0214 (5)
N20.0282 (3)0.5895 (3)0.19601 (9)0.0214 (5)
C10.7939 (4)0.8718 (4)0.03965 (11)0.0200 (6)
C20.6296 (4)0.7767 (3)0.07027 (11)0.0186 (6)
C30.6505 (4)0.5880 (4)0.06190 (11)0.0215 (6)
H30.77040.51960.03620.026*
C40.4971 (4)0.5002 (4)0.09100 (11)0.0224 (6)
H40.51200.37090.08560.027*
C50.3208 (4)0.6011 (4)0.12827 (11)0.0187 (6)
C60.2955 (4)0.7910 (4)0.13581 (11)0.0210 (6)
H60.17220.86100.16020.025*
C70.4513 (4)0.8766 (4)0.10745 (11)0.0224 (6)
H70.43711.00550.11330.027*
C80.1216 (4)0.4932 (4)0.22568 (11)0.0193 (6)
C90.1262 (4)0.3104 (4)0.21544 (12)0.0215 (6)
C100.2869 (4)0.2363 (4)0.24863 (12)0.0254 (6)
H100.29420.11340.24190.030*
C110.4361 (4)0.3394 (4)0.29125 (12)0.0245 (6)
H110.54370.28490.31340.029*
C120.4341 (4)0.5213 (4)0.30302 (11)0.0201 (6)
C130.2753 (4)0.5933 (4)0.26916 (12)0.0213 (6)
H130.26990.71690.27570.026*
C140.5974 (4)0.6396 (4)0.35012 (12)0.0241 (6)
C150.7522 (5)0.5308 (4)0.38459 (13)0.0357 (8)
H15A0.85140.50800.35200.053*
H15B0.84890.60830.41540.053*
H15C0.65570.40600.40850.053*
C160.4527 (5)0.6816 (4)0.40241 (13)0.0344 (7)
H16A0.35850.55900.42810.052*
H16B0.55590.76190.43140.052*
H16C0.35110.75080.38110.052*
C170.7517 (5)0.8319 (4)0.31170 (13)0.0307 (7)
H17A0.65430.90440.28990.046*
H17B0.85310.90880.34190.046*
H17C0.84620.80520.27870.046*
C180.8298 (5)0.0370 (4)0.45204 (13)0.0313 (7)
H180.71230.06200.41920.038*
C190.9784 (5)0.1460 (4)0.44705 (13)0.0305 (7)
H190.96400.24580.41080.037*
C201.1478 (5)0.1084 (4)0.49518 (13)0.0334 (7)
H201.25010.18310.49200.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0223 (10)0.0252 (10)0.0326 (10)0.0054 (8)0.0128 (8)0.0077 (8)
O20.0259 (11)0.0235 (11)0.0361 (11)0.0136 (9)0.0103 (9)0.0074 (9)
O30.0302 (11)0.0227 (10)0.0384 (11)0.0097 (9)0.0153 (9)0.0123 (9)
N10.0173 (11)0.0237 (12)0.0241 (11)0.0065 (10)0.0041 (9)0.0067 (10)
N20.0183 (11)0.0236 (12)0.0235 (11)0.0074 (10)0.0046 (9)0.0062 (10)
C10.0195 (14)0.0191 (14)0.0220 (14)0.0065 (12)0.0018 (11)0.0045 (11)
C20.0167 (14)0.0205 (14)0.0185 (13)0.0058 (11)0.0021 (11)0.0038 (11)
C30.0192 (14)0.0264 (16)0.0190 (13)0.0059 (12)0.0056 (11)0.0071 (11)
C40.0219 (14)0.0221 (15)0.0251 (14)0.0075 (12)0.0046 (11)0.0087 (11)
C50.0154 (13)0.0229 (15)0.0198 (13)0.0082 (11)0.0025 (11)0.0046 (11)
C60.0179 (14)0.0221 (15)0.0224 (13)0.0039 (12)0.0072 (11)0.0080 (11)
C70.0228 (15)0.0224 (15)0.0232 (14)0.0079 (12)0.0029 (12)0.0060 (12)
C80.0175 (13)0.0217 (14)0.0208 (13)0.0094 (12)0.0004 (11)0.0032 (11)
C90.0194 (14)0.0222 (15)0.0226 (14)0.0054 (12)0.0022 (11)0.0051 (11)
C100.0265 (15)0.0208 (15)0.0316 (15)0.0109 (13)0.0044 (12)0.0059 (12)
C110.0212 (15)0.0279 (16)0.0260 (14)0.0118 (12)0.0032 (12)0.0012 (12)
C120.0168 (13)0.0231 (15)0.0196 (13)0.0054 (11)0.0013 (11)0.0027 (11)
C130.0201 (14)0.0218 (14)0.0245 (14)0.0079 (12)0.0023 (11)0.0088 (11)
C140.0204 (14)0.0304 (16)0.0239 (14)0.0096 (12)0.0056 (11)0.0085 (12)
C150.0292 (16)0.0411 (18)0.0372 (17)0.0118 (14)0.0160 (14)0.0081 (14)
C160.0270 (16)0.0456 (19)0.0325 (16)0.0092 (14)0.0073 (13)0.0177 (14)
C170.0257 (16)0.0315 (17)0.0335 (16)0.0048 (13)0.0096 (13)0.0111 (13)
C180.0308 (17)0.0334 (17)0.0301 (16)0.0093 (14)0.0007 (13)0.0084 (13)
C190.0381 (17)0.0265 (16)0.0270 (15)0.0099 (14)0.0067 (13)0.0055 (12)
C200.0365 (18)0.0378 (18)0.0335 (16)0.0199 (15)0.0076 (14)0.0114 (14)
Geometric parameters (Å, º) top
O1—C11.265 (3)C11—C121.400 (4)
O2—C11.274 (3)C11—H110.9500
O2—H2O0.8400C12—C131.379 (3)
O3—C91.345 (3)C12—C141.537 (3)
O3—H3O0.8400C13—H130.9500
N1—N21.269 (3)C14—C151.526 (3)
N1—C51.427 (3)C14—C161.533 (4)
N2—C81.406 (3)C14—C171.534 (4)
C1—C21.478 (3)C15—H15A0.9800
C2—C31.390 (3)C15—H15B0.9800
C2—C71.393 (3)C15—H15C0.9800
C3—C41.379 (3)C16—H16A0.9800
C3—H30.9500C16—H16B0.9800
C4—C51.390 (3)C16—H16C0.9800
C4—H40.9500C17—H17A0.9800
C5—C61.389 (3)C17—H17B0.9800
C6—C71.376 (3)C17—H17C0.9800
C6—H60.9500C18—C20i1.383 (4)
C7—H70.9500C18—C191.383 (4)
C8—C131.398 (3)C18—H180.9500
C8—C91.401 (3)C19—C201.379 (4)
C9—C101.390 (3)C19—H190.9500
C10—C111.382 (3)C20—C18i1.383 (4)
C10—H100.9500C20—H200.9500
C1—O2—H2O109.5C13—C12—C14120.3 (2)
C9—O3—H3O109.5C11—C12—C14123.6 (2)
N2—N1—C5114.0 (2)C12—C13—C8123.2 (2)
N1—N2—C8115.6 (2)C12—C13—H13118.4
O1—C1—O2123.8 (2)C8—C13—H13118.4
O1—C1—C2119.2 (2)C15—C14—C16108.3 (2)
O2—C1—C2117.0 (2)C15—C14—C17108.6 (2)
C3—C2—C7119.5 (2)C16—C14—C17109.4 (2)
C3—C2—C1120.4 (2)C15—C14—C12111.9 (2)
C7—C2—C1120.1 (2)C16—C14—C12109.1 (2)
C4—C3—C2120.0 (2)C17—C14—C12109.44 (19)
C4—C3—H3120.0C14—C15—H15A109.5
C2—C3—H3120.0C14—C15—H15B109.5
C3—C4—C5119.9 (2)H15A—C15—H15B109.5
C3—C4—H4120.0C14—C15—H15C109.5
C5—C4—H4120.0H15A—C15—H15C109.5
C6—C5—C4120.5 (2)H15B—C15—H15C109.5
C6—C5—N1123.0 (2)C14—C16—H16A109.5
C4—C5—N1116.4 (2)C14—C16—H16B109.5
C7—C6—C5119.2 (2)H16A—C16—H16B109.5
C7—C6—H6120.4C14—C16—H16C109.5
C5—C6—H6120.4H16A—C16—H16C109.5
C6—C7—C2120.8 (2)H16B—C16—H16C109.5
C6—C7—H7119.6C14—C17—H17A109.5
C2—C7—H7119.6C14—C17—H17B109.5
C13—C8—C9119.4 (2)H17A—C17—H17B109.5
C13—C8—N2114.9 (2)C14—C17—H17C109.5
C9—C8—N2125.7 (2)H17A—C17—H17C109.5
O3—C9—C10119.3 (2)H17B—C17—H17C109.5
O3—C9—C8122.4 (2)C20i—C18—C19120.0 (3)
C10—C9—C8118.3 (2)C20i—C18—H18120.0
C11—C10—C9120.7 (2)C19—C18—H18120.0
C11—C10—H10119.6C20—C19—C18119.3 (3)
C9—C10—H10119.6C20—C19—H19120.3
C10—C11—C12122.3 (2)C18—C19—H19120.3
C10—C11—H11118.8C19—C20—C18i120.7 (3)
C12—C11—H11118.8C19—C20—H20119.7
C13—C12—C11116.1 (2)C18i—C20—H20119.7
C5—N1—N2—C8179.2 (2)N2—C8—C9—O30.9 (4)
O1—C1—C2—C36.4 (4)C13—C8—C9—C100.8 (4)
O2—C1—C2—C3174.6 (2)N2—C8—C9—C10179.7 (2)
O1—C1—C2—C7173.2 (2)O3—C9—C10—C11179.7 (2)
O2—C1—C2—C75.8 (4)C8—C9—C10—C110.8 (4)
C7—C2—C3—C40.8 (4)C9—C10—C11—C120.2 (4)
C1—C2—C3—C4179.6 (2)C10—C11—C12—C130.5 (4)
C2—C3—C4—C50.5 (4)C10—C11—C12—C14179.9 (2)
C3—C4—C5—C60.9 (4)C11—C12—C13—C80.5 (4)
C3—C4—C5—N1180.0 (2)C14—C12—C13—C8179.9 (2)
N2—N1—C5—C68.3 (3)C9—C8—C13—C120.1 (4)
N2—N1—C5—C4172.6 (2)N2—C8—C13—C12179.7 (2)
C4—C5—C6—C71.8 (4)C13—C12—C14—C15177.7 (2)
N1—C5—C6—C7179.1 (2)C11—C12—C14—C152.7 (4)
C5—C6—C7—C21.5 (4)C13—C12—C14—C1657.8 (3)
C3—C2—C7—C60.2 (4)C11—C12—C14—C16122.6 (3)
C1—C2—C7—C6179.4 (2)C13—C12—C14—C1761.9 (3)
N1—N2—C8—C13179.6 (2)C11—C12—C14—C17117.7 (3)
N1—N2—C8—C90.1 (4)C20i—C18—C19—C200.2 (4)
C13—C8—C9—O3179.6 (2)C18—C19—C20—C18i0.2 (4)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···N10.841.872.587 (3)142
O2—H2o···O1ii0.841.792.614 (3)167
C3—H3···O1iii0.952.593.473 (3)155
C6—H6···O3iv0.952.483.201 (3)133
Symmetry codes: (ii) x+2, y+2, z; (iii) x+2, y+1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H18N2O3·0.5C6H6
Mr337.39
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.0960 (2), 7.3578 (3), 20.6562 (7)
α, β, γ (°)81.326 (2), 88.992 (2), 71.355 (2)
V3)867.37 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.09 × 0.03
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.859, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
11445, 3053, 1888
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.157, 1.08
No. of reflections3053
No. of parameters232
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···N10.841.872.587 (3)142
O2—H2o···O1i0.841.792.614 (3)167
C3—H3···O1ii0.952.593.473 (3)155
C6—H6···O3iii0.952.483.201 (3)133
Symmetry codes: (i) x+2, y+2, z; (ii) x+2, y+1, z; (iii) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: basubaul@hotmail.com.

Acknowledgements

The financial support of the Department of Science & Technology, New Delhi, India (grant No. SR/S1/IC-03/2005, TSBB) and the University Grants Commission, New Delhi, India, through SAP–DSA (Phase-III), are gratefully acknowledged.

References

First citationBasu Baul, T. S., Paul, A., Arman, H. D. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o2125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBasu Baul, T. S., Paul, A., Pellerito, L., Scopelliti, M., Singh, P., Verma, P. & de Vos, D. (2010b). Invest New Drugs, doi:10.1007/s10637-009-9293-x.  Google Scholar
First citationBasu Baul, T. S., Paul, A., Pellerito, L., Scopelliti, M., Singh, P., Verma, P., Duthie, A., de Vos, D. & Tiekink, E. R. T. (2010a). Invest New Drugs, doi:10.1007/s10637-009-9360-3.  Google Scholar
First citationBasu Baul, T. S., Paul, A. & Tiekink, E. R. T. (2010c). Z. Kristallogr. doi:10.1524/zkri.2010.1232.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds