organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o658-o659

1-[5-Acetyl-4-(4-bromo­phen­yl)-2,6-di­methyl-1,4-di­hydro­pyridin-3-yl]ethanone monohydrate

aOrganic Chemistry Division, School of Advanced Sciences, VIT University, India, bMaterials Research Centre, Indian Institute of Science, Bengaluru 560 012, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 15 February 2010; accepted 16 February 2010; online 20 February 2010)

The 1,4-dihydro­pyridine ring in the title hydrate, C17H18BrNO2·H2O, has a flattened-boat conformation, and the benzene ring is occupies a position orthogonal to this [dihedral angle: 82.19 (16)°]. In the crystal packing, supra­molecular arrays mediated by N—H⋯Owater and Owater—H⋯Ocarbon­yl hydrogen bonding are formed in the bc plane. A highly disordered solvent mol­ecule is present within a mol­ecular cavity defined by the organic and water mol­ecules. Its contribution to the electron density was removed from the observed data in the final cycles of refinement and the formula, mol­ecular weight and density are given without taking into account the contribution of the solvent mol­ecule.

Related literature

For background to the pharmacological potential of Hantzsch 4-dihydro­pyridines, see: Gaudio et al. (1994[Gaudio, A. C., Korolkovas, A. & Takahata, Y. J. (1994). Pharm. Sci. 83, 1110-1115.]); Böcker & Guengerich (1986[Böcker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 28, 1596-1603.]); Gordeev et al. (1996[Gordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924-928.]); Sunkel et al. (1992[Sunkel, C. E., Fau de Casa-Juana, M., Santos, L., Garcia, A. G., Artalejo, C. R., Villarroya, M., González-Morales, M. A., López, M. G. & Cillero, J. (1992). J. Med. Chem. 35, 2407-2414.]); Vo et al. (1995[Vo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851-2859.]); Cooper et al. (1992[Cooper, K., Fray, M. J., Parry, M. J., Richardson, K. & Steele, J. (1992). J. Med. Chem. 35, 3115-3129.]). For the synthesis, see: Rathore et al. (2009[Rathore, R. S., Reddy, B. P., Vijayakumar, V., Ragavan, R. V. & Narasimhamurthy, T. (2009). Acta Cryst. B65, 375-381.]). For a related structure, see: de Armas et al. (2000[Armas, H. N. de, Blaton, H., Peeters, O. M., De Ranter, C., Suarez, M., Rolando, E., Verdecia, Y., Ochoa, E., Martin, N., Quinteiro, M., Seoane, C. & Soto, J. L. (2000). J. Heterocycl. Chem. 37, 1575-1581.]). For additional geometric analysis, see: Cremer & Pople, (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18BrNO2·H2O

  • Mr = 366.25

  • Monoclinic, P 21 /c

  • a = 13.5236 (3) Å

  • b = 10.3866 (2) Å

  • c = 15.0939 (3) Å

  • β = 102.112 (1)°

  • V = 2072.96 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.99 mm−1

  • T = 293 K

  • 0.21 × 0.11 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Maddison, Wisconsin, USA.]) Tmin = 0.768, Tmax = 0.819

  • 27847 measured reflections

  • 3658 independent reflections

  • 2611 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.147

  • S = 1.08

  • 3658 reflections

  • 212 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O1w 0.88 (1) 2.03 (1) 2.904 (3) 174 (2)
O1W—H1w⋯O1i 0.84 (2) 1.92 (3) 2.754 (3) 174 (4)
O1W—H2w⋯O2ii 0.84 (2) 1.96 (2) 2.778 (3) 166 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Biologically active compounds based on Hantzsch 1,4-dihydropyridines (DHPs) have been demonstrated to possess a range of pharmaceutical properties, such as vasodilator, antihypertensive, bronchodilator, heptaprotective, anti-tumour, anti-mutagenic, geroprotective and anti-diabetic agents (Gaudio et al., 1994). For example, calcium channel blockers Nifedipine, Nitrendipine and Nimodipine have found commercial utility (Böcker & Guengerich, 1986; Gordeev et al., 1996). Various DHP-based calcium antagonists have been introduced for the treatment of congestive heart failure (Sunkel et al., 1992; Vo et al., 1995). Finally, a number of DHPs having anti-aggregatory activity of platelet are known (Cooper et al., 1992). In continuation of study investigating crystal packing motifs of these compounds (Rathore et al. (2009), the title hydrate, (I), was investigated.

The molecular structures of the components of (I) are shown in Fig. 1. The 1,4-dihydropyridine ring in (I) has a flattened-boat conformation with the N1 and C3 atoms lying above the plane defined by the C1,C2,C4 and C5 atoms. This assignments is quantified by the ring puckering parameters (Cremer & Pople, 1975): Q = 0.312 (3) Å, θ = 72.0 (6) °, and ϕ2 = 175.4 (5) °. The aryl ring is orthogonal to the 1,4-dihydropyridine ring with a dihedral angle between their respective least-squares planes of 82.19 (16) °. The observed conformation in (I) is entirely consistent with those found for the two closely related aryl derivatives of (I), i.e. with PhNO2-3 (Rathore et al., (2009) and with PhOH-4, as the monohydrate (de Armas et al., 2000). The difference between the structures relate to the relative disposition of the acetyl groups. In each case, these are essentially co-planar with the 1,4-dihydropyridine ring and in the PhNO2-3 derivative (Rathore et al., (2009), both carbonyl atoms are orientated away from the amine group whereas in (I) and in PhOH-4 monohydrate (de Armas et al., 2000), one is orientated towards the amine group.

The crystal packing features N–H···Owater and OwaterH···Ocarbonyl hydrogen bonding, Table 1. These link the molecules into a layer in the bc plane, Fig. 2, with all the aryl rings being orientated to one side of the plane for each layer. Pairs of layers interdigitate to form sandwich structure, Fig. 3.

Related literature top

For background to the pharmacological potential of Hantzsch 4-dihydropyridines, see: Gaudio et al. (1994); Böcker & Guengerich (1986); Gordeev et al. (1996); Sunkel et al. (1992); Vo et al. (1995); Cooper et al. (1992). For the synthesis, see: Rathore et al. (2009). For a related structure, see: de Armas et al. (2000). For additional geometric analysis, see: Cremer & Pople, (1975).

Experimental top

3,5-Diacetyl-2,6-dimethyl-1,4-dihydro-4-(4-bromophenyl)-pyridine was prepared according to Hantzsch pyridine synthesis (Rathore et al., 2009). 4-Bromobenzaldehyde (10 mmol), acetylacetone (20 mmol) and ammonium acetate (10 mmol) were taken in a 1:2:1 mole ratio along with ethanol (20 ml) as solvent in a RB-flask and refluxed over a steam-bath until the colour of the solution changed to red-orange (approximately 2 h). The solution was kept under ice-cold conditions in order to precipitate the solid product. This was extracted using diethyl ether and then excess solvent was distilled off. The purity of the crude product was checked through TLC and recrystallized using mixture of acetone and diethyl ether (3:1); Yield: 85%; m.pt. 382 K. Crystals were grown from an acetone and ether (3:1) solution over three days. IR (KBr): ν(N—H) 3358, ν(Ar—H) 3062, ν(CO) 1678, ν(C–Br) 744 cm-1.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The remaining H were located from a difference map and refined with O–H = 0.840±0.001 (with H1w···H2w = 1.39±0.01) and N–H = 0.880±0.001, and with Uiso(H) = nUeq(parent atom), with n = 1.5 for O and n = 1.2 for N. Unresolved disordered solvent was evident in the final cycles of the refinement. This was modelled with the SQUEEZE option in PLATON (Spek, 2009); the solvent cavity had volume 251 Å3. In the final cycles of refinement, this contribution to the electron density was removed from the observed data. The density, the F(000) value, the molecular weight, and the formula are given without taking into account the contribution of the solvent molecule(s). The structure factor programme detects differences in R values. These discrepancies arise as the structure factor checking program does not take into account the SQUEEZE procedure applied to the data, as explained in the refinement section, and appended at the end of the CIF.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of a supramolecular array formed in the bc plane of (I). The N–H···O and O–H···O hydrogen bonds are shown as blue and orange dashed lines, respectively. Colour code: Br, cyan; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. A view in projection down the c axis highlighting the sandwich-like packing along the a axis in (I). Colour code: Br, cyan; O, red; N, blue; C, grey; and H, green.
1-[5-Acetyl-4-(4-bromophenyl)-2,6-dimethyl-1,4-dihydropyridin-3-yl]ethanone monohydrate top
Crystal data top
C17H18BrNO2·H2OF(000) = 752
Mr = 366.25Dx = 1.174 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7408 reflections
a = 13.5236 (3) Åθ = 2.4–22.7°
b = 10.3866 (2) ŵ = 1.99 mm1
c = 15.0939 (3) ÅT = 293 K
β = 102.112 (1)°Block, colourless
V = 2072.96 (7) Å30.21 × 0.11 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3658 independent reflections
Radiation source: fine-focus sealed tube2611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1615
Tmin = 0.768, Tmax = 0.819k = 012
27847 measured reflectionsl = 017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.071P)2 + 1.0899P]
where P = (Fo2 + 2Fc2)/3
3658 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.56 e Å3
4 restraintsΔρmin = 0.75 e Å3
Crystal data top
C17H18BrNO2·H2OV = 2072.96 (7) Å3
Mr = 366.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.5236 (3) ŵ = 1.99 mm1
b = 10.3866 (2) ÅT = 293 K
c = 15.0939 (3) Å0.21 × 0.11 × 0.10 mm
β = 102.112 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3658 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2611 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.819Rint = 0.032
27847 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0494 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.56 e Å3
3658 reflectionsΔρmin = 0.75 e Å3
212 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.15936 (3)0.08244 (7)0.77808 (4)0.1238 (3)
O10.3468 (2)0.35143 (19)0.87926 (13)0.0640 (6)
O20.3961 (2)0.2324 (2)0.88848 (14)0.0691 (7)
N10.35579 (19)0.0281 (2)1.09364 (14)0.0423 (5)
H1N0.367 (2)0.001 (3)1.1502 (7)0.051*
C10.3493 (2)0.1585 (2)1.07651 (16)0.0388 (6)
C20.33562 (19)0.1993 (2)0.98949 (16)0.0350 (6)
C30.3071 (2)0.1007 (2)0.91317 (16)0.0356 (6)
H30.33580.13030.86230.043*
C40.3524 (2)0.0305 (2)0.94161 (16)0.0365 (6)
C50.3691 (2)0.0629 (2)1.03099 (17)0.0389 (6)
C60.3600 (3)0.2362 (3)1.16203 (18)0.0559 (8)
H6A0.42530.27681.17520.084*
H6B0.35350.18051.21130.084*
H6C0.30820.30081.15420.084*
C70.3489 (2)0.3316 (2)0.96005 (17)0.0425 (6)
C80.3688 (3)0.4445 (3)1.0225 (2)0.0683 (10)
H8A0.37820.52010.98860.102*
H8B0.42870.42891.06810.102*
H8C0.31230.45701.05080.102*
C90.3687 (2)0.1214 (3)0.87207 (19)0.0463 (7)
C100.3516 (3)0.0759 (3)0.7756 (2)0.0723 (11)
H10A0.35970.14690.73700.108*
H10B0.39970.00990.77050.108*
H10C0.28430.04200.75770.108*
C110.4025 (3)0.1911 (3)1.07260 (19)0.0558 (8)
H11A0.34650.25001.06120.084*
H11B0.42620.18111.13680.084*
H11C0.45610.22431.04640.084*
C120.1926 (2)0.0954 (3)0.88046 (17)0.0417 (6)
C130.1332 (2)0.0057 (3)0.9125 (2)0.0638 (9)
H130.16400.05420.95530.077*
C140.0291 (3)0.0023 (4)0.8828 (3)0.0778 (11)
H140.00920.05920.90540.093*
C150.0166 (3)0.0895 (4)0.8205 (3)0.0766 (10)
C160.0384 (3)0.1807 (4)0.7877 (3)0.0858 (12)
H160.00630.24060.74560.103*
C170.1432 (3)0.1839 (4)0.8176 (2)0.0686 (9)
H170.18050.24650.79510.082*
O1W0.40559 (17)0.05147 (18)1.28219 (12)0.0510 (5)
H1w0.392 (3)0.0100 (17)1.3139 (18)0.076*
H2w0.397 (3)0.1227 (12)1.3060 (19)0.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0512 (3)0.1686 (6)0.1423 (5)0.0066 (3)0.0009 (3)0.0017 (4)
O10.1159 (19)0.0375 (11)0.0411 (11)0.0092 (11)0.0222 (11)0.0047 (9)
O20.117 (2)0.0393 (12)0.0529 (12)0.0149 (12)0.0218 (12)0.0105 (10)
N10.0692 (15)0.0318 (12)0.0288 (11)0.0016 (11)0.0171 (11)0.0033 (9)
C10.0527 (16)0.0324 (14)0.0334 (13)0.0002 (12)0.0141 (11)0.0015 (11)
C20.0460 (14)0.0276 (13)0.0329 (13)0.0004 (11)0.0114 (11)0.0029 (10)
C30.0488 (15)0.0305 (13)0.0289 (12)0.0032 (11)0.0115 (11)0.0018 (10)
C40.0500 (15)0.0261 (13)0.0345 (13)0.0033 (11)0.0112 (11)0.0032 (10)
C50.0489 (15)0.0315 (14)0.0384 (14)0.0017 (11)0.0139 (12)0.0024 (11)
C60.094 (2)0.0406 (16)0.0359 (15)0.0006 (16)0.0212 (15)0.0059 (12)
C70.0553 (16)0.0337 (14)0.0383 (15)0.0002 (12)0.0095 (12)0.0004 (11)
C80.119 (3)0.0339 (16)0.0524 (19)0.0096 (17)0.019 (2)0.0023 (14)
C90.0599 (18)0.0373 (16)0.0431 (15)0.0024 (13)0.0142 (13)0.0079 (12)
C100.128 (4)0.053 (2)0.0389 (17)0.0131 (19)0.026 (2)0.0095 (14)
C110.089 (2)0.0354 (15)0.0454 (16)0.0085 (15)0.0189 (16)0.0056 (12)
C120.0522 (16)0.0400 (14)0.0342 (13)0.0012 (13)0.0123 (12)0.0037 (11)
C130.057 (2)0.064 (2)0.069 (2)0.0095 (16)0.0116 (16)0.0129 (17)
C140.061 (2)0.088 (3)0.087 (3)0.019 (2)0.020 (2)0.005 (2)
C150.0472 (19)0.097 (3)0.082 (3)0.005 (2)0.0069 (18)0.005 (2)
C160.061 (2)0.093 (3)0.093 (3)0.011 (2)0.005 (2)0.028 (2)
C170.059 (2)0.076 (2)0.067 (2)0.0011 (18)0.0042 (16)0.0236 (18)
O1w0.0796 (15)0.0376 (10)0.0379 (11)0.0059 (10)0.0170 (10)0.0048 (8)
Geometric parameters (Å, º) top
Br—C151.904 (4)C8—H8B0.9600
O1—C71.231 (3)C8—H8C0.9600
O2—C91.221 (3)C9—C101.501 (4)
N1—C51.375 (3)C10—H10A0.9600
N1—C11.378 (3)C10—H10B0.9600
N1—H1n0.881 (14)C10—H10C0.9600
C1—C21.355 (3)C11—H11A0.9600
C1—C61.503 (4)C11—H11B0.9600
C2—C71.467 (4)C11—H11C0.9600
C2—C31.530 (3)C12—C131.383 (4)
C3—C41.519 (3)C12—C171.388 (4)
C3—C121.523 (4)C13—C141.385 (5)
C3—H30.9800C13—H130.9300
C4—C51.363 (4)C14—C151.358 (6)
C4—C91.462 (4)C14—H140.9300
C5—C111.501 (4)C15—C161.360 (6)
C6—H6A0.9600C16—C171.394 (5)
C6—H6B0.9600C16—H160.9300
C6—H6C0.9600C17—H170.9300
C7—C81.492 (4)O1w—H1w0.84 (2)
C8—H8A0.9600O1w—H2w0.841 (18)
C5—N1—C1124.0 (2)H8B—C8—H8C109.5
C5—N1—H1N115 (2)O2—C9—C4123.3 (3)
C1—N1—H1N119 (2)O2—C9—C10118.2 (2)
C2—C1—N1118.7 (2)C4—C9—C10118.5 (2)
C2—C1—C6129.3 (2)C9—C10—H10A109.5
N1—C1—C6112.0 (2)C9—C10—H10B109.5
C1—C2—C7125.9 (2)H10A—C10—H10B109.5
C1—C2—C3118.8 (2)C9—C10—H10C109.5
C7—C2—C3115.3 (2)H10A—C10—H10C109.5
C4—C3—C12112.4 (2)H10B—C10—H10C109.5
C4—C3—C2111.4 (2)C5—C11—H11A109.5
C12—C3—C2110.3 (2)C5—C11—H11B109.5
C4—C3—H3107.5H11A—C11—H11B109.5
C12—C3—H3107.5C5—C11—H11C109.5
C2—C3—H3107.5H11A—C11—H11C109.5
C5—C4—C9122.2 (2)H11B—C11—H11C109.5
C5—C4—C3118.3 (2)C13—C12—C17116.9 (3)
C9—C4—C3119.3 (2)C13—C12—C3122.5 (3)
C4—C5—N1119.5 (2)C17—C12—C3120.6 (3)
C4—C5—C11127.3 (2)C12—C13—C14122.0 (3)
N1—C5—C11113.2 (2)C12—C13—H13119.0
C1—C6—H6A109.5C14—C13—H13119.0
C1—C6—H6B109.5C15—C14—C13119.4 (3)
H6A—C6—H6B109.5C15—C14—H14120.3
C1—C6—H6C109.5C13—C14—H14120.3
H6A—C6—H6C109.5C14—C15—C16120.8 (3)
H6B—C6—H6C109.5C14—C15—Br119.3 (3)
O1—C7—C2118.6 (2)C16—C15—Br119.9 (3)
O1—C7—C8117.2 (2)C15—C16—C17119.7 (4)
C2—C7—C8124.2 (2)C15—C16—H16120.1
C7—C8—H8A109.5C17—C16—H16120.1
C7—C8—H8B109.5C12—C17—C16121.1 (3)
H8A—C8—H8B109.5C12—C17—H17119.5
C7—C8—H8C109.5C16—C17—H17119.5
H8A—C8—H8C109.5H1w—O1w—H2w111 (3)
C5—N1—C1—C213.2 (4)C3—C2—C7—O17.3 (4)
C5—N1—C1—C6166.2 (3)C1—C2—C7—C87.1 (5)
N1—C1—C2—C7165.8 (3)C3—C2—C7—C8175.0 (3)
C6—C1—C2—C713.5 (5)C5—C4—C9—O21.6 (5)
N1—C1—C2—C312.1 (4)C3—C4—C9—O2173.2 (3)
C6—C1—C2—C3168.6 (3)C5—C4—C9—C10178.1 (3)
C1—C2—C3—C431.5 (3)C3—C4—C9—C107.2 (4)
C7—C2—C3—C4146.5 (2)C4—C3—C12—C1329.6 (3)
C1—C2—C3—C1294.1 (3)C2—C3—C12—C1395.5 (3)
C7—C2—C3—C1287.9 (3)C4—C3—C12—C17151.8 (3)
C12—C3—C4—C595.4 (3)C2—C3—C12—C1783.1 (3)
C2—C3—C4—C529.0 (3)C17—C12—C13—C140.9 (5)
C12—C3—C4—C979.5 (3)C3—C12—C13—C14179.5 (3)
C2—C3—C4—C9156.1 (2)C12—C13—C14—C150.1 (6)
C9—C4—C5—N1177.7 (3)C13—C14—C15—C160.7 (6)
C3—C4—C5—N17.5 (4)C13—C14—C15—Br178.7 (3)
C9—C4—C5—C111.8 (5)C14—C15—C16—C170.7 (7)
C3—C4—C5—C11173.0 (3)Br—C15—C16—C17178.7 (3)
C1—N1—C5—C415.7 (4)C13—C12—C17—C160.8 (5)
C1—N1—C5—C11163.9 (3)C3—C12—C17—C16179.5 (3)
C1—C2—C7—O1170.6 (3)C15—C16—C17—C120.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1w0.88 (1)2.03 (1)2.904 (3)174 (2)
O1W—H1w···O1i0.84 (2)1.92 (3)2.754 (3)174 (4)
O1W—H2w···O2ii0.84 (2)1.96 (2)2.778 (3)166 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H18BrNO2·H2O
Mr366.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.5236 (3), 10.3866 (2), 15.0939 (3)
β (°) 102.112 (1)
V3)2072.96 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.99
Crystal size (mm)0.21 × 0.11 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.768, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
27847, 3658, 2611
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.147, 1.08
No. of reflections3658
No. of parameters212
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.75

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT (Bruker, 2001, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1w0.881 (14)2.025 (13)2.904 (3)174 (2)
O1W—H1w···O1i0.84 (2)1.92 (3)2.754 (3)174 (4)
O1W—H2w···O2ii0.841 (18)1.96 (2)2.778 (3)166 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: kvpsvijayakumar@gmail.com.

Acknowledgements

VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationArmas, H. N. de, Blaton, H., Peeters, O. M., De Ranter, C., Suarez, M., Rolando, E., Verdecia, Y., Ochoa, E., Martin, N., Quinteiro, M., Seoane, C. & Soto, J. L. (2000). J. Heterocycl. Chem. 37, 1575–1581.  Google Scholar
First citationBöcker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 28, 1596–1603.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SADABS. Bruker AXS Inc., Maddison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCooper, K., Fray, M. J., Parry, M. J., Richardson, K. & Steele, J. (1992). J. Med. Chem. 35, 3115–3129.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGaudio, A. C., Korolkovas, A. & Takahata, Y. J. (1994). Pharm. Sci. 83, 1110–1115.  CrossRef CAS Web of Science Google Scholar
First citationGordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924–928.  CrossRef CAS Web of Science Google Scholar
First citationRathore, R. S., Reddy, B. P., Vijayakumar, V., Ragavan, R. V. & Narasimhamurthy, T. (2009). Acta Cryst. B65, 375–381.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSunkel, C. E., Fau de Casa-Juana, M., Santos, L., Garcia, A. G., Artalejo, C. R., Villarroya, M., González-Morales, M. A., López, M. G. & Cillero, J. (1992). J. Med. Chem. 35, 2407–2414.  CrossRef PubMed CAS Web of Science Google Scholar
First citationVo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851–2859.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o658-o659
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds