organic compounds
3-Chloro-6-{4-[3-(trifluoromethyl)phenyl]piperazin-1-yl}pyridazine
aDepartment of Chemistry, Emory University, Atlanta, GA 30322, USA, bDepartment of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, TR-33343, Turkey, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, TR-33169, Turkey, and dDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, TR-06330, Turkey
*Correspondence e-mail: hakan.arslan.acad@gmail.com
The title compound, C15H14ClF3N4, was synthesized from 3,6-dichloropyridazine and 1-[3-(trifluoromethyl)phenyl]piperazine. The piperazine ring is flanked by 3-chloropyridazine and 3-trifluoromethylphenyl rings and adopts a chair conformation, whereas the 3-chloropyridazine and 3-trifluoromethylphenyl rings are planar, with maximum deviations of 0.0069 (13) and 0.0133 (14) Å, respectively. The is stabilized by weak intermolecular C—H⋯N hydrogen-bond interactions.
Related literature
For the synthesis and analgesic and anti-inflammatory activity of pyridazinone and pyridazine derivatives, see: Arslan et al. (2010); Giri & Mukhopadhyay (1998); Boissier et al. (1963); Gokce et al. (2001, 2004, 2005, 2009); Sahin et al. (2004); Dundar et al. (2007). For general background to pyrazolone derivatives, see: Amir et al. (2008); Banoglu et al. (2004). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810004137/hg2643sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810004137/hg2643Isup2.hkl
A mixture of 3,6-dichloropyridazine, II, (1.7 mol) and 1-[3-(trifluoromethyl)phenyl]piperazine, III, (2.0 mol) in ethanol (10 ml) was heated under reflux for 4 hours after which the mixture was cooled to room temperature (Figure 3) (Boissier et al. (1963)). The resulting crude precipitate was filtered off and purified by repeated washing with small portions of cold ethanol. The precipitate formed was crystallized from CH2Cl2: ethanol (5:10 ml) to give the compound, 3-chloro-6-{4-[3-(trifluoromethyl)phenyl]piperazin-1-yl}pyridazine, I, as white crystals. Yields: 0.485 g, 83%. M.p.: 167 °C. 1H-NMR (DMSO-d6) δ: 7.56-7.54 (d, 1H, pyridazin), 7.46-7.40 (m, 2H, phenyl), 7.28-7.21 (m, 1H, phenyl), 7.14-7.12 (d, 1H, phenyl), 7.09-7.07 (d, 1H, pyridazin), 3.74-3.71 (t, 2H, piperazine), 3.45-3.43 (t, 2H, piperazine), 3.19-3.17 (t, 4H, piperazine). MS (EI) m/z: 343 (M+). Anal. Calc. for C15H14N4ClF3: C, 52.56; H, 4.12; N, 16.35%. Found: C, 52.61; H, 4.09; N, 16.40%.
The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances of 0.95 Å (CH) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq of the parent atoms.
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C15H14ClF3N4 | F(000) = 704 |
Mr = 342.75 | Dx = 1.544 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7857 reflections |
a = 9.461 (6) Å | θ = 2.2–29.7° |
b = 6.557 (4) Å | µ = 0.30 mm−1 |
c = 24.123 (16) Å | T = 173 K |
β = 99.890 (9)° | Block, colourless |
V = 1474.1 (16) Å3 | 0.41 × 0.25 × 0.24 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 3385 independent reflections |
Radiation source: fine-focus sealed tube | 2781 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.065 |
ϕ and ω scans | θmax = 27.5°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −12→12 |
Tmin = 0.888, Tmax = 0.932 | k = −8→8 |
19935 measured reflections | l = −31→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0589P)2 + 0.1216P] where P = (Fo2 + 2Fc2)/3 |
3385 reflections | (Δ/σ)max = 0.005 |
208 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C15H14ClF3N4 | V = 1474.1 (16) Å3 |
Mr = 342.75 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.461 (6) Å | µ = 0.30 mm−1 |
b = 6.557 (4) Å | T = 173 K |
c = 24.123 (16) Å | 0.41 × 0.25 × 0.24 mm |
β = 99.890 (9)° |
Bruker APEXII CCD diffractometer | 3385 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2781 reflections with I > 2σ(I) |
Tmin = 0.888, Tmax = 0.932 | Rint = 0.065 |
19935 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.32 e Å−3 |
3385 reflections | Δρmin = −0.23 e Å−3 |
208 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.35124 (16) | 0.4693 (2) | 0.76675 (6) | 0.0301 (3) | |
C2 | 1.23214 (15) | 0.35744 (19) | 0.78778 (5) | 0.0228 (3) | |
C3 | 1.15571 (14) | 0.45817 (19) | 0.82401 (5) | 0.0212 (3) | |
H3 | 1.1811 | 0.5939 | 0.8354 | 0.025* | |
C4 | 1.04104 (14) | 0.36134 (18) | 0.84400 (5) | 0.0194 (3) | |
C5 | 1.01095 (15) | 0.65546 (17) | 0.90409 (6) | 0.0235 (3) | |
H5A | 1.0563 | 0.7374 | 0.8775 | 0.028* | |
H5B | 1.0856 | 0.6219 | 0.9368 | 0.028* | |
C6 | 0.89367 (15) | 0.78043 (18) | 0.92372 (6) | 0.0241 (3) | |
H6A | 0.9364 | 0.9031 | 0.9439 | 0.029* | |
H6B | 0.8240 | 0.8262 | 0.8906 | 0.029* | |
C7 | 0.74380 (13) | 0.76537 (18) | 0.99646 (5) | 0.0186 (3) | |
C8 | 0.62135 (14) | 0.9883 (2) | 1.06758 (5) | 0.0220 (3) | |
C9 | 0.60062 (14) | 0.7770 (2) | 1.06879 (5) | 0.0236 (3) | |
H6 | 0.5458 | 0.7163 | 1.0939 | 0.028* | |
C10 | 0.66253 (14) | 0.66193 (19) | 1.03229 (5) | 0.0221 (3) | |
H10 | 0.6517 | 0.5179 | 1.0309 | 0.027* | |
C11 | 0.76124 (14) | 0.47012 (18) | 0.93414 (6) | 0.0223 (3) | |
H11A | 0.6846 | 0.5022 | 0.9019 | 0.027* | |
H11B | 0.7183 | 0.3881 | 0.9614 | 0.027* | |
C12 | 0.87797 (15) | 0.34660 (18) | 0.91356 (6) | 0.0226 (3) | |
H12A | 0.9476 | 0.2987 | 0.9464 | 0.027* | |
H12B | 0.8344 | 0.2250 | 0.8930 | 0.027* | |
C13 | 1.01216 (15) | 0.15733 (18) | 0.82706 (5) | 0.0238 (3) | |
H13 | 0.9365 | 0.0862 | 0.8399 | 0.029* | |
C14 | 1.09205 (16) | 0.05852 (19) | 0.79199 (5) | 0.0277 (3) | |
H14 | 1.0708 | −0.0796 | 0.7819 | 0.033* | |
C15 | 1.20215 (16) | 0.1564 (2) | 0.77128 (6) | 0.0268 (3) | |
H15 | 1.2552 | 0.0886 | 0.7467 | 0.032* | |
Cl1 | 0.54631 (4) | 1.14481 (6) | 1.113190 (14) | 0.03333 (13) | |
F1 | 1.47712 (10) | 0.45600 (17) | 0.80245 (4) | 0.0510 (3) | |
F2 | 1.37526 (11) | 0.39838 (16) | 0.71726 (4) | 0.0517 (3) | |
F3 | 1.32478 (10) | 0.66983 (13) | 0.75974 (4) | 0.0438 (3) | |
N1 | 0.95396 (11) | 0.46588 (15) | 0.87639 (4) | 0.0201 (2) | |
N2 | 0.81888 (12) | 0.66056 (15) | 0.96101 (4) | 0.0201 (2) | |
N3 | 0.75776 (12) | 0.96974 (15) | 0.99729 (4) | 0.0233 (3) | |
N4 | 0.69511 (12) | 1.08204 (16) | 1.03382 (5) | 0.0248 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0290 (8) | 0.0347 (7) | 0.0294 (7) | −0.0006 (6) | 0.0132 (6) | −0.0075 (6) |
C2 | 0.0230 (7) | 0.0259 (6) | 0.0203 (6) | 0.0020 (5) | 0.0054 (5) | −0.0013 (5) |
C3 | 0.0239 (7) | 0.0189 (6) | 0.0219 (6) | −0.0001 (5) | 0.0065 (5) | −0.0028 (5) |
C4 | 0.0236 (7) | 0.0184 (6) | 0.0163 (6) | 0.0026 (5) | 0.0040 (5) | 0.0014 (4) |
C5 | 0.0269 (7) | 0.0156 (6) | 0.0314 (7) | −0.0049 (5) | 0.0147 (6) | −0.0026 (5) |
C6 | 0.0318 (8) | 0.0149 (5) | 0.0298 (7) | −0.0027 (5) | 0.0175 (6) | 0.0001 (5) |
C7 | 0.0176 (7) | 0.0194 (6) | 0.0189 (6) | −0.0007 (5) | 0.0032 (5) | 0.0011 (4) |
C8 | 0.0196 (7) | 0.0285 (6) | 0.0181 (6) | 0.0016 (5) | 0.0038 (5) | −0.0036 (5) |
C9 | 0.0201 (7) | 0.0307 (7) | 0.0211 (6) | −0.0022 (5) | 0.0063 (5) | 0.0041 (5) |
C10 | 0.0225 (7) | 0.0202 (6) | 0.0244 (6) | −0.0025 (5) | 0.0063 (5) | 0.0031 (5) |
C11 | 0.0231 (7) | 0.0182 (6) | 0.0274 (7) | −0.0055 (5) | 0.0094 (5) | −0.0023 (5) |
C12 | 0.0281 (8) | 0.0144 (5) | 0.0278 (7) | −0.0037 (5) | 0.0118 (6) | −0.0007 (5) |
C13 | 0.0314 (8) | 0.0186 (6) | 0.0226 (6) | −0.0027 (5) | 0.0081 (6) | 0.0012 (5) |
C14 | 0.0415 (9) | 0.0184 (6) | 0.0237 (6) | 0.0011 (6) | 0.0073 (6) | −0.0026 (5) |
C15 | 0.0324 (8) | 0.0258 (7) | 0.0237 (7) | 0.0055 (5) | 0.0089 (6) | −0.0042 (5) |
Cl1 | 0.0347 (2) | 0.0404 (2) | 0.0277 (2) | 0.00403 (15) | 0.01307 (16) | −0.00988 (14) |
F1 | 0.0271 (6) | 0.0704 (7) | 0.0556 (6) | −0.0063 (5) | 0.0077 (5) | 0.0012 (5) |
F2 | 0.0615 (7) | 0.0616 (6) | 0.0419 (6) | −0.0158 (5) | 0.0369 (5) | −0.0197 (5) |
F3 | 0.0458 (6) | 0.0321 (5) | 0.0617 (6) | −0.0037 (4) | 0.0324 (5) | 0.0035 (4) |
N1 | 0.0250 (6) | 0.0148 (5) | 0.0228 (5) | −0.0022 (4) | 0.0107 (5) | −0.0010 (4) |
N2 | 0.0239 (6) | 0.0144 (5) | 0.0246 (6) | −0.0032 (4) | 0.0115 (5) | 0.0001 (4) |
N3 | 0.0279 (7) | 0.0186 (5) | 0.0261 (6) | −0.0026 (4) | 0.0121 (5) | −0.0027 (4) |
N4 | 0.0279 (7) | 0.0225 (5) | 0.0258 (6) | −0.0017 (5) | 0.0096 (5) | −0.0057 (4) |
C1—F2 | 1.3364 (16) | C8—N4 | 1.3129 (17) |
C1—F3 | 1.3439 (18) | C8—C9 | 1.400 (2) |
C1—F1 | 1.3472 (18) | C8—Cl1 | 1.7425 (14) |
C1—C2 | 1.504 (2) | C9—C10 | 1.3654 (18) |
C2—C15 | 1.3920 (19) | C9—H6 | 0.9500 |
C2—C3 | 1.3928 (18) | C10—H10 | 0.9500 |
C3—C4 | 1.4114 (18) | C11—N2 | 1.4681 (17) |
C3—H3 | 0.9500 | C11—C12 | 1.5199 (18) |
C4—N1 | 1.4073 (16) | C11—H11A | 0.9900 |
C4—C13 | 1.4115 (18) | C11—H11B | 0.9900 |
C5—N1 | 1.4691 (17) | C12—N1 | 1.4676 (16) |
C5—C6 | 1.5190 (18) | C12—H12A | 0.9900 |
C5—H5A | 0.9900 | C12—H12B | 0.9900 |
C5—H5B | 0.9900 | C13—C14 | 1.3878 (19) |
C6—N2 | 1.4650 (16) | C13—H13 | 0.9500 |
C6—H6A | 0.9900 | C14—C15 | 1.388 (2) |
C6—H6B | 0.9900 | C14—H14 | 0.9500 |
C7—N3 | 1.3462 (17) | C15—H15 | 0.9500 |
C7—N2 | 1.3845 (16) | N3—N4 | 1.3600 (15) |
C7—C10 | 1.4236 (17) | ||
F2—C1—F3 | 106.53 (12) | C10—C9—H6 | 121.4 |
F2—C1—F1 | 106.34 (12) | C8—C9—H6 | 121.4 |
F3—C1—F1 | 105.59 (12) | C9—C10—C7 | 117.68 (12) |
F2—C1—C2 | 112.59 (12) | C9—C10—H10 | 121.2 |
F3—C1—C2 | 112.66 (11) | C7—C10—H10 | 121.2 |
F1—C1—C2 | 112.60 (13) | N2—C11—C12 | 111.21 (11) |
C15—C2—C3 | 121.75 (12) | N2—C11—H11A | 109.4 |
C15—C2—C1 | 119.53 (12) | C12—C11—H11A | 109.4 |
C3—C2—C1 | 118.72 (12) | N2—C11—H11B | 109.4 |
C2—C3—C4 | 120.89 (12) | C12—C11—H11B | 109.4 |
C2—C3—H3 | 119.6 | H11A—C11—H11B | 108.0 |
C4—C3—H3 | 119.6 | N1—C12—C11 | 112.04 (11) |
N1—C4—C13 | 121.30 (11) | N1—C12—H12A | 109.2 |
N1—C4—C3 | 121.89 (11) | C11—C12—H12A | 109.2 |
C13—C4—C3 | 116.70 (11) | N1—C12—H12B | 109.2 |
N1—C5—C6 | 111.56 (11) | C11—C12—H12B | 109.2 |
N1—C5—H5A | 109.3 | H12A—C12—H12B | 107.9 |
C6—C5—H5A | 109.3 | C14—C13—C4 | 121.34 (12) |
N1—C5—H5B | 109.3 | C14—C13—H13 | 119.3 |
C6—C5—H5B | 109.3 | C4—C13—H13 | 119.3 |
H5A—C5—H5B | 108.0 | C15—C14—C13 | 121.65 (12) |
N2—C6—C5 | 110.97 (11) | C15—C14—H14 | 119.2 |
N2—C6—H6A | 109.4 | C13—C14—H14 | 119.2 |
C5—C6—H6A | 109.4 | C14—C15—C2 | 117.62 (12) |
N2—C6—H6B | 109.4 | C14—C15—H15 | 121.2 |
C5—C6—H6B | 109.4 | C2—C15—H15 | 121.2 |
H6A—C6—H6B | 108.0 | C4—N1—C12 | 118.34 (10) |
N3—C7—N2 | 116.34 (10) | C4—N1—C5 | 117.42 (11) |
N3—C7—C10 | 121.81 (11) | C12—N1—C5 | 110.68 (10) |
N2—C7—C10 | 121.77 (12) | C7—N2—C6 | 117.79 (10) |
N4—C8—C9 | 124.58 (11) | C7—N2—C11 | 120.25 (11) |
N4—C8—Cl1 | 115.68 (10) | C6—N2—C11 | 111.53 (10) |
C9—C8—Cl1 | 119.73 (10) | C7—N3—N4 | 119.73 (10) |
C10—C9—C8 | 117.13 (12) | C8—N4—N3 | 119.05 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···N4i | 0.99 | 2.69 | 3.628 (2) | 158 |
Symmetry code: (i) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C15H14ClF3N4 |
Mr | 342.75 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 9.461 (6), 6.557 (4), 24.123 (16) |
β (°) | 99.890 (9) |
V (Å3) | 1474.1 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.41 × 0.25 × 0.24 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.888, 0.932 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19935, 3385, 2781 |
Rint | 0.065 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.101, 1.06 |
No. of reflections | 3385 |
No. of parameters | 208 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.23 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···N4i | 0.99 | 2.69 | 3.628 (2) | 158 |
Symmetry code: (i) x, y−1, z. |
References
Amir, M., Kumar, H. & Khan, S. A. (2008). Bioorg. Med. Chem. Lett. 18, 918–922. Web of Science CrossRef PubMed CAS Google Scholar
Arslan, H., Utku, S., Hardcastle, K. I., Gökçe, M. & Lense, S. (2010). Acta Cryst. E66, o35. Web of Science CSD CrossRef IUCr Journals Google Scholar
Banoglu, E., Akoglu, C., Unlu, S., Kupeli, E., Yesilada, E. & Sahin, M. F. (2004). Arch. Pharm. 337, 7–14. Web of Science CrossRef CAS Google Scholar
Boissier, J. R., Ratouis, R. & Dumont, C. (1963). J. Med. Chem. 6, 541–544. CrossRef PubMed CAS Web of Science Google Scholar
Bruker (2008). APEX2, SADABS and SAINT. Bruker AXSInc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dundar, Y., Gokce, M., Kupelı, E. & Sahin, M. F. (2007). Arzneim. Forsch. 57, 777–781. CAS Google Scholar
Giri, A. K. & Mukhopadhyay, A. (1998). Mutat. Res. 420, 15–25. Web of Science CrossRef CAS PubMed Google Scholar
Gokce, M., Bakır, G., Sahin, M. F., Kupeli, E. & Yesilada, E. (2005). Arzneim. Forsch. 55, 318–325. Google Scholar
Gokce, M., Dogruer, D. S. & Sahin, M. F. (2001). Farmaco, 56, 233–237. Web of Science CrossRef PubMed CAS Google Scholar
Gokce, M., Sahin, M. F., Kupeli, E. & Yesilada, E. (2004). Arzneim. Forsch. 54, 396–401. CAS Google Scholar
Gokce, M., Utku, S. & Kupeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764. Web of Science CrossRef PubMed Google Scholar
Sahin, M. F., Badıcoglu, B., Gokce, M., Kupeli, E. & Yesilada, E. (2004). Arch. Pharm. 337, 445–452. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
It is known that some pyrazolone derivatives like oxyphenbutazone, dipyrone, antipyrine and phenylbutazone are used primarily for their anti-inflammatory, antipyretic and analgesic activities, but several side effects have limited the clinical use of these drugs such as some of pyrazolone derivatives are toxic and carcinogenicin animals, clastogenic in somatic and germ cells of male mice, and also weakly mutagenic in Salmonella strain TA100 in presence of rat liver homogenate. In addition, some of pyrazolone derivatives induce peptic ulcer, hypersensitivity reaction, hepatitis, nephritis and bone marrow suppression (Giri & Mukhopadhyay, 1998).
Pyridazinone derivatives are structurally related to pyrazolone derivatives (Gokce et al., 2009). Many pyridazinone derivatives have been reported as analgesic and anti-inflammatory agents without gastrointestinal side effect (Amir et al., 2008, Banoglu et al., 2004, Gokce et al., 2009). This is agreement with in our experience in the pyridazinone field. (Dundar et al., 2007; Gokce et al., 2001, 2004, 2005, 2009; Sahin et al., 2004).
Recently, our research has focussed on the chemical, physical and biologycal properties of pyridazinone derivatives (Gokce et al., 2009, Arslan et al., 2010). The title compound, 3-chloro-6-{4-[3-(trifluoromethyl)phenyl]piperazin-1-yl}pyridazine, I, Scheme 1, is an example and in this article, we report on the crystal structure of the title compound, Figure 1.
The molecular structure of I consists of 3-chloropyridazine and 3-trifluoromethylphenyl arms connected to a piperazine ring. The 3-chloropyridazine and 3-trifluoromethylphenyl rings are planar with a maximum deviation of -0.0069 (13) Å for atom C7 and -0.0133 (14) Å for atom C3. The dihedral angle between these two rings is 18.77 (6) °. The piperazine ring adopts a chair conformation. This is confirmed by the puckering parameters q2 = 0.0107 (14) Å, q3= 0.5479 (13) Å, QT = 0.5480 (13) Å, θ = 1.05 (15) ° and ϕ= 85 (7) ° (Cremer & Pople, 1975).
The conformations of the 3-chloropyridazine and 3-trifluoromethylphenyl rings are best described by the torsion angles of 159.40 (11) ° and -165.62 (11) ° for C7—N2—C6—C5 and C4—N1—C12—C11, respectively; thus they adopt + antiperiplanar and - antiperiplanar conformations, respectively.
The crystal packing is dominated by weak intermolecular C11—H11B···N4 (x, y-1, z) hydrogen bonds, with H···N = 2.69 Å and a C—H···N angle of 150 ° (Figure 2).