metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­aqua­(aceto­nitrile-κN)zinc(II) 4,6-di­hydroxy­benzene-1,3-di­sulfonate trihydrate

aKey Laboratory of Jiangxi University for Functional Materials Chemistry, Department of Chemistry and Life Science, Gannan Normal University, Ganzhou, Jiangxi 341000, People's Republic of China
*Correspondence e-mail: xieyr@gnnu.edu.cn

(Received 8 February 2010; accepted 19 February 2010; online 27 February 2010)

In the title compound, [Zn(CH3CN)(H2O)5](C6H4O8S2)·3H2O, the ZnII ion lies on a mirror plane and is octa­hedrally coordinated by one acetonitrile ligand and five water mol­ecules. The 4,6-dihydroxy­benzene-1,3-disulfonate anion, acting as a counter-ion, is also located on the mirror plane. The crystal packing is stabilized by O—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network.

Related literature

For general background to the design and construction of coordination compounds of benzene­sulfonic acid derivatives, see: Arnold et al. (2001[Arnold, P. J., Davies, S. C., Dilworth, J. R., Durrant, M. C., Griffiths, D. V., Hughes, D. L., Richards, R. L. & Sharpe, P. C. (2001). J. Chem. Soc. Dalton Trans. pp. 736-746.]); Du et al. (2006[Du, Z.-Y., Xu, H.-B. & Mao, J.-G. (2006). Inorg. Chem. 45, 9780-9788.]); Junk & Steed (2007[Junk, P. C. & Steed, J. W. (2007). Inorg. Chim. Acta, 360, 1661-1668.]); Xie et al. (2002[Xie, Y.-R., Xiong, R.-G., Xue, X., Chen, X.-T., Xue, Z.-L. & You, X.-Z. (2002). Inorg. Chem. 41, 3323-3326.]); Zhang et al. (2009[Zhang, K.-L., Yang, B. & Ng, S. W. (2009). Acta Cryst. E65, m239-m240.]). For related structures, see: Adarsh et al. (2008[Adarsh, N. N., Kumar, D. K. & Dastidar, P. (2008). CrystEngComm, 10, 1565-1573.]); Francis et al. (2003[Francis, S., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2003). Acta Cryst. E59, m87-m90.]); Lu et al. (2008[Lu, Y.-G., Cheng, W., Meng, X.-R. & Hou, H.-W. (2008). J. Mol. Struct. 875, 183-188.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C2H3N)(H2O)5](C6H4O8S2)·3H2O

  • Mr = 518.80

  • Orthorhombic, P n m a

  • a = 12.8731 (10) Å

  • b = 6.9972 (6) Å

  • c = 22.9980 (17) Å

  • V = 2071.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 296 K

  • 0.32 × 0.24 × 0.16 mm

Data collection
  • Rigaku Mercury2 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.661, Tmax = 0.790

  • 10992 measured reflections

  • 2581 independent reflections

  • 1891 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.02

  • 2581 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O5W 0.82 1.82 2.636 (4) 172
O6—H6⋯O4W 0.82 1.77 2.587 (4) 172
O1W—H1WA⋯O3 0.88 2.16 2.956 (3) 151
O1W—H1WA⋯O6 0.88 2.53 3.081 (3) 122
O1W—H1WB⋯O6Wi 0.81 1.91 2.698 (3) 165
O2W—H2WA⋯O2ii 0.89 1.96 2.839 (3) 166
O2W—H2WB⋯O4iii 0.82 1.97 2.774 (3) 166
O3W—H3WA⋯O3iv 0.82 2.24 2.869 (2) 134
O4W—H4WA⋯O2v 0.86 1.97 2.829 (3) 177
O5W—H5WA⋯O3v 0.86 2.09 2.927 (3) 166
O6W—H6WA⋯O1vi 0.86 1.92 2.734 (4) 158
O6W—H6WB⋯O2vii 0.84 2.45 3.213 (4) 151
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (iii) -x, -y, -z+1; (iv) [-x, y+{\script{1\over 2}}, -z+1]; (v) -x+1, -y, -z+1; (vi) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (vii) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzenesulfonic acid derivatives have been found wide range of applications in coordination chemistry as ligands, in medicinal chemistry and materials science. There has been an increased interest in the preparation of coordination compounds of benzenesulfonic acid derivatives (Arnold et al., 2001; Du et al., 2006; Junk & Steed, 2007; Xie et al., 2002; Zhang et al., 2009). We report here the crystal structure of the title compound.

The title compound is built up of one [Zn(C2H3N)(H2O)5]2+ cation, one uncoordinated 4,6-dihydroxybenzene-1,3-disulfonate anion and three uncoordinated water molecules (Fig.1). The distorted octahedral environment around the ZnII ion consists of one acetonitrile ligand and five water molecules. The Zn—O bond distances range from 2.058 (2) to 2.096 (3) Å. The average Zn—O bond distance of 2.078 Å and the Zn—N bond distance of 2.118 (3) Å are similar to the values in other zinc complex (Adarsh et al., 2008; Francis et al., 2003; Lu et al., 2008). The cations, anions and uncoordinated water molecules are linked into a three-dimensional supramolecular network by O—H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For general background to the design and construction of coordination compounds of benzenesulfonic acid derivatives, see: Arnold et al. (2001); Du et al. (2006); Junk & Steed (2007); Xie et al. (2002); Zhang et al. (2009). For related structures, see: Adarsh et al. (2008); Francis et al. (2003); Lu et al. (2008).

Experimental top

Zn(CH3CO2)2 (0.5 mmol) and 4,6-dihydroxybenzene-1,3-disulfonic acid (0.5 mmol) were dissolved in a mixed solution of water (2 ml) and acetonitrile (16 ml). Colorless block crystals of the title compound suitable for X-ray analysis were obtained by evaporation of the solvent in air (yield 63% based on Zn).

Refinement top

H atoms attached to C and O atoms were located in difference Fourier maps and were treated as riding on their parent atoms. The displacement parameters of all H atoms were refined isotropically.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) x, 1/2-y, z.]
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
Pentaaqua(acetonitrile-κN)zinc(II) 4,6-dihydroxybenzene-1,3-disulfonate trihydrate top
Crystal data top
[Zn(C2H3N)(H2O)5](C6H4O8S2)·3H2OF(000) = 1072
Mr = 518.80Dx = 1.663 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2210 reflections
a = 12.8731 (10) Åθ = 2.4–27.6°
b = 6.9972 (6) ŵ = 1.46 mm1
c = 22.9980 (17) ÅT = 296 K
V = 2071.6 (3) Å3Block, colourless
Z = 40.32 × 0.24 × 0.16 mm
Data collection top
Rigaku Mercury2 CCD
diffractometer
2581 independent reflections
Radiation source: fine-focus sealed tube1891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1614
Tmin = 0.661, Tmax = 0.790k = 99
10992 measured reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.7072P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2581 reflectionsΔρmax = 0.31 e Å3
172 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0021 (5)
Crystal data top
[Zn(C2H3N)(H2O)5](C6H4O8S2)·3H2OV = 2071.6 (3) Å3
Mr = 518.80Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.8731 (10) ŵ = 1.46 mm1
b = 6.9972 (6) ÅT = 296 K
c = 22.9980 (17) Å0.32 × 0.24 × 0.16 mm
Data collection top
Rigaku Mercury2 CCD
diffractometer
2581 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1891 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.790Rint = 0.039
10992 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
2581 reflectionsΔρmin = 0.43 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.05196 (4)0.25000.648181 (17)0.04642 (16)
O1W0.1416 (2)0.0416 (4)0.60984 (10)0.0831 (8)
H1WB0.15990.03610.63360.117 (17)*
H1WA0.16270.04690.57360.17 (2)*
O2W0.04689 (16)0.0412 (3)0.68120 (8)0.0615 (6)
H2WB0.06110.03550.65550.075 (11)*
H2WA0.05800.00960.71640.122 (16)*
O3W0.0392 (2)0.25000.57265 (12)0.0579 (8)
H3WA0.02850.34850.55420.15 (2)*
N10.1330 (3)0.25000.72832 (15)0.0672 (11)
C70.2069 (4)0.25000.8316 (2)0.0734 (14)
H7A0.17820.13430.84670.17 (2)*
H7B0.27560.25000.83500.11 (2)*
C80.1698 (4)0.25000.7727 (2)0.0621 (12)
S10.49094 (8)0.25000.30660 (3)0.0414 (2)
S20.15787 (7)0.25000.44987 (3)0.0375 (2)
O10.4012 (2)0.25000.26982 (10)0.0735 (10)
O20.55305 (17)0.0800 (3)0.29897 (8)0.0669 (6)
O30.13088 (14)0.0779 (3)0.48192 (7)0.0494 (5)
O40.11538 (19)0.25000.39111 (10)0.0464 (6)
O50.6117 (2)0.25000.41697 (10)0.0594 (8)
H50.64260.25000.44820.044 (11)*
O60.3153 (2)0.25000.54301 (9)0.0527 (7)
H60.36050.25000.56810.086 (17)*
C10.5087 (3)0.25000.42656 (13)0.0394 (8)
C30.3602 (3)0.25000.48999 (13)0.0359 (8)
C40.2939 (3)0.25000.44165 (13)0.0351 (8)
C20.4660 (3)0.25000.48202 (13)0.0407 (9)
H20.50970.25000.51420.047 (10)*
C50.3365 (3)0.25000.38655 (13)0.0349 (8)
H5A0.29290.25000.35430.028 (8)*
C60.4421 (3)0.25000.37869 (13)0.0357 (8)
O4W0.4428 (2)0.25000.62998 (12)0.0598 (8)
H4WA0.44210.15140.65220.108 (16)*
O5W0.7285 (2)0.25000.51114 (13)0.0664 (8)
H5WA0.76070.14410.51600.108 (16)*
O6W0.2208 (2)0.75000.67248 (12)0.0559 (7)
H6WB0.28490.75000.68000.12 (2)*
H6WA0.19830.75000.70770.092 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0641 (3)0.0442 (3)0.0310 (2)0.0000.00282 (19)0.000
O1W0.128 (2)0.0722 (17)0.0490 (11)0.0344 (15)0.0277 (12)0.0130 (13)
O2W0.1018 (17)0.0502 (12)0.0326 (9)0.0182 (11)0.0079 (9)0.0075 (10)
O3W0.089 (2)0.0464 (17)0.0386 (13)0.0000.0161 (14)0.000
N10.070 (3)0.085 (3)0.0461 (19)0.0000.0087 (18)0.000
C70.069 (4)0.089 (4)0.063 (3)0.0000.022 (2)0.000
C80.067 (3)0.053 (3)0.066 (3)0.0000.018 (2)0.000
S10.0572 (6)0.0451 (5)0.0218 (3)0.0000.0032 (4)0.000
S20.0406 (5)0.0411 (5)0.0307 (4)0.0000.0036 (3)0.000
O10.071 (2)0.126 (3)0.0242 (11)0.0000.0051 (12)0.000
O20.1018 (16)0.0626 (14)0.0362 (9)0.0273 (13)0.0188 (10)0.0016 (10)
O30.0521 (11)0.0500 (12)0.0462 (9)0.0103 (9)0.0010 (8)0.0091 (9)
O40.0487 (15)0.0545 (17)0.0360 (12)0.0000.0117 (11)0.000
O50.0416 (16)0.104 (3)0.0331 (12)0.0000.0003 (11)0.000
O60.0467 (15)0.087 (2)0.0244 (10)0.0000.0018 (11)0.000
C10.043 (2)0.045 (2)0.0302 (15)0.0000.0022 (14)0.000
C30.043 (2)0.042 (2)0.0227 (13)0.0000.0014 (13)0.000
C40.0396 (19)0.0376 (19)0.0281 (14)0.0000.0030 (13)0.000
C20.048 (2)0.051 (2)0.0232 (14)0.0000.0068 (13)0.000
C50.041 (2)0.0387 (19)0.0247 (14)0.0000.0041 (13)0.000
C60.050 (2)0.0360 (19)0.0209 (13)0.0000.0003 (13)0.000
O4W0.085 (2)0.0572 (19)0.0370 (13)0.0000.0126 (13)0.000
O5W0.0649 (19)0.061 (2)0.073 (2)0.0000.0245 (16)0.000
O6W0.0485 (18)0.071 (2)0.0479 (15)0.0000.0108 (13)0.000
Geometric parameters (Å, º) top
Zn1—O1W2.058 (2)S2—O41.458 (2)
Zn1—O2W2.081 (2)S2—C41.762 (4)
Zn1—O3W2.096 (3)O5—C11.344 (4)
Zn1—N12.118 (3)O5—H50.8206
O1W—H1WB0.8063O6—C31.349 (4)
O1W—H1WA0.8769O6—H60.8201
O2W—H2WB0.8197C1—C21.389 (4)
O2W—H2WA0.8948C1—C61.395 (4)
O3W—H3WA0.8204C3—O61.349 (4)
N1—C81.126 (5)C3—C21.375 (5)
C7—C81.435 (6)C3—C41.402 (4)
C7—H7A0.9553C4—C51.381 (4)
C7—H7B0.8878C2—H20.9300
S1—O11.432 (3)C5—C61.371 (5)
S1—O2i1.444 (2)C5—H5A0.9300
S1—O21.444 (2)O4W—H4WA0.8585
S1—C61.773 (3)O5W—H5WA0.8563
S2—O3i1.4541 (19)O6W—H6WB0.8433
S2—O31.4541 (19)O6W—H6WA0.8611
S2—O31.4541 (19)
O1W—Zn1—O1Wi90.26 (14)O3i—S2—O3111.83 (16)
O1W—Zn1—O2Wi175.32 (9)O3i—S2—O3111.83 (16)
O1Wi—Zn1—O2Wi90.09 (10)O3i—S2—O4112.35 (9)
O1W—Zn1—O2W90.09 (10)O3—S2—O4112.35 (9)
O1Wi—Zn1—O2W175.32 (9)O3—S2—O4112.35 (9)
O2Wi—Zn1—O2W89.19 (12)O3i—S2—C4106.98 (10)
O1W—Zn1—O3W87.63 (9)O3—S2—C4106.98 (10)
O1Wi—Zn1—O3W87.63 (9)O3—S2—C4106.98 (10)
O2Wi—Zn1—O3W87.72 (8)O4—S2—C4105.87 (15)
O2W—Zn1—O3W87.72 (8)C1—O5—H5109.6
O1W—Zn1—N195.54 (10)C3—O6—H6109.5
O1Wi—Zn1—N195.54 (10)O5—C1—C2122.7 (3)
O2Wi—Zn1—N189.07 (9)O5—C1—C6118.4 (3)
O2W—Zn1—N189.07 (9)C2—C1—C6118.8 (3)
O3W—Zn1—N1175.50 (13)O6—C3—C2123.0 (3)
Zn1—O1W—H1WB110.5O6—C3—C2123.0 (3)
Zn1—O1W—H1WA123.4O6—C3—C4117.2 (3)
H1WB—O1W—H1WA125.6O6—C3—C4117.2 (3)
Zn1—O2W—H2WB109.4C2—C3—C4119.8 (3)
Zn1—O2W—H2WA134.9C5—C4—C3119.1 (3)
H2WB—O2W—H2WA110.9C5—C4—S2119.6 (2)
Zn1—O3W—H3WA109.5C3—C4—S2121.3 (2)
C8—N1—Zn1175.3 (4)C3—C2—C1120.9 (3)
C8—C7—H7A102.4C3—C2—H2119.5
C8—C7—H7B114.5C1—C2—H2119.5
H7A—C7—H7B110.7C6—C5—C4121.0 (3)
N1—C8—C7174.6 (6)C6—C5—H5A119.5
O1—S1—O2i112.01 (11)C4—C5—H5A119.5
O1—S1—O2112.01 (11)C5—C6—C1120.3 (3)
O2i—S1—O2110.9 (2)C5—C6—S1118.3 (2)
O1—S1—C6105.47 (16)C1—C6—S1121.4 (3)
O2i—S1—C6108.06 (10)H6WB—O6W—H6WA97.8
O2—S1—C6108.06 (10)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O5W0.821.822.636 (4)172
O6—H6···O4W0.821.772.587 (4)172
O1W—H1WA···O30.882.162.956 (3)151
O1W—H1WA···O60.882.533.081 (3)122
O1W—H1WB···O6Wii0.811.912.698 (3)165
O2W—H2WA···O2iii0.891.962.839 (3)166
O2W—H2WB···O4iv0.821.972.774 (3)166
O3W—H3WA···O3v0.822.242.869 (2)134
O4W—H4WA···O2vi0.861.972.829 (3)177
O5W—H5WA···O3vi0.862.092.927 (3)166
O6W—H6WA···O1vii0.861.922.734 (4)158
O6W—H6WB···O2viii0.842.453.213 (4)151
Symmetry codes: (ii) x, y1, z; (iii) x+1/2, y, z+1/2; (iv) x, y, z+1; (v) x, y+1/2, z+1; (vi) x+1, y, z+1; (vii) x+1/2, y+1, z+1/2; (viii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C2H3N)(H2O)5](C6H4O8S2)·3H2O
Mr518.80
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)296
a, b, c (Å)12.8731 (10), 6.9972 (6), 22.9980 (17)
V3)2071.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.32 × 0.24 × 0.16
Data collection
DiffractometerRigaku Mercury2 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.661, 0.790
No. of measured, independent and
observed [I > 2σ(I)] reflections
10992, 2581, 1891
Rint0.039
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.02
No. of reflections2581
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.43

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O5W0.821.822.636 (4)172
O6—H6···O4W0.821.772.587 (4)172
O1W—H1WA···O30.882.162.956 (3)151
O1W—H1WA···O60.882.533.081 (3)122
O1W—H1WB···O6Wi0.811.912.698 (3)165
O2W—H2WA···O2ii0.891.962.839 (3)166
O2W—H2WB···O4iii0.821.972.774 (3)166
O3W—H3WA···O3iv0.822.242.869 (2)134
O4W—H4WA···O2v0.861.972.829 (3)177
O5W—H5WA···O3v0.862.092.927 (3)166
O6W—H6WA···O1vi0.861.922.734 (4)158
O6W—H6WB···O2vii0.842.453.213 (4)151
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y, z+1/2; (iii) x, y, z+1; (iv) x, y+1/2, z+1; (v) x+1, y, z+1; (vi) x+1/2, y+1, z+1/2; (vii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grant No. 20861001) and the Development Program of Science and Technology of the Education Department of Jiangxi Province (20060237).

References

First citationAdarsh, N. N., Kumar, D. K. & Dastidar, P. (2008). CrystEngComm, 10, 1565–1573.  Web of Science CSD CrossRef CAS Google Scholar
First citationArnold, P. J., Davies, S. C., Dilworth, J. R., Durrant, M. C., Griffiths, D. V., Hughes, D. L., Richards, R. L. & Sharpe, P. C. (2001). J. Chem. Soc. Dalton Trans. pp. 736–746.  Web of Science CSD CrossRef Google Scholar
First citationDu, Z.-Y., Xu, H.-B. & Mao, J.-G. (2006). Inorg. Chem. 45, 9780–9788.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFrancis, S., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2003). Acta Cryst. E59, m87–m90.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJunk, P. C. & Steed, J. W. (2007). Inorg. Chim. Acta, 360, 1661–1668.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, Y.-G., Cheng, W., Meng, X.-R. & Hou, H.-W. (2008). J. Mol. Struct. 875, 183–188.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Y.-R., Xiong, R.-G., Xue, X., Chen, X.-T., Xue, Z.-L. & You, X.-Z. (2002). Inorg. Chem. 41, 3323–3326.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, K.-L., Yang, B. & Ng, S. W. (2009). Acta Cryst. E65, m239–m240.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds