metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m273-m274

catena-Poly[[[aqua­[(2-hy­droxy­phen­yl)acetato-κ2O,O′]lead(II)]-μ3-[(2-hy­droxy­phen­yl)acetato-κ4O:O,O′:O′]] monohydrate]

aSchool of Chemistry and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, People's Republic of China
*Correspondence e-mail: xiaojx090@126.com

(Received 18 January 2010; accepted 2 February 2010; online 6 February 2010)

In the title complex, {[Pb(C8H7O3)2(H2O)]·H2O}n, the PbII atom is seven-coordinated by six carboxyl­ate O atoms from four different 2-hydroxy­phenyl­acetate (2-dph) ligands and one water mol­ecule, displaying a hemidirected irregular geometry, with the empty side of the metal ion capped by a benzene ring forming a Pb⋯π contact [Pb⋯centroid distance = 3.342 (2) Å]. One 2-dph ligand functions in a bridging mode and connects Pb ions into a linear chain. The crystal packing is governed by intra- and inter­molecular O—H⋯O hydrogen bonds.

Related literature

For general background to hydroxy­phenyl­acetate complexes, see: Liwporncharoenvong et al. (2002[Liwporncharoenvong, T., Lu, T. & Luck, R. L. (2002). Inorg. Chim. Acta, 329, 51-58.]); Nie & Li (2009[Nie, X.-Y. & Li, Q.-Z. (2009). Acta Cryst. E65, m330.]). For general background to hemi- and holodirected geometries of lead(II) complexes, see: Shimoni-Livny et al. (1998[Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853-1867.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C8H7O3)2(H2O)]·H2O

  • Mr = 545.50

  • Triclinic, [P \overline 1]

  • a = 7.4610 (15) Å

  • b = 10.721 (2) Å

  • c = 11.701 (2) Å

  • α = 109.72 (3)°

  • β = 90.10 (3)°

  • γ = 102.92 (3)°

  • V = 855.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 9.90 mm−1

  • T = 293 K

  • 0.30 × 0.26 × 0.22 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.075, Tmax = 0.126

  • 6821 measured reflections

  • 3076 independent reflections

  • 2951 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.084

  • S = 1.05

  • 3076 reflections

  • 228 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 2.77 e Å−3

  • Δρmin = −1.58 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—O1 2.701 (5)
Pb1—O2 2.527 (4)
Pb1—O3 2.453 (3)
Pb1—O3i 2.662 (4)
Pb1—O4 2.508 (4)
Pb1—O4ii 2.772 (4)
Pb1—O1W 2.687 (4)
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2Wiii 0.82 1.80 2.618 (6) 173
O6—H6⋯O5i 0.82 1.93 2.698 (6) 156
O1W—H1W⋯O1ii 0.84 2.31 3.089 (6) 154
O1W—H2W⋯O2i 0.84 2.16 2.900 (6) 147
O2W—H3W⋯O1iv 0.84 1.88 2.715 (6) 172
O2W—H4W⋯O6v 0.84 2.05 2.788 (7) 146
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z+1; (iii) x+1, y, z+1; (iv) -x+1, -y+1, -z+1; (v) x, y+1, z.

Data collection: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the structural investigation of hydroxyphenylacetate complexes, it has been found that the hydroxyphenylacelic acid functions as a multidentate ligand (Liwporncharoenvong et al., 2002; Nie & Li, 2009), with versatile binding and coordination modes. However, the structures of 2-hydroxyphenylacetate (2-dph) complexes have not been reported to date. In this paper, we report the crystal structure of the title compound, a new Pb complex obtained by the reaction of 2-Hdph and lead acetate in an alkaline aqueous solution.

As depicted in Fig. 1, the PbII atom is coordinated by six O atoms from four 2-dph ligands and one water molecule (Table 1). The coordination environment of the PbII atom can be described as a hemidirected irregular geometry, with the empty sapce around the meal ion filled by the stereochemically active 6 s2 electron pair (Shimoni-Livny et al., 1998) and a Pb···π contact [Pb1···Cg1i = 3.342 (2) Å, Cg1 is the centroid of the C11–C16 ring. Symmetry code: (i) 2-x, -y, 1-z]. The 2-dph ligands exhibit two types of coordination modes: one acts as bidentate chelating ligand; the other acts as a tetradentate chelate-bridging ligand to coordinate three PbII ions. The carboxylate groups of the tetradentate ligands connect PbII ions into a Pb–carboxylate linear chain, with Pb···Pb separations of 4.330 (2) and 4.381 (3) Å (Fig. 2). The crystal packing is governed by intra- and intermolecular O—H···O hydrogen bonding interactions involving the hydroxy and carboxylate groups of the 2-dph ligands, coordinated and uncoordinated water molecules (Table 2).

Related literature top

For general background to hydroxyphenylacetate complexes, see: Liwporncharoenvong et al. (2002); Nie & Li (2009). For general background to hemi- and holodirected geometries of lead(II) complexes, see: Shimoni-Livny et al. (1998).

Experimental top

The title compound was prepared by the addition of a stoichiometric amount of lead acetate (1 mmol, 0.325 g) to a hot aqueous solution (25 ml) of 2-Hdph (1 mmol, 0.152 g). The pH value was then adjusted to 7.0 to 8.0 with NaOH (1 mmol, 0.04 g). The resulting solution was filtered, and colorless single crystals were obtained at room temperature over several days.

Refinement top

H atoms on C atoms and hydroxyl O atoms were placed at calculated positions and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.97 (CH2) Å, O—H = 0.82 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). Water H atoms were tentatively located in difference Fourier maps and refined as riding, with distance restraints of O—H = 0.84 and H···H = 1.39 Å and with Uiso(H) = 1.5Ueq(O). The hightest peak in final difference map is located 0.94 Å from Pb1 and the deepest hole is located 0.97 Å from Pb1.

Computing details top

Data collection: CrystalStructure (Rigaku/MSC, 2002); cell refinement: CrystalStructure (Rigaku/MSC, 2002); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, together with symmetry-related atoms to complete the coordination environment. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) 2-x, -y, 1-z; (ii) 1-x, -y, 1-z.]
[Figure 2] Fig. 2. A polyhedral view of the Pb–carboxylate chain along the a axis. H atoms have been omitted for clarity.
catena-Poly[[[aqua[(2-hydroxyphenyl)acetato- κ2O,O']lead(II)]-µ3-[(2-hydroxyphenyl)acetato- κ4O:O,O':O']] monohydrate] top
Crystal data top
[Pb(C8H7O3)2(H2O)]·H2OZ = 2
Mr = 545.50F(000) = 520
Triclinic, P1Dx = 2.117 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4610 (15) ÅCell parameters from 2895 reflections
b = 10.721 (2) Åθ = 2.4–27.9°
c = 11.701 (2) ŵ = 9.90 mm1
α = 109.72 (3)°T = 293 K
β = 90.10 (3)°Block, colorless
γ = 102.92 (3)°0.30 × 0.26 × 0.22 mm
V = 855.7 (3) Å3
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3076 independent reflections
Radiation source: fine-focus sealed tube2951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 25.2°, θmin = 3.1°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 88
Tmin = 0.075, Tmax = 0.126k = 1212
6821 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0431P)2]
where P = (Fo2 + 2Fc2)/3
3076 reflections(Δ/σ)max = 0.003
228 parametersΔρmax = 2.77 e Å3
6 restraintsΔρmin = 1.58 e Å3
Crystal data top
[Pb(C8H7O3)2(H2O)]·H2Oγ = 102.92 (3)°
Mr = 545.50V = 855.7 (3) Å3
Triclinic, P1Z = 2
a = 7.4610 (15) ÅMo Kα radiation
b = 10.721 (2) ŵ = 9.90 mm1
c = 11.701 (2) ÅT = 293 K
α = 109.72 (3)°0.30 × 0.26 × 0.22 mm
β = 90.10 (3)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3076 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2951 reflections with I > 2σ(I)
Tmin = 0.075, Tmax = 0.126Rint = 0.056
6821 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0366 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.05Δρmax = 2.77 e Å3
3076 reflectionsΔρmin = 1.58 e Å3
228 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.76187 (2)0.029805 (17)0.601979 (13)0.02638 (11)
O10.6798 (6)0.2761 (5)0.6889 (4)0.0433 (10)
O20.9615 (6)0.2666 (4)0.6423 (4)0.0439 (10)
O60.7995 (6)0.2407 (5)0.1437 (5)0.0487 (11)
H60.83110.30820.14650.073*
O51.1923 (6)0.5007 (4)0.8890 (3)0.0413 (9)
H51.27210.53880.94600.062*
C10.8449 (8)0.3338 (6)0.6845 (5)0.0320 (12)
C20.9012 (8)0.4889 (6)0.7318 (6)0.0435 (14)
H2A0.82190.52230.68920.052*
H2B0.88020.52170.81750.052*
C31.0981 (8)0.5484 (5)0.7178 (5)0.0392 (13)
C41.1459 (10)0.6010 (6)0.6257 (6)0.0471 (15)
H41.05300.60590.57530.056*
C51.3273 (10)0.6461 (7)0.6070 (6)0.0512 (17)
H5A1.35580.68010.54420.061*
C61.4641 (10)0.6410 (7)0.6797 (6)0.0531 (17)
H6A1.58650.66870.66520.064*
C71.4221 (9)0.5938 (6)0.7770 (6)0.0443 (14)
H71.51620.59350.82890.053*
C81.2403 (8)0.5481 (5)0.7949 (5)0.0340 (12)
C90.7658 (7)0.0291 (5)0.3582 (5)0.0269 (11)
C100.7743 (8)0.0257 (7)0.2278 (5)0.0324 (12)
H10A0.66550.03880.17940.039*
H10B0.77180.11510.22600.039*
C110.9411 (7)0.0131 (6)0.1715 (4)0.0296 (12)
C120.9491 (7)0.1495 (6)0.1294 (4)0.0300 (12)
C131.1053 (8)0.1886 (7)0.0786 (5)0.0407 (14)
H131.10970.27990.05230.049*
C141.2530 (9)0.0917 (8)0.0675 (6)0.0448 (16)
H141.35720.11760.03320.054*
C151.2474 (9)0.0435 (7)0.1069 (5)0.0478 (18)
H151.34780.10880.09960.057*
C161.0910 (9)0.0828 (6)0.1580 (5)0.0390 (14)
H161.08710.17410.18330.047*
O30.9083 (5)0.0283 (4)0.4142 (3)0.0339 (9)
O40.6204 (5)0.0363 (4)0.4101 (3)0.0366 (9)
O1W0.6888 (6)0.2332 (5)0.4561 (4)0.0531 (12)
H2W0.76960.23390.40610.080*
H1W0.58600.27200.41610.080*
O2W0.4261 (6)0.6318 (6)0.0817 (4)0.0617 (14)
H3W0.39770.65480.15370.093*
H4W0.52910.67830.07460.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01845 (15)0.03419 (16)0.02621 (15)0.00640 (11)0.00500 (9)0.00999 (11)
O10.029 (2)0.046 (2)0.049 (2)0.005 (2)0.0044 (18)0.013 (2)
O20.031 (2)0.034 (2)0.063 (3)0.0088 (19)0.017 (2)0.012 (2)
O60.031 (2)0.041 (2)0.075 (3)0.006 (2)0.004 (2)0.022 (2)
O50.041 (2)0.042 (2)0.041 (2)0.006 (2)0.0043 (17)0.0162 (19)
C10.026 (3)0.038 (3)0.030 (3)0.006 (3)0.002 (2)0.010 (2)
C20.029 (3)0.035 (3)0.063 (4)0.008 (3)0.005 (3)0.014 (3)
C30.034 (3)0.025 (3)0.055 (3)0.005 (3)0.003 (3)0.010 (3)
C40.061 (4)0.035 (3)0.047 (3)0.013 (3)0.003 (3)0.015 (3)
C50.055 (4)0.043 (3)0.055 (4)0.002 (3)0.010 (3)0.023 (3)
C60.043 (4)0.047 (4)0.064 (4)0.002 (3)0.022 (3)0.018 (3)
C70.031 (3)0.044 (3)0.056 (4)0.005 (3)0.002 (3)0.018 (3)
C80.029 (3)0.030 (3)0.040 (3)0.006 (2)0.004 (2)0.009 (2)
C90.022 (3)0.028 (2)0.029 (2)0.006 (2)0.003 (2)0.009 (2)
C100.027 (3)0.052 (3)0.025 (3)0.018 (3)0.010 (2)0.016 (2)
C110.029 (3)0.040 (3)0.017 (2)0.014 (3)0.0021 (19)0.003 (2)
C120.026 (3)0.036 (3)0.022 (2)0.006 (2)0.0002 (19)0.003 (2)
C130.039 (3)0.048 (3)0.039 (3)0.021 (3)0.008 (3)0.013 (3)
C140.035 (3)0.068 (4)0.038 (3)0.025 (3)0.016 (3)0.018 (3)
C150.033 (4)0.061 (5)0.048 (4)0.000 (4)0.007 (3)0.024 (4)
C160.047 (4)0.038 (3)0.026 (2)0.004 (3)0.005 (2)0.008 (2)
O30.0205 (19)0.057 (2)0.0277 (17)0.0135 (18)0.0076 (14)0.0173 (17)
O40.0182 (19)0.052 (2)0.044 (2)0.0106 (18)0.0099 (16)0.0217 (19)
O1W0.046 (3)0.045 (2)0.057 (3)0.000 (2)0.019 (2)0.011 (2)
O2W0.036 (3)0.092 (4)0.044 (2)0.018 (3)0.007 (2)0.005 (3)
Geometric parameters (Å, º) top
Pb1—O12.701 (5)C6—H6A0.9300
Pb1—O22.527 (4)C7—C81.377 (8)
Pb1—O32.453 (3)C7—H70.9300
Pb1—O3i2.662 (4)C9—O31.251 (6)
Pb1—O42.508 (4)C9—O41.249 (6)
Pb1—O4ii2.772 (4)C9—C101.515 (7)
Pb1—O1W2.687 (4)C10—C111.485 (7)
O1—C11.259 (7)C10—H10A0.9700
O2—C11.249 (7)C10—H10B0.9700
O6—C121.362 (7)C11—C121.392 (8)
O6—H60.8200C11—C161.388 (8)
O5—C81.377 (7)C12—C131.393 (8)
O5—H50.8200C13—C141.375 (9)
C1—C21.521 (8)C13—H130.9300
C2—C31.499 (8)C14—C151.375 (9)
C2—H2A0.9700C14—H140.9300
C2—H2B0.9700C15—C161.396 (9)
C3—C41.389 (9)C15—H150.9300
C3—C81.393 (8)C16—H160.9300
C4—C51.376 (10)O1W—H2W0.8401
C4—H40.9300O1W—H1W0.8400
C5—C61.349 (10)O2W—H3W0.8365
C5—H5A0.9300O2W—H4W0.8383
C6—C71.403 (9)
O3—Pb1—O451.86 (12)C5—C6—C7120.2 (6)
O3—Pb1—O272.89 (14)C5—C6—H6A119.9
O4—Pb1—O289.65 (15)C7—C6—H6A119.9
O3—Pb1—O3i64.41 (14)C8—C7—C6119.5 (6)
O4—Pb1—O3i115.37 (11)C8—C7—H7120.2
O2—Pb1—O3i80.89 (13)C6—C7—H7120.2
O3—Pb1—O1W74.25 (14)O5—C8—C7121.6 (6)
O4—Pb1—O1W77.54 (15)O5—C8—C3117.7 (5)
O2—Pb1—O1W145.72 (13)C7—C8—C3120.7 (6)
O3i—Pb1—O1W76.41 (14)O3—C9—O4120.4 (5)
O3—Pb1—O1104.29 (14)O3—C9—C10118.9 (4)
O4—Pb1—O180.18 (14)O4—C9—C10120.6 (5)
O2—Pb1—O149.36 (13)C11—C10—C9113.5 (4)
O3i—Pb1—O1128.80 (13)C11—C10—H10A108.9
O1—Pb1—O4ii76.94 (13)C9—C10—H10A108.9
O2—Pb1—O4ii125.05 (14)C11—C10—H10B108.9
O3—Pb1—O4ii117.78 (12)C9—C10—H10B108.9
O3i—Pb1—O4ii154.01 (12)H10A—C10—H10B107.7
O4—Pb1—O4ii67.94 (11)C12—C11—C16118.2 (5)
O1W—Pb1—O4ii79.49 (13)C12—C11—C10119.8 (5)
O1W—Pb1—O1152.25 (15)C16—C11—C10122.1 (5)
C1—O1—Pb190.2 (4)O6—C12—C11116.6 (5)
C1—O2—Pb198.8 (3)O6—C12—C13122.3 (5)
C12—O6—H6109.5C11—C12—C13121.1 (5)
C8—O5—H5109.5C14—C13—C12119.7 (6)
O2—C1—O1121.5 (5)C14—C13—H13120.1
O2—C1—C2120.0 (5)C12—C13—H13120.1
O1—C1—C2118.5 (5)C15—C14—C13120.3 (6)
C3—C2—C1114.7 (5)C15—C14—H14119.9
C3—C2—H2A108.6C13—C14—H14119.9
C1—C2—H2A108.6C14—C15—C16120.0 (6)
C3—C2—H2B108.6C14—C15—H15120.0
C1—C2—H2B108.6C16—C15—H15120.0
H2A—C2—H2B107.6C11—C16—C15120.7 (6)
C4—C3—C8117.8 (6)C11—C16—H16119.6
C4—C3—C2121.6 (6)C15—C16—H16119.6
C8—C3—C2120.6 (6)C9—O3—Pb195.1 (3)
C5—C4—C3121.5 (7)C9—O3—Pb1i146.8 (3)
C5—C4—H4119.2Pb1—O3—Pb1i115.59 (14)
C3—C4—H4119.2C9—O4—Pb192.5 (3)
C6—C5—C4120.1 (6)H2W—O1W—H1W107.6
C6—C5—H5A119.9H3W—O2W—H4W112.2
C4—C5—H5A119.9
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2Wiii0.821.802.618 (6)173
O6—H6···O5i0.821.932.698 (6)156
O1W—H1W···O1ii0.842.313.089 (6)154
O1W—H2W···O2i0.842.162.900 (6)147
O2W—H3W···O1iv0.841.882.715 (6)172
O2W—H4W···O6v0.842.052.788 (7)146
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Pb(C8H7O3)2(H2O)]·H2O
Mr545.50
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4610 (15), 10.721 (2), 11.701 (2)
α, β, γ (°)109.72 (3), 90.10 (3), 102.92 (3)
V3)855.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)9.90
Crystal size (mm)0.30 × 0.26 × 0.22
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.075, 0.126
No. of measured, independent and
observed [I > 2σ(I)] reflections
6821, 3076, 2951
Rint0.056
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.084, 1.05
No. of reflections3076
No. of parameters228
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.77, 1.58

Computer programs: CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Pb1—O12.701 (5)Pb1—O42.508 (4)
Pb1—O22.527 (4)Pb1—O4ii2.772 (4)
Pb1—O32.453 (3)Pb1—O1W2.687 (4)
Pb1—O3i2.662 (4)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2Wiii0.821.802.618 (6)173
O6—H6···O5i0.821.932.698 (6)156
O1W—H1W···O1ii0.842.313.089 (6)154
O1W—H2W···O2i0.842.162.900 (6)147
O2W—H3W···O1iv0.841.882.715 (6)172
O2W—H4W···O6v0.842.052.788 (7)146
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x, y+1, z.
 

Acknowledgements

The authors acknowledge the Guangdong Natural Science Foundation (SN. 8452606101000739) for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLiwporncharoenvong, T., Lu, T. & Luck, R. L. (2002). Inorg. Chim. Acta, 329, 51–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationNie, X.-Y. & Li, Q.-Z. (2009). Acta Cryst. E65, m330.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853–1867.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m273-m274
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds