organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(4-methyl­phen­yl)ethyn­yl] telluride

aBioMat-Physics Department, Univ Estadual Paulista, UNESP, 17033-360 Bauru, SP, Brazil, bDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, cDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo-SP, Brazil, and dDepartment of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia
*Correspondence e-mail: ignez@fc.unesp.br

(Received 14 February 2010; accepted 16 February 2010; online 24 February 2010)

The tellurium atom in the title bis-ethynyl telluride, Te(C9H7)2 or C18H14Te, is located on a crystallographic twofold axis, the C—Te—C angle being 92.23 (15)°. The dihedral angle between the rings is 87.27 (7)°. In the crystal structure, mol­ecules are connected in chains parallel to the b axis and mediated by C—H⋯π inter­actions.

Related literature

For the synthesis of bis-ethynyl tellurides, see: Gedridge et al. (1992[Gedridge, R. W. Jr, Brandsma, L., Nissan, R. A., Verkruijsse, H. D., Harder, S., de Jong, R. L. P. & O'Connor, C. J. (1992). Organometallics, 11, 418-422.]); Engman & Stern (1993[Engman, L. & Stern, D. (1993). Organometallics, 12, 1445-1448.]). For background to the motivation of studies into tellurium chemistry, see: Petragnani & Stefani (2007[Petragnani, N. & Stefani, H. A. (2007). Tellurium in Organic Synthesis - Second, Updated and Enlarged Edition. 2nd ed. Netherlands: Academic Press/Elsevier.]); Zukerman-Schpector et al. (2008[Zukerman-Schpector, J., Stefani, H. A., Guadagnin, R. C., Suganuma, C. A. & Tiekink, E. R. T. (2008). Z. Kristallogr. 223, 536-541.]). For related structures, see: Jones & Ruthe (2006[Jones, P. G. & Ruthe, F. (2006). Private communication (refcode: CEPSUM). CCDC, Cambridge, England.]). For searching the Cambridge Structural Database, see: Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). For background to Te⋯π inter­actions, see: Tiekink & Zukerman-Schpector (2009[Tiekink, E. R. T. & Zukerman-Schpector, J. (2009). CrystEngComm, 11, 2701-2711.]); Zukerman-Schpector & Haiduc (2002[Zukerman-Schpector, J. & Haiduc, I. (2002). CrystEngComm, 4, 178-192.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14Te

  • Mr = 357.89

  • Monoclinic, C 2/c

  • a = 25.8462 (8) Å

  • b = 4.8902 (2) Å

  • c = 11.3764 (3) Å

  • β = 100.316 (2)°

  • V = 1414.65 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.09 mm−1

  • T = 100 K

  • 0.27 × 0.13 × 0.09 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.617, Tmax = 0.746

  • 5433 measured reflections

  • 1443 independent reflections

  • 1350 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.055

  • S = 1.20

  • 1443 reflections

  • 88 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9a⋯Cgi 0.98 2.62 3.573 (3) 163
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Carbon–carbon bond formation for the preparation of symmetrical and unsymmetrical 1,3-diyne compounds is one of the most useful and important tools in modern organic chemistry. The construction of 1,3-diynes can be achieved either by intermolecular or intramolecular coupling of two similar or dissimilar alkynylic functionalities in the presence of organometallic complexes. However, the synthesis and use of bis-ethynyl tellurides are scarcely described in the literature (Gedridge et al., 1992, Engman & Stern, 1993) and their use in the detelluration reaction to afford 1,3-diynes is unknown until now. As part of our ongoing research into tellurium chemistry (Petragnani & Stefani, 2007; Zukerman-Schpector et al., 2008), the title compound, (I), was synthesized and its crystal structure determined.

The C—Te—C in (I), Fig. 1, angle of 92.23 (15) ° is close to the smallest value found for related diorganotellurium compounds, i.e. 92.30 (14) ° for Te[C(H)C(H)Ph]2 (Jones & Ruthe, 2006). A search in the CSD (Bruno et al. 2002) showed 225 hits for related compounds and a mean value of 96.0 ° for the C—Te(II)—C angle.

The molecules are linked in chains parallel to the b axis mediated in a large part through C–H···π interactions, Table 1 and Fig. 1. Short intermolecular Te–C interactions [e.g. Te···C2ii = 3.541 (3) Å for ii: x, -1+ y, z], indicative of Te···π interactions (Zukerman-Schpector & Haiduc, 2002; Tiekink & Zukerman-Schpector, 2009), are also noted as contributing to the stability of the chain.

Related literature top

For the synthesis of bis-ethynyl tellurides, see: Gedridge et al. (1992); Engman & Stern (1993). For background to the motivation of studies into tellurium chemistry, see: Petragnani & Stefani (2007); Zukerman-Schpector et al. (2008). For related structures, see: Jones & Ruthe (2006). For searching the Cambridge Structural Database, see: Bruno et al. (2002). For background to Te···π interactions, see: Tiekink & Zukerman-Schpector (2009); Zukerman-Schpector & Haiduc (2002).

Experimental top

To a stirred solution of 1-ethynyl-4-methylbenzene (0.35 g, 3.0 mmol) in THF (10 ml), n-BuLi (1.2 ml, 2.5 M, 3.0 mmol) was added dropwise at 195 K. After 20 min., freshly crushed tellurium powder (0.38 g, 3.0 mmol) was added in one lot while a stream of argon was passed through the open flask. The cooling bath was then removed to bring the reaction medium to room temperature. When almost all the tellurium was consumed, the reaction mixture was again cooled to 195 K. Then a solution of bromine (0.48 g, 3.0 mmol) in dry benzene (5 ml) was added dropwise, and stirring was continued for 15 min. The reaction mixture was hydrolyzed at 195 K by addition of water (5 ml). Dilution with water (20 ml) at room temperature, extraction with dichloromethane (2 x 15 ml), drying (MgSO4), and flash chromatography (1/4 dichloromethane/hexane) afforded 0.90 g (62% yield) of the title compound as yellow crystals, m.pt. 400–401 K.

Refinement top

The H atoms were geometrically placed (C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms). Symmetry operation i: -x, y, 3/2-z.
[Figure 2] Fig. 2. Supramolecular chain aligned along the b axis in (I) sustained by C–H···π interactions shown as orange dashed lines. Colour code: Te, purple; C, grey; and H, green.
bis[(4-methylphenyl)ethynyl] telluride top
Crystal data top
C18H14TeF(000) = 696
Mr = 357.89Dx = 1.680 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4746 reflections
a = 25.8462 (8) Åθ = 2.2–27.7°
b = 4.8902 (2) ŵ = 2.09 mm1
c = 11.3764 (3) ÅT = 100 K
β = 100.316 (2)°Block, pale-yellow
V = 1414.65 (8) Å30.27 × 0.13 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
1443 independent reflections
Radiation source: sealed tube1350 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 26.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3232
Tmin = 0.617, Tmax = 0.746k = 65
5433 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.019P)2 + 5.1394P]
where P = (Fo2 + 2Fc2)/3
1443 reflections(Δ/σ)max < 0.001
88 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
C18H14TeV = 1414.65 (8) Å3
Mr = 357.89Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.8462 (8) ŵ = 2.09 mm1
b = 4.8902 (2) ÅT = 100 K
c = 11.3764 (3) Å0.27 × 0.13 × 0.09 mm
β = 100.316 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
1443 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1350 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 0.746Rint = 0.020
5433 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.20Δρmax = 0.74 e Å3
1443 reflectionsΔρmin = 0.72 e Å3
88 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te0.00000.37974 (5)0.75000.01504 (9)
C10.04373 (10)0.6695 (6)0.8528 (2)0.0161 (5)
C20.07098 (10)0.8358 (6)0.9095 (2)0.0172 (6)
C30.10551 (10)1.0424 (6)0.9693 (2)0.0155 (5)
C40.14665 (10)1.1424 (6)0.9162 (2)0.0173 (6)
H40.15101.07590.84010.021*
C50.18087 (10)1.3374 (6)0.9737 (2)0.0172 (6)
H50.20861.40240.93650.021*
C60.17559 (10)1.4406 (6)1.0852 (2)0.0154 (6)
C70.13423 (10)1.3430 (6)1.1371 (2)0.0179 (6)
H70.12981.41191.21270.022*
C80.09947 (10)1.1478 (6)1.0810 (2)0.0170 (5)
H80.07151.08511.11810.020*
C90.21318 (10)1.6531 (6)1.1461 (2)0.0189 (6)
H9A0.19901.83581.12480.028*
H9B0.24721.63321.12020.028*
H9C0.21791.62861.23290.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te0.01487 (13)0.01124 (14)0.01834 (14)0.0000.00119 (9)0.000
C10.0156 (12)0.0148 (14)0.0177 (12)0.0001 (11)0.0023 (10)0.0042 (11)
C20.0154 (12)0.0175 (15)0.0183 (12)0.0040 (11)0.0021 (10)0.0045 (12)
C30.0151 (12)0.0123 (14)0.0175 (12)0.0018 (10)0.0013 (10)0.0008 (11)
C40.0199 (12)0.0172 (15)0.0152 (12)0.0024 (11)0.0038 (10)0.0026 (12)
C50.0179 (12)0.0163 (15)0.0179 (13)0.0021 (11)0.0049 (10)0.0027 (12)
C60.0165 (12)0.0116 (14)0.0172 (12)0.0021 (10)0.0002 (10)0.0009 (11)
C70.0204 (13)0.0168 (15)0.0168 (12)0.0004 (11)0.0037 (10)0.0020 (12)
C80.0180 (12)0.0150 (14)0.0192 (13)0.0016 (11)0.0069 (10)0.0037 (12)
C90.0182 (12)0.0177 (15)0.0199 (13)0.0015 (11)0.0006 (10)0.0035 (12)
Geometric parameters (Å, º) top
Te—C12.044 (3)C6—C71.395 (4)
C1—C21.188 (4)C6—C91.504 (4)
C2—C31.437 (4)C7—C81.386 (4)
C3—C41.402 (4)C7—H70.9500
C3—C81.406 (4)C8—H80.9500
C4—C51.383 (4)C9—H9A0.9800
C4—H40.9500C9—H9B0.9800
C5—C61.394 (4)C9—H9C0.9800
C5—H50.9500
C1—Te—C1i92.23 (15)C7—C6—C9121.5 (2)
C2—C1—Te176.9 (2)C8—C7—C6121.6 (3)
C1—C2—C3175.3 (3)C8—C7—H7119.2
C4—C3—C8118.5 (3)C6—C7—H7119.2
C4—C3—C2119.7 (3)C7—C8—C3120.1 (3)
C8—C3—C2121.8 (3)C7—C8—H8120.0
C5—C4—C3120.4 (3)C3—C8—H8120.0
C5—C4—H4119.8C6—C9—H9A109.5
C3—C4—H4119.8C6—C9—H9B109.5
C4—C5—C6121.5 (3)H9A—C9—H9B109.5
C4—C5—H5119.3C6—C9—H9C109.5
C6—C5—H5119.3H9A—C9—H9C109.5
C5—C6—C7117.9 (3)H9B—C9—H9C109.5
C5—C6—C9120.6 (2)
C8—C3—C4—C51.0 (4)C5—C6—C7—C80.5 (4)
C2—C3—C4—C5178.7 (3)C9—C6—C7—C8179.8 (3)
C3—C4—C5—C60.2 (4)C6—C7—C8—C30.2 (4)
C4—C5—C6—C70.6 (4)C4—C3—C8—C71.0 (4)
C4—C5—C6—C9179.9 (3)C2—C3—C8—C7178.7 (3)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9a···Cgii0.982.623.573 (3)163
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H14Te
Mr357.89
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)25.8462 (8), 4.8902 (2), 11.3764 (3)
β (°) 100.316 (2)
V3)1414.65 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.09
Crystal size (mm)0.27 × 0.13 × 0.09
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.617, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
5433, 1443, 1350
Rint0.020
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.055, 1.20
No. of reflections1443
No. of parameters88
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.72

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9a···Cgi0.982.623.573 (3)163
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We thank FAPESP (07/59404–2 to HAS), CNPq (472237/2008–0 to IC, 300613/2007 to HAS, and 306532/2009–3 to JZ-S) and CAPES (808/2009 to JZ-S and IC) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEngman, L. & Stern, D. (1993). Organometallics, 12, 1445–1448.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGedridge, R. W. Jr, Brandsma, L., Nissan, R. A., Verkruijsse, H. D., Harder, S., de Jong, R. L. P. & O'Connor, C. J. (1992). Organometallics, 11, 418–422.  CrossRef CAS Web of Science Google Scholar
First citationJones, P. G. & Ruthe, F. (2006). Private communication (refcode: CEPSUM). CCDC, Cambridge, England.  Google Scholar
First citationPetragnani, N. & Stefani, H. A. (2007). Tellurium in Organic Synthesis - Second, Updated and Enlarged Edition. 2nd ed. Netherlands: Academic Press/Elsevier.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2009). CrystEngComm, 11, 2701–2711.  Web of Science CrossRef CAS Google Scholar
First citationZukerman-Schpector, J. & Haiduc, I. (2002). CrystEngComm, 4, 178–192.  Web of Science CrossRef CAS Google Scholar
First citationZukerman-Schpector, J., Stefani, H. A., Guadagnin, R. C., Suganuma, C. A. & Tiekink, E. R. T. (2008). Z. Kristallogr. 223, 536–541.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds