organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[1-(5-Bromo-2-hy­droxy­phen­yl)ethyl­­idene]-3,4,5-tri­hydroxy­benzohydrazide di­methyl sulfoxide solvate trihydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bDepartment of Molecular Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@perdana.um.edu.my

(Received 10 February 2010; accepted 24 February 2010; online 27 February 2010)

The benzohydrazide mol­ecule in the title compound, C15H13BrN2O5·C2H6OS·3H2O, is almost planar with an r.m.s. deviation for the non-H atoms of 0.078 Å. The organic mol­ecules, water and dimethyl sulfoxide solvent mol­ecules are linked by N—H⋯O, O—H⋯O and O—H⋯S inter­molecular hydrogen bonds, forming zigzag chains along the a axis. Intra­molecular O—H⋯O and O—H⋯N hydrogen bonds also occur.

Related literature

For the biological properties of 3,4,5-trihydroxy­benzoic acid (gallic acid) derivatives, see: Arunkumar et al. (2006[Arunkumar, S., Ramalakshmi, N., Saraswathy, T. & Aruloly, L. (2006). Indian J. Heterocycl. Chem. 16, 29-32.]); Saxena et al. (2008[Saxena, H. O., Faridi, U., Srivastava, S., Kumar, J. K., Darokar, M. P., Luqman, S., Chanotiya, C. S., Krishna, V., Negi, A. S. & Khanuja, S. P. S. (2008). Bioorg. Med. Chem. Lett. 18, 3914-3918.]). For the crystal structures of Schiff bases derived from 3,4,5-trihydroxy­benzoyl­hydrazide, see: Abdul Alhadi et al. (2009[Abdul Alhadi, A. A., Ali, H. M. & Ng, S. W. (2009). Acta Cryst. E65, o910.]); Khaledi et al. (2009[Khaledi, H., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o169.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13BrN2O5·C2H6OS·3H2O

  • Mr = 513.36

  • Monoclinic, C 2/c

  • a = 21.5690 (15) Å

  • b = 7.0302 (4) Å

  • c = 28.4771 (18) Å

  • β = 103.061 (2)°

  • V = 4206.4 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.11 mm−1

  • T = 100 K

  • 0.26 × 0.03 × 0.03 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.610, Tmax = 0.940

  • 9543 measured reflections

  • 3694 independent reflections

  • 3052 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.066

  • S = 1.02

  • 3694 reflections

  • 307 parameters

  • 11 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 (2) 1.80 (2) 2.531 (3) 149 (3)
O1—H1⋯O9 0.82 (2) 2.65 (2) 3.338 (2) 142 (3)
O2—H2A⋯O10i 0.84 (2) 1.88 (2) 2.703 (2) 168 (3)
O2—H2A⋯Si 0.84 (2) 2.86 (2) 3.5458 (19) 140 (2)
O2—H2B⋯O1ii 0.83 (2) 2.06 (2) 2.880 (2) 169 (3)
O3—H3A⋯O10 0.82 (2) 1.97 (2) 2.785 (3) 169 (3)
O3—H3B⋯O13iii 0.80 (2) 2.01 (2) 2.802 (2) 168 (3)
O4—H4A⋯O2iv 0.87 (2) 2.07 (2) 2.915 (3) 166 (3)
O4—H4B⋯O3 0.89 (2) 1.96 (2) 2.817 (3) 160 (3)
O12—H12⋯O3 0.84 (2) 1.91 (2) 2.751 (2) 179 (3)
O13—H13⋯O2v 0.80 (2) 1.88 (2) 2.651 (2) 160 (3)
O13—H13⋯O14 0.80 (2) 2.30 (3) 2.727 (2) 114 (2)
O14—H14⋯O9vi 0.82 (2) 1.87 (2) 2.682 (2) 169 (3)
N2—H2N⋯O4 0.87 (1) 2.24 (1) 3.113 (3) 179 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x+1, -y+2, -z+2; (iii) [-x, y, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) x-1, y, z; (vi) -x, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

For the biological properties of 3,4,5-trihydroxybenzoic acid (gallic acid) derivatives, see: Arunkumar et al. (2006); Saxena et al. (2008). For the crystal structures of Schiff bases drived from 3,4,5-trihydroxybenzoylhydrazide, see: Abdul Alhadi et al. (2009); Khaledi et al. (2009).

Experimental top

A mixture of 5-bromo-2-hydroxyacetophenone (2.15 g, 10 mmol) and 3,4,5-trihydroxybenzoylhydrazine(1.84 g, 10 mmol) was heated in ethanol (70 ml) for 3 h. The solution was then cooled and the solid product formed weas filtered off, washed with cold ethanol,and dried over silica gel. Crystals of the title compound were obtained by slow evaporation of a DMSO solution at room temperature.

Refinement top

C-bound hydrogen atoms were placed at calculated positions (C–H 0.95 Å), and were treated as riding on their parent carbon atoms, with U(H) set to 1.2Ueq(C). The nitrogen- and oxygen-bound H atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88±0.01 and O–H 0.84±0.02 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the title compound at 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Zigzag chain along α axis formed by intermolecular hydrogen bonding
N'-[1-(5-Bromo-2-hydroxyphenyl)ethylidene]-3,4,5- trihydroxybenzohydrazide dimethyl sulfoxide solvate trihydrate top
Crystal data top
C15H13BrN2O5·C2H6OS·3H2OF(000) = 2112
Mr = 513.36Dx = 1.621 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3053 reflections
a = 21.5690 (15) Åθ = 2.7–27.9°
b = 7.0302 (4) ŵ = 2.11 mm1
c = 28.4771 (18) ÅT = 100 K
β = 103.061 (2)°Needle, colourless
V = 4206.4 (5) Å30.26 × 0.03 × 0.03 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3694 independent reflections
Radiation source: fine-focus sealed tube3052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2525
Tmin = 0.610, Tmax = 0.940k = 85
9543 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0311P)2 + 3.5353P]
where P = (Fo2 + 2Fc2)/3
3694 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.34 e Å3
11 restraintsΔρmin = 0.30 e Å3
Crystal data top
C15H13BrN2O5·C2H6OS·3H2OV = 4206.4 (5) Å3
Mr = 513.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.5690 (15) ŵ = 2.11 mm1
b = 7.0302 (4) ÅT = 100 K
c = 28.4771 (18) Å0.26 × 0.03 × 0.03 mm
β = 103.061 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3694 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3052 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 0.940Rint = 0.030
9543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02911 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.34 e Å3
3694 reflectionsΔρmin = 0.30 e Å3
307 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.525034 (11)1.15033 (4)1.066977 (9)0.01977 (9)
S0.15785 (3)0.18073 (10)0.73419 (2)0.02470 (17)
O10.25101 (8)1.0736 (3)1.07882 (6)0.0201 (4)
H10.2293 (12)1.052 (4)1.0519 (7)0.030*
O20.78049 (8)0.7413 (3)0.83940 (6)0.0205 (4)
H2A0.7527 (12)0.791 (4)0.8174 (8)0.031*
H2B0.7763 (14)0.801 (4)0.8636 (8)0.031*
O30.12345 (8)0.6895 (3)0.77600 (6)0.0193 (4)
H3A0.1436 (13)0.590 (3)0.7769 (11)0.029*
H3B0.1157 (13)0.721 (4)0.7481 (7)0.029*
O40.19398 (10)0.9307 (3)0.84748 (7)0.0382 (5)
H4A0.2210 (14)1.012 (4)0.8408 (12)0.057*
H4B0.1779 (16)0.866 (4)0.8207 (9)0.057*
O90.11275 (8)0.9528 (3)1.00576 (6)0.0188 (4)
O100.18508 (9)0.3495 (3)0.76525 (6)0.0288 (5)
O120.00733 (8)0.7056 (3)0.80056 (6)0.0302 (5)
H120.0426 (10)0.702 (5)0.7930 (11)0.045*
O130.10287 (8)0.7412 (3)0.82391 (6)0.0210 (4)
H130.1337 (11)0.749 (4)0.8352 (10)0.032*
O140.11122 (8)0.8463 (3)0.91444 (6)0.0213 (4)
H140.1073 (14)0.900 (4)0.9405 (7)0.032*
N10.22497 (9)0.9902 (3)0.99005 (7)0.0148 (5)
N20.17589 (9)0.9350 (3)0.95289 (7)0.0146 (5)
H2N0.1813 (11)0.933 (4)0.9235 (5)0.018*
C10.31207 (11)1.0888 (4)1.07379 (8)0.0156 (5)
C20.35764 (12)1.1406 (4)1.11456 (9)0.0186 (6)
H20.34521.16181.14410.022*
C30.42073 (11)1.1617 (4)1.11280 (9)0.0175 (6)
H30.45161.19921.14070.021*
C40.43828 (11)1.1272 (3)1.06974 (9)0.0156 (5)
C50.39418 (11)1.0743 (3)1.02900 (9)0.0150 (5)
H50.40741.05230.99980.018*
C60.32987 (11)1.0524 (3)1.02996 (8)0.0135 (5)
C70.28342 (11)0.9907 (3)0.98599 (8)0.0143 (5)
C80.30638 (12)0.9305 (4)0.94239 (9)0.0199 (6)
H8A0.27130.87160.91900.030*
H8B0.34110.83860.95190.030*
H8C0.32181.04200.92780.030*
C90.11782 (11)0.9227 (3)0.96425 (9)0.0148 (5)
C100.06185 (11)0.8702 (3)0.92563 (8)0.0131 (5)
C110.06462 (11)0.8147 (4)0.87924 (8)0.0157 (6)
H110.10450.80870.87030.019*
C120.00928 (12)0.7683 (4)0.84614 (8)0.0172 (6)
C130.04955 (11)0.7827 (4)0.85844 (8)0.0146 (5)
C140.05204 (11)0.8373 (4)0.90472 (8)0.0142 (5)
C150.00347 (11)0.8764 (3)0.93839 (9)0.0145 (5)
H150.00170.90780.97050.017*
C160.07421 (15)0.1949 (6)0.72909 (17)0.0685 (13)
H16A0.06450.16260.76010.103*
H16B0.05250.10530.70440.103*
H16C0.05960.32440.71990.103*
C170.15995 (19)0.2421 (5)0.67432 (11)0.0490 (10)
H17A0.13870.36480.66610.074*
H17B0.13800.14410.65220.074*
H17C0.20430.25140.67150.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.01221 (13)0.01949 (15)0.02680 (15)0.00176 (11)0.00269 (10)0.00108 (12)
S0.0249 (4)0.0245 (4)0.0222 (4)0.0041 (3)0.0002 (3)0.0006 (3)
O10.0126 (9)0.0320 (11)0.0155 (9)0.0023 (8)0.0028 (7)0.0048 (9)
O20.0159 (10)0.0290 (12)0.0152 (9)0.0006 (8)0.0008 (8)0.0027 (8)
O30.0213 (10)0.0236 (11)0.0122 (9)0.0033 (8)0.0024 (8)0.0000 (8)
O40.0409 (13)0.0487 (15)0.0254 (11)0.0210 (11)0.0085 (10)0.0066 (11)
O90.0167 (9)0.0261 (11)0.0130 (9)0.0026 (8)0.0022 (7)0.0036 (8)
O100.0270 (10)0.0291 (11)0.0246 (10)0.0053 (9)0.0059 (8)0.0063 (9)
O120.0153 (9)0.0640 (15)0.0116 (9)0.0023 (10)0.0038 (8)0.0127 (9)
O130.0102 (9)0.0382 (12)0.0145 (9)0.0028 (9)0.0025 (7)0.0065 (9)
O140.0132 (8)0.0364 (12)0.0155 (9)0.0028 (8)0.0058 (7)0.0116 (9)
N10.0130 (11)0.0138 (11)0.0153 (11)0.0025 (9)0.0017 (8)0.0010 (9)
N20.0137 (10)0.0193 (12)0.0102 (10)0.0011 (9)0.0011 (8)0.0016 (10)
C10.0152 (13)0.0142 (13)0.0168 (13)0.0005 (10)0.0021 (10)0.0012 (11)
C20.0199 (13)0.0199 (14)0.0160 (13)0.0009 (12)0.0040 (10)0.0032 (12)
C30.0174 (13)0.0161 (14)0.0155 (12)0.0001 (11)0.0036 (10)0.0021 (11)
C40.0116 (12)0.0113 (13)0.0236 (14)0.0015 (10)0.0033 (10)0.0012 (11)
C50.0182 (13)0.0113 (13)0.0161 (13)0.0006 (11)0.0053 (10)0.0016 (11)
C60.0161 (12)0.0098 (13)0.0138 (12)0.0018 (11)0.0020 (10)0.0010 (10)
C70.0168 (13)0.0124 (13)0.0126 (12)0.0007 (10)0.0009 (10)0.0013 (10)
C80.0169 (13)0.0268 (15)0.0157 (13)0.0021 (12)0.0028 (11)0.0017 (12)
C90.0162 (13)0.0096 (13)0.0182 (13)0.0012 (11)0.0031 (10)0.0018 (11)
C100.0148 (12)0.0088 (13)0.0152 (12)0.0000 (10)0.0021 (10)0.0013 (11)
C110.0129 (12)0.0210 (15)0.0143 (12)0.0021 (11)0.0053 (10)0.0001 (11)
C120.0195 (13)0.0204 (14)0.0116 (12)0.0007 (11)0.0034 (10)0.0012 (11)
C130.0123 (12)0.0174 (14)0.0127 (12)0.0004 (10)0.0003 (10)0.0004 (11)
C140.0137 (12)0.0131 (13)0.0166 (12)0.0017 (11)0.0051 (10)0.0011 (11)
C150.0163 (12)0.0149 (14)0.0127 (12)0.0004 (11)0.0039 (10)0.0033 (11)
C160.0242 (18)0.065 (3)0.112 (4)0.0043 (18)0.007 (2)0.042 (3)
C170.084 (3)0.034 (2)0.0243 (16)0.009 (2)0.0029 (17)0.0009 (15)
Geometric parameters (Å, º) top
Br—C41.898 (2)C2—H20.9500
S—O101.516 (2)C3—C41.384 (3)
S—C171.769 (3)C3—H30.9500
S—C161.780 (3)C4—C51.375 (3)
O1—C11.361 (3)C5—C61.402 (3)
O1—H10.818 (17)C5—H50.9500
O2—H2A0.839 (17)C6—C71.481 (3)
O2—H2B0.830 (17)C7—C81.498 (3)
O3—H3A0.823 (17)C8—H8A0.9800
O3—H3B0.804 (17)C8—H8B0.9800
O4—H4A0.867 (18)C8—H8C0.9800
O4—H4B0.889 (18)C9—C101.484 (3)
O9—C91.230 (3)C10—C151.388 (3)
O12—C121.363 (3)C10—C111.391 (3)
O12—H120.837 (18)C11—C121.383 (3)
O13—C131.365 (3)C11—H110.9500
O13—H130.803 (17)C12—C131.394 (3)
O14—C141.368 (3)C13—C141.385 (3)
O14—H140.821 (17)C14—C151.382 (3)
N1—C71.292 (3)C15—H150.9500
N1—N21.373 (3)C16—H16A0.9800
N2—C91.365 (3)C16—H16B0.9800
N2—H2N0.870 (10)C16—H16C0.9800
C1—C21.389 (3)C17—H17A0.9800
C1—C61.410 (3)C17—H17B0.9800
C2—C31.381 (3)C17—H17C0.9800
O10—S—C17106.27 (14)H8A—C8—H8B109.5
O10—S—C16104.83 (14)C7—C8—H8C109.5
C17—S—C1698.9 (2)H8A—C8—H8C109.5
C1—O1—H1106 (2)H8B—C8—H8C109.5
H2A—O2—H2B103 (3)O9—C9—N2120.2 (2)
H3A—O3—H3B105 (3)O9—C9—C10121.4 (2)
H4A—O4—H4B107 (3)N2—C9—C10118.4 (2)
C12—O12—H12115 (2)C15—C10—C11119.6 (2)
C13—O13—H13110 (2)C15—C10—C9115.6 (2)
C14—O14—H14107 (2)C11—C10—C9124.8 (2)
C7—N1—N2122.0 (2)C12—C11—C10119.8 (2)
C9—N2—N1115.11 (19)C12—C11—H11120.1
C9—N2—H2N123.8 (17)C10—C11—H11120.1
N1—N2—H2N119.9 (17)O12—C12—C11124.2 (2)
O1—C1—C2116.8 (2)O12—C12—C13115.4 (2)
O1—C1—C6122.9 (2)C11—C12—C13120.4 (2)
C2—C1—C6120.3 (2)O13—C13—C14122.5 (2)
C3—C2—C1121.0 (2)O13—C13—C12118.0 (2)
C3—C2—H2119.5C14—C13—C12119.5 (2)
C1—C2—H2119.5O14—C14—C15123.5 (2)
C2—C3—C4118.8 (2)O14—C14—C13116.4 (2)
C2—C3—H3120.6C15—C14—C13120.1 (2)
C4—C3—H3120.6C14—C15—C10120.5 (2)
C5—C4—C3121.3 (2)C14—C15—H15119.8
C5—C4—Br119.25 (18)C10—C15—H15119.8
C3—C4—Br119.44 (18)S—C16—H16A109.5
C4—C5—C6120.8 (2)S—C16—H16B109.5
C4—C5—H5119.6H16A—C16—H16B109.5
C6—C5—H5119.6S—C16—H16C109.5
C5—C6—C1117.8 (2)H16A—C16—H16C109.5
C5—C6—C7119.9 (2)H16B—C16—H16C109.5
C1—C6—C7122.3 (2)S—C17—H17A109.5
N1—C7—C6114.4 (2)S—C17—H17B109.5
N1—C7—C8125.8 (2)H17A—C17—H17B109.5
C6—C7—C8119.8 (2)S—C17—H17C109.5
C7—C8—H8A109.5H17A—C17—H17C109.5
C7—C8—H8B109.5H17B—C17—H17C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.82 (2)1.80 (2)2.531 (3)149 (3)
O1—H1···O90.82 (2)2.65 (2)3.338 (2)142 (3)
O2—H2A···O10i0.84 (2)1.88 (2)2.703 (2)168 (3)
O2—H2A···Si0.84 (2)2.86 (2)3.5458 (19)140 (2)
O2—H2B···O1ii0.83 (2)2.06 (2)2.880 (2)169 (3)
O3—H3A···O100.82 (2)1.97 (2)2.785 (3)169 (3)
O3—H3B···O13iii0.80 (2)2.01 (2)2.802 (2)168 (3)
O4—H4A···O2iv0.87 (2)2.07 (2)2.915 (3)166 (3)
O4—H4B···O30.89 (2)1.96 (2)2.817 (3)160 (3)
O12—H12···O30.84 (2)1.91 (2)2.751 (2)179 (3)
O13—H13···O2v0.80 (2)1.88 (2)2.651 (2)160 (3)
O13—H13···O140.80 (2)2.30 (3)2.727 (2)114 (2)
O14—H14···O9vi0.82 (2)1.87 (2)2.682 (2)169 (3)
N2—H2N···O40.87 (1)2.24 (1)3.113 (3)179 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+2, z+2; (iii) x, y, z+3/2; (iv) x1/2, y+1/2, z; (v) x1, y, z; (vi) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC15H13BrN2O5·C2H6OS·3H2O
Mr513.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)21.5690 (15), 7.0302 (4), 28.4771 (18)
β (°) 103.061 (2)
V3)4206.4 (5)
Z8
Radiation typeMo Kα
µ (mm1)2.11
Crystal size (mm)0.26 × 0.03 × 0.03
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.610, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
9543, 3694, 3052
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.066, 1.02
No. of reflections3694
No. of parameters307
No. of restraints11
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.30

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.818 (17)1.80 (2)2.531 (3)149 (3)
O1—H1···O90.818 (17)2.65 (2)3.338 (2)142 (3)
O2—H2A···O10i0.839 (17)1.877 (18)2.703 (2)168 (3)
O2—H2A···Si0.839 (17)2.86 (2)3.5458 (19)140 (2)
O2—H2B···O1ii0.830 (17)2.060 (18)2.880 (2)169 (3)
O3—H3A···O100.823 (17)1.973 (18)2.785 (3)169 (3)
O3—H3B···O13iii0.804 (17)2.012 (18)2.802 (2)168 (3)
O4—H4A···O2iv0.867 (18)2.07 (2)2.915 (3)166 (3)
O4—H4B···O30.889 (18)1.96 (2)2.817 (3)160 (3)
O12—H12···O30.837 (18)1.913 (18)2.751 (2)179 (3)
O13—H13···O2v0.803 (17)1.883 (19)2.651 (2)160 (3)
O13—H13···O140.803 (17)2.30 (3)2.727 (2)114 (2)
O14—H14···O9vi0.821 (17)1.871 (18)2.682 (2)169 (3)
N2—H2N···O40.870 (10)2.243 (10)3.113 (3)179 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+2, z+2; (iii) x, y, z+3/2; (iv) x1/2, y+1/2, z; (v) x1, y, z; (vi) x, y+2, z+2.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (UMRG grant No. RG136/09HTM).

References

First citationAbdul Alhadi, A. A., Ali, H. M. & Ng, S. W. (2009). Acta Cryst. E65, o910.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArunkumar, S., Ramalakshmi, N., Saraswathy, T. & Aruloly, L. (2006). Indian J. Heterocycl. Chem. 16, 29–32.  CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhaledi, H., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaxena, H. O., Faridi, U., Srivastava, S., Kumar, J. K., Darokar, M. P., Luqman, S., Chanotiya, C. S., Krishna, V., Negi, A. S. & Khanuja, S. P. S. (2008). Bioorg. Med. Chem. Lett. 18, 3914–3918.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds